CS 301

Lecture 05 — Applications of Regular Languages

/17

Characterizing regular languages

The following four statements about the language A are equivalent
e The language A is regular
e Some DFA M recognizes A (i.e., L(M) = A)
e Some NFA N recognizes A (i.e., L(N) = A)
e Some regular expression R generates (or describes) A (i.e., L(R) = A)

17

Converting between DFA, NFA, regex
DFA M = (Q1727617QI7F1)

NFA N = (Q9, %, 02, g2, F») ‘ Regular Expression ‘

g

3/17

Construct GNFA and remove states

Types of regular expressions

e Formal language-theoretic regular expressions (this class)

e Portable Operating System Interface (POSIX) basic and extended regular
expressions

e Perl-compatible regular expressions (PCRE) (not always regular!)
Many languages use similar regex, Java, JavaScript, Python, Ruby, ...

e Vim regular expressions

e Boost regular expressions

Regex in text processing

Alphabet is usually ASCII characters

Common tasks include

e Finding lines that match (or have a substring that matches) the regex

e Text substitution: match a regex, replace parts of it
E.g., restructuring formatted data

Validating input
E.g., untainting user input in Perl

Web (or other data) scraping

Syntax highlighting in editors

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/
Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/

Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)

[1 Matches characters contained in the brackets
E.g., [abcl isa|b|c; [a-zA-Z20-9] is
a|b|---|z[A[Bf---]Z]OJ1]---]|9

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/

Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)
[1 Matches characters contained in the brackets
E.g., [abcl isa|b|c; [a-zA-Z20-9] is
a|b|---|z[A[Bf---]Z]OJ1]---]|9
[* 1 Matches characters not contained in the brackets
E.g., [Tabc] matches any character except a, b, or c

17

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/

Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)

[1 Matches characters contained in the brackets
E.g., [abcl isa|b|c; [a-zA-Z20-9] is
albl---|z|A[B|---[Z]O|1]---]9
[~ 1 Matches characters not contained in the brackets
E.g., [Tabc] matches any character except a, b, or c

" Matches the start of the string or the start of the line

17

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/

Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)

[1 Matches characters contained in the brackets
E.g., [abcl isa|b|c; [a-zA-Z20-9] is
albl---|z|A[B|---[Z]O|1]---]9
[~ 1 Matches characters not contained in the brackets
E.g., [Tabc] matches any character except a, b, or c

" Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line

6 /17

POSIX regex

Most characters match literally
E.g., the formal regex red would be written red or /red/

Metacharacters

Equivalent to X: matches any character (not completely true as newlines are
typically not matched)
[1 Matches characters contained in the brackets
E.g., [abcl isa|b|c; [a-zA-Z20-9] is
a|b|---|z[A[Bf---]Z]OJ1]---]|9
[* 1 Matches characters not contained in the brackets
E.g., [Tabc] matches any character except a, b, or c

Matches the start of the string or the start of the line
$ Matches the end of the string or the end of the line
() Defines a subexpression

6 /17

POSIX regex

More metacharacters
* Matches the preceding element zero or more times
E.g., abxcisab ¢
+ Matches the preceding element one or more times
E.g., abtc is %fkc
? Matches the preceding element zero or one times
E.g., ab?cis a(b|e)c
{m,n} Matches the preceding element at least m and at most n times
Eg., . {2,4}is XY | XYY | YYyYy

| Normal “or”
E.g., abcldef is abc | def

Character classes

Character classes are shorthands for [] or [*] expressions
[:alpha:] Equivalent to [A-Za-Zz]

[:digit:] Equivalent to [0-9] (written \d in PCRE or Vim)

The POSIX ones (with the brackets and colons) must appear inside brackets
E.g., [[:digit:]abc] matches a digit or a, b, or ¢

Some common tools

e grep (or egrep): Selects lines that match a regex
egrep '((1-)7[0-9]1{3}-)7[0-9]1{3}-[0-9]1{4}' file

e awk (or gawk or mawk or nawk): Runs a program on lines that match
awk '/catlhat/ { print $1, $3 }'

e sed: Reads lines from files and applies commands
sed -E 's/([7,1%),(.%x)/\2,\1/"' file

Programming language support
Built-in support
e Perl: $foo =~ /foolbar?/ or $foo =~ s/red/blue/
e Bash: if [["$x" =~ fool|bar|baz]]; then echo match; fi
e Ruby: 'haystack' =~ /hay/

Standard library support

e Python. re module has re.compile('abx') and related functions
e C++11. std::regex

Languages without built-in support usually use strings for regex and this leads to lots
of escaping: /\d/ becomes "\\\d"

g

10/17

Match objects or variables

Usually, just matching a string isn't enough

We want to extract matching substrings and do something with them

Parentheses denote “capturing groups” and the text that matches the corresponding

subexpression is available
e using special variables (like $1, $2, ...)

'fooyubarybaz' =~ /([~ 1+) ([~
print "$1\n"; # prints foo
print "$2\n"; # prints bar

e via returned match object

>>> import re

>>> m = re.match(r'(["ol+)ou(["ul+) "',

>>> m.group (1)
'foo'
>>> m.group (2)
'bar'

"foo_bar baz")

11/17

Much much more

There's a lot more than I've touched on

Read some of the documentation to see how best to use regex in your language of
choice

Many popular regex implementations have extentions that allow the language to match
strings from some nonregular languages

12 /17

You cannot parse HTML with regular expressions!

A
4425
A 4

You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
so many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML.
HTML is not a regular language and hence cannot be parsed by regular expressions. Regex
queries are not equipped to break down HTML into its meaningful parts. so many times but it is not
getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the task
of parsing HTML. You will never make me crack. HTML is a language of sufficient complexity that it
cannot be parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular
expressions. Every time you attempt to parse HTML with regular expressions, the unholy child
weeps the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex
summons tainted souls into the realm of the living. HTML and regex go together like love, marriage,
and ritual infanticide. The <center> cannot hold it is too late. The force of regex and HTML together
in the same conceptual space will destroy your mind like so much watery putty. If you parse HTML
with regex you are giving in to Them and their blasphemous ways which doom us all to inhuman
toil for the One whose Name cannot be expressed in the Basic Multilingual Plane, he comes.
HTML-plus-regexp will liquify the nerves of the sentient whilst you observe, your psyche withering
in the onslaught of horror. Regé'x—based HTML parsers are the cancer that is killing StackOverflow
it is too late it is oo late we cannot be saved the trangession of a child ensures regex will consume
all living tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how
can anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regey s a tool to process HTML establishes a breach
between this world and the dread realm of ¢orrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer's
consciousness into a world of ceaseless screaming, he comes;-the-pestilent slithy regex-infection
will devour your HTML parser, application and existence for all time like Visual Basu: only worse
he comes he comes do not fight he comgs, his unholy radiancé destroying alf en.‘fghtenment
HTML tags leak;ng feom your eyes"’l'ike liquid pain, the song of regular expresslsn—parsmgwm
extinguish the voices of mortal man from the gphere | can see it can you see _lr-‘f is beautiful the
f 1nal snuf fing of the lies of Man ALL IS LOSTAI.E_ IS LOST the pony he cémes he co
ee!nes thehlq-mr permegtes all MY FACE M\{‘%#}!()Efﬂuod no NO NOOQO NO stop the an;gr S
.gre not re&| ZALGO 1§ Tg\li THE FORY, H

13/17

Compiler construction

Compilers typically operate in phases

@ Lexical analysis (lexing or tokenizing) splits sequences of characters into tokens

@® Syntax analysis (parsing) generates a parse tree and checks that the program is
syntatically correct (more on this later!)

© Semantic analysis checks if the parse tree follows the rules of the language

@ Code generation and optimization (the bulk of the work of a compiler)

14 /17

Lexing

Lexing splits a sequence of characters into tokens with types and values

Consider

int foo = 32;

This might be split into a sequence of tokens
(IDENTIFIER, “int"), (IDENTIFIER, “foo”), (EQUAL SIGN), (INTEGER, 32),
(SEMICOLON)

The parsing stage might have a rule that says that a variable declaration consists of
two identifiers, an equal sign, an expression, and a semicolon

The semantic analysis phase would check that the first identifier was a valid type and
that the second identifier was a valid variable name, and that the expression was valid

15 /17

Flex

Flex is a tool that is used to construct (usually C) source code to run as tokens are

created

/* Definitions x*/

IDENTIFIER [A-Za-z_][A-Za-z0-9 1%

DIGIT [0-9]

hh

/* Rules for what code to run when matching the

* corresponding regular

{DIGIT}+ { /%
{DIGIT}+"."{DIGIT}* { /*
{IDENTIFIERY} { /%

expression */
construct INTEGER token */ }
construct FLOAT token */ }

construct IDENTIFIER token */ }

16 /17

Implementing regular expression matching

Some options

Table driven: convert to DFA and encode § as a table

Encode as loops and conditionals: convert to DFA but encode the transitions
using control structures from the target language

Backtracking: convert to NFA and employ a backtracking strategy if a choice was
incorrect

Brzozowski derivative (named for Janusz Brzozowski): for the first character ¢ in
the string, construct a new regular expression ¢t 'R to match against the
remaining characters, repeat

17 /17

