
CS 301

Lecture 05 – Applications of Regular Languages

1 / 17

Characterizing regular languages
The following four statements about the language A are equivalent

• The language A is regular
• Some DFA M recognizes A (i.e., L(M) = A)
• Some NFA N recognizes A (i.e., L(N) = A)
• Some regular expression R generates (or describes) A (i.e., L(R) = A)

2 / 17

Converting between DFA, NFA, regex
DFA M = (Q1,Σ, δ1, q1, F1)

NFA N = (Q2,Σ, δ2, q2, F2) Regular Expression

δ 2
(q
, t
) =

{δ 1
(q
, t
)}

Construct GNFA
and

remove states

Q
1
=
P
(Q

2)

Construct GNFA and remove states

Construct NFAs for base cases and combine

3 / 17

Types of regular expressions

• Formal language-theoretic regular expressions (this class)
• Portable Operating System Interface (POSIX) basic and extended regular

expressions
• Perl-compatible regular expressions (PCRE) (not always regular!)

Many languages use similar regex, Java, JavaScript, Python, Ruby, . . .
• Vim regular expressions
• Boost regular expressions
• . . .

4 / 17

Regex in text processing
Alphabet is usually ASCII characters

Common tasks include

• Finding lines that match (or have a substring that matches) the regex
• Text substitution: match a regex, replace parts of it

E.g., restructuring formatted data
• Validating input

E.g., untainting user input in Perl
• Web (or other data) scraping
• Syntax highlighting in editors

5 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

() Defines a subexpression

6 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

() Defines a subexpression

6 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

() Defines a subexpression

6 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line

$ Matches the end of the string or the end of the line
() Defines a subexpression

6 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

() Defines a subexpression

6 / 17

POSIX regex
Most characters match literally

E.g., the formal regex red would be written red or /red/

Metacharacters

. Equivalent to Σ: matches any character (not completely true as newlines are
typically not matched)

[] Matches characters contained in the brackets
E.g., [abc] is a ∣ b ∣ c; [a-zA-Z0-9] is
a ∣ b ∣ ⋅ ⋅ ⋅ ∣ z ∣ A ∣ B ∣ ⋅ ⋅ ⋅ ∣ Z ∣ 0 ∣ 1 ∣ ⋅ ⋅ ⋅ ∣ 9

[ˆ] Matches characters not contained in the brackets
E.g., [ˆabc] matches any character except a, b, or c

ˆ Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

() Defines a subexpression

6 / 17

POSIX regex
More metacharacters

* Matches the preceding element zero or more times
E.g., ab*c is ab∗c

+ Matches the preceding element one or more times
E.g., ab+c is abb∗c

? Matches the preceding element zero or one times
E.g., ab?c is a(b ∣ ε)c

{m,n} Matches the preceding element at least m and at most n times
E.g., .{2,4} is ΣΣ ∣ΣΣΣ ∣ΣΣΣΣ

| Normal “or”
E.g., abc|def is abc ∣ def

7 / 17

Character classes
Character classes are shorthands for [] or [ˆ] expressions

[:alpha:] Equivalent to [A-Za-z]
[:digit:] Equivalent to [0-9] (written \d in PCRE or Vim)

. . .

The POSIX ones (with the brackets and colons) must appear inside brackets
E.g., [[:digit:]abc] matches a digit or a, b, or c

8 / 17

Some common tools

• grep (or egrep): Selects lines that match a regex
egrep '((1-)?[0-9]{3}-)?[0-9]{3}-[0-9]{4}' file

• awk (or gawk or mawk or nawk): Runs a program on lines that match
awk '/cat|hat/ { print $1, $3 }'

• sed: Reads lines from files and applies commands
sed -E 's/([^,]*),(.*)/\2,\1/' file

9 / 17

Programming language support
Built-in support

• Perl: $foo =~ /foo|bar?/ or $foo =~ s/red/blue/
• Bash: if [["$x" =~ foo|bar|baz]]; then echo match; fi
• Ruby: 'haystack' =~ /hay/
• . . .

Standard library support

• Python. re module has re.compile('ab*') and related functions
• C++11. std::regex
• . . .

Languages without built-in support usually use strings for regex and this leads to lots
of escaping: /\d/ becomes "\\\d"

10 / 17

Match objects or variables
Usually, just matching a string isn’t enough
We want to extract matching substrings and do something with them

Parentheses denote “capturing groups” and the text that matches the corresponding
subexpression is available
• using special variables (like $1, $2, . . .)

'foo␣bar␣baz' =~ /([^]+) ([^]+)/;
print "$1\n"; # prints foo
print "$2\n"; # prints bar

• via returned match object
>>> import re
>>> m = re.match(r'([^␣]+)␣([^␣]+)', "foo␣bar␣baz")
>>> m.group (1)
'foo'
>>> m.group (2)
'bar'

11 / 17

Much much more
There’s a lot more than I’ve touched on

Read some of the documentation to see how best to use regex in your language of
choice

Many popular regex implementations have extentions that allow the language to match
strings from some nonregular languages

12 / 17

You cannot parse HTML with regular expressions!

13 / 17

Compiler construction
Compilers typically operate in phases

1 Lexical analysis (lexing or tokenizing) splits sequences of characters into tokens
2 Syntax analysis (parsing) generates a parse tree and checks that the program is

syntatically correct (more on this later!)
3 Semantic analysis checks if the parse tree follows the rules of the language
4 Code generation and optimization (the bulk of the work of a compiler)

14 / 17

Lexing
Lexing splits a sequence of characters into tokens with types and values

Consider

int foo = 32;

This might be split into a sequence of tokens
⟨IDENTIFIER, “int”⟩, ⟨IDENTIFIER, “foo”⟩, ⟨EQUAL SIGN⟩, ⟨INTEGER, 32⟩,
⟨SEMICOLON⟩

The parsing stage might have a rule that says that a variable declaration consists of
two identifiers, an equal sign, an expression, and a semicolon

The semantic analysis phase would check that the first identifier was a valid type and
that the second identifier was a valid variable name, and that the expression was valid

15 / 17

Flex
Flex is a tool that is used to construct (usually C) source code to run as tokens are
created

/* Definitions */
IDENTIFIER [A-Za-z_][A-Za-z0 -9_]*
DIGIT [0-9]

%%

/* Rules for what code to run when matching the
* corresponding regular expression */

{DIGIT }+ { /* construct INTEGER token */ }
{DIGIT }+"."{ DIGIT }* { /* construct FLOAT token */ }
{IDENTIFIER} { /* construct IDENTIFIER token */ }

16 / 17

Implementing regular expression matching
Some options

• Table driven: convert to DFA and encode δ as a table
• Encode as loops and conditionals: convert to DFA but encode the transitions

using control structures from the target language
• Backtracking: convert to NFA and employ a backtracking strategy if a choice was

incorrect
• Brzozowski derivative (named for Janusz Brzozowski): for the first character t in

the string, construct a new regular expression t−1
R to match against the

remaining characters, repeat

17 / 17

