
CS 301
Lecture 08 – Regular languages recap

1 / 39



Symbols, alphabets, strings, and languages

1 Alphabets are sets of symbols
2 Strings over an alphabet are sequences of symbols from the alphabet
3 Languages over an alphabet are sets strings over the alphabet

2 / 39



Question 1
Can an alphabet contain zero symbols?

No. Alphabets must have at least one symbol

3 / 39



Question 1
Can an alphabet contain zero symbols?
No. Alphabets must have at least one symbol

3 / 39



Question 2
Can an alphabet contain infinitely many symbols?

No. Alphabets must be finite

4 / 39



Question 2
Can an alphabet contain infinitely many symbols?
No. Alphabets must be finite

4 / 39



Question 3
Can a string contain zero symbols?

Yes. ε is a perfectly reasonable string

5 / 39



Question 3
Can a string contain zero symbols?
Yes. ε is a perfectly reasonable string

5 / 39



Question 4
Can a string contain infinitely many symbols?

No. Strings must have finite length

6 / 39



Question 4
Can a string contain infinitely many symbols?
No. Strings must have finite length

6 / 39



Question 5
Can a language contain zero strings?

Yes. ∅ is the empty language

7 / 39



Question 5
Can a language contain zero strings?
Yes. ∅ is the empty language

7 / 39



Question 6
Can a language contain infinitely many strings?

Yes. Most languages contain infinitely many strings.

(For a given alphabet, there are countably-many finite languages
but uncountably-many nonfinite languages)

8 / 39



Question 6
Can a language contain infinitely many strings?
Yes. Most languages contain infinitely many strings.

(For a given alphabet, there are countably-many finite languages
but uncountably-many nonfinite languages)

8 / 39



Deterministic finite automata
DFAs are five-tuples M = (Q,Σ, δ, q0, F ) where
• Q is the set of states
• Σ is the alphabet
• δ is the transition function
• q0 is the start state
• F is the set of accepting states

9 / 39



Question 7
Can Q be the empty set?

No. Every DFA contains at least a start state q0

10 / 39



Question 7
Can Q be the empty set?
No. Every DFA contains at least a start state q0

10 / 39



Question 8
Can Q contain infinitely many states?

No. These are finite automata

11 / 39



Question 8
Can Q contain infinitely many states?
No. These are finite automata

11 / 39



Question 9
Can F be the empty set?

Yes. A DFA without any accepting states rejects every string

12 / 39



Question 9
Can F be the empty set?
Yes. A DFA without any accepting states rejects every string

12 / 39



Question 10
Can F be all of Q?

Yes. A DFA where every state is an accepting state accepts every string

13 / 39



Question 10
Can F be all of Q?
Yes. A DFA where every state is an accepting state accepts every string

13 / 39



Question 11
Can M have multiple start states?

No. DFAs have a single start state

14 / 39



Question 11
Can M have multiple start states?
No. DFAs have a single start state

14 / 39



Question 12
Can a DFA have a state that’s not reachable from any other state?

q0 q1 q2

0

1

0

1 0

1

Yes. Nothing in the mathematical definition of a DFA forbids that and it simplifies
conversions to DFA from other machines

15 / 39



Question 12
Can a DFA have a state that’s not reachable from any other state?

q0 q1 q2

0

1

0

1 0

1
Yes. Nothing in the mathematical definition of a DFA forbids that and it simplifies
conversions to DFA from other machines

15 / 39



Question 13
Can a DFA have a state without any transitions from it?

No. The transition function δ ∶ Q × Σ → Q requires every state have a transition for
every symbol in the alphabet

16 / 39



Question 13
Can a DFA have a state without any transitions from it?
No. The transition function δ ∶ Q × Σ → Q requires every state have a transition for
every symbol in the alphabet

16 / 39



Recognition and acceptance

• A DFA accepts a string when the sequence of states it goes through when it runs
on the string ends in an accepting state

• A DFA recognizes a language when it accepts every string in the language and,
crucially, rejects every string not in the language

17 / 39



Question 14
Does this DFA recognize the string 1101?

q0 q1 q2

0

1

0

1 0

1

No. The question doesn’t even make sense. DFAs recognize languages, not strings

18 / 39



Question 14
Does this DFA recognize the string 1101?

q0 q1 q2

0

1

0

1 0

1
No. The question doesn’t even make sense. DFAs recognize languages, not strings

18 / 39



Question 15
Consider the language A = {w ∣ w ∈ {0, 1}∗ ends in 11}. The following DFA accepts
every string in A. Does the DFA recognize A?

q0 q1 q2

0

1

0

1 0

1

No. The DFA accepts string 1 which is not in A

19 / 39



Question 15
Consider the language A = {w ∣ w ∈ {0, 1}∗ ends in 11}. The following DFA accepts
every string in A. Does the DFA recognize A?

q0 q1 q2

0

1

0

1 0

1
No. The DFA accepts string 1 which is not in A

19 / 39



Two methods of proving that a DFA recognizes a language
If we want to show that DFA M recognizes some language L, we have two options

1 Show that M accepts every string in L and rejects every string not in L
2 Show that M accepts every string in L and every string accepted by the DFA is in
L

20 / 39



Nondeterministic finite automata
NFAs are five-tuples N = (Q,Σ, δ, q0, F ) where
• Q is the set of states
• Σ is the alphabet
• δ is the transition function
• q0 is the start state
• F is the set of accepting states

21 / 39



Question 16
NFAs add two capabilities to DFAs

1 The ability to transition on an input symbol to zero or more states
2 The ability to transition on no input at all (ε-transitions)

For an NFA N = (Q,Σ, δ, q0, F ), is ε ∈ Σ?

No. Remember, the transition function is δ ∶ Q × Σε → P (Q) where Σε = Σ ∪ {ε}

22 / 39



Question 16
NFAs add two capabilities to DFAs

1 The ability to transition on an input symbol to zero or more states
2 The ability to transition on no input at all (ε-transitions)

For an NFA N = (Q,Σ, δ, q0, F ), is ε ∈ Σ?
No. Remember, the transition function is δ ∶ Q × Σε → P (Q) where Σε = Σ ∪ {ε}

22 / 39



Question 17
Can an NFA have multiple start states?

No. Still just the one

23 / 39



Question 17
Can an NFA have multiple start states?
No. Still just the one

23 / 39



Question 18
Consider a new type of finite automaton called a multinondeterministic finite
automaton (I just made this name up) which is a five tuple M = (Q,Σ, δ, I, F ) where
I is a set of initial states but is otherwise similar to an NFA.

Are MNFAs more powerful (meaning, can the class of MNFAs recognize more
languages) than NFAs?

No. We can build an equivalent NFA by adding a new state which is the only start
state and adding ε-transitions to the states in I.

24 / 39



Question 18
Consider a new type of finite automaton called a multinondeterministic finite
automaton (I just made this name up) which is a five tuple M = (Q,Σ, δ, I, F ) where
I is a set of initial states but is otherwise similar to an NFA.

Are MNFAs more powerful (meaning, can the class of MNFAs recognize more
languages) than NFAs?
No. We can build an equivalent NFA by adding a new state which is the only start
state and adding ε-transitions to the states in I.

24 / 39



Regular expressions
Regular expressions are defined recursively with three base cases
• ∅ generates the empty language ∅
• ε generates the language {ε}
• t for some t ∈ Σ generates the language {t}

and three recursive cases
• R1R2 generates L(R1) ◦ L(R2)
• R1 ∣ R2 generates L(R1) ∪ L(R2)
• R∗ generates L(R)∗

25 / 39



Regularity
Four equivalent statements about a language A

1 A is regular
2 Some DFA recognizes A
3 Some NFA recognizes A
4 Some regular expression generates A

26 / 39



Converting between DFA, NFA, regex
DFA M = (Q1,Σ, δ1, q1, F1)

NFA N = (Q2,Σ, δ2, q2, F2) Regular Expression

δ 2
(q
, t
) =

{δ 1
(q
, t
)}

Construct GNFA
and

remove states

Q
1
=
P
(Q

2)

Construct GNFA and remove states

Construct NFAs for base cases and combine

27 / 39



Converting from a regular expression to an NFA
Construct it step by step

1 Start with the base cases
2 Then construct NFAs for increasingly larger expressions by combining NFAs for

smaller expressions

28 / 39



Example
Construct an NFA corresponding to the regular expression (aba ∣ aa)∗

29 / 39



Converting from an NFA to a DFA
Given an NFA N = (Q,Σ, δ, q0, F ), we can construct an equivalent DFA
M = (Q′,Σ, δ′, q′0, F ′)

1 Each state of M represents a set of states of N
2 Each transition of M from state S ⊆ Q on input t is to the state representing all

of the states of N reachable from some state in S by following t and then 0 or
more ε-transitions

3 The start state of M is the state that represents all of the states of N reachable
from q0 by following 0 or more ε-transitions

4 The set of accepting states of M are those representing a set of states of N that
contains at least one accepting state of N

Formally,
1 Q

′
= P (Q)

2 δ
′(S, t) = ⋃q∈S E(δ(q, t))

3 q
′
0 = E({q0})

4 F
′
= {S ∣ S ⊆ Q and S ∩ F ≠ ∅}

The function E(⋅) is the epsilon closure.
30 / 39



Example
Let’s simplify our NFA for the language (aba ∣ aa)∗.

1 2 3
a b,ε

a
Now let’s convert it to a DFA

31 / 39



Example
Let’s simplify our NFA for the language (aba ∣ aa)∗.

1 2 3
a b,ε

a
Now let’s convert it to a DFA

31 / 39



Converting from a DFA or an NFA to a regular expression

1 Create a GNFA by adding a start state and an accepting state
2 Add ε-transition from the new start state to the old start sate
3 Add ε-transitions from the old accepting states to the new accepting state
4 Convert each transition to a regex (i.e., transitions labeled a, b become a ∣ b)
5 Remove each state, updating transitions from

q r s
R1

R4

R2

R3
q r

R1

R4

R3

R2

to

q s

R1R
∗
2R3 ∣R4

q R1R
∗
2R3 ∣R4

32 / 39



Example
Let’s convert our DFA to a regular expression

{1} {2, 3}

∅ {3}

a

b

a

b
a

b

a,b

33 / 39



Cartesian product construction
We can use DFAs directly to show that the class of regular languages is closed under
union and intersection

Let

M1 = (Q1,Σ, δ1, q1, F1)
M2 = (Q2,Σ, δ2, q2, F2)

and build

M = (Q,Σ, δ, q0, F )
Q = Q1 ×Q2

δ((q, r), t) = (δ1(q, t), δ2(r, t))
q0 = (q1, q2)

For union, let F = (F1 ×Q2) ∪ (Q1 × F2)
For intersection, let F = F1 × F2

34 / 39



Pumping lemma

Theorem
Pumping lemma for regular languages For every regular language A, there exists an
integer p > 0 called the pumping length such that for every w ∈ A there exist strings
x, y, and z with w = xyz such that

1 xy
i
z ∈ A for all i ≥ 0

2 ∣y∣ > 0
3 ∣xy∣ ≤ p.

35 / 39



A two-player game
Player One (∃) Player Two (∀)

Claims A is pumpable with p.l. p
A, p

−−−−−−−−−−−−−−−→
Picks w ∈ A s.t. ∣w∣ ≥ p

w
←−−−−−−−−−−−−−−−

Picks x, y, z s.t. w = xyz
x, y, z

−−−−−−−−−−−−−−−→
Checks 3 conditions

Player One “wins” if
1 xy

i
z ∈ A for all i ≥ 0

2 ∣y∣ > 0
3 ∣xy∣ ≤ p

Can play as either Player One or Two
• To show that A is pumpable, play as Player One

You must consider all possible w and pick x, y, and z
• To show that A is not pumpable, play as Player Two

You must pick w and consider all possible x, y, and z

36 / 39



Proving that a language isn’t regular
Three options

1 Assume that it is regular and show that it violates the pumping lemma
2 Assume that it is regular and apply operations on languages that preserve

regularity, arrive at a contradiction because the result isn’t regular
3 First apply some operations on languages, then use the pumping lemma

37 / 39



Closure properties of regular languages
The class of regular languages is closed under
• Union
• Concatenation
• Kleene star
• Intersection
• Complement
• Reversal
• Difference (we haven’t proved this)
• Prefix
• Suffix (we haven’t proved this)
• Left quotient by a string
• Right quotient by a string (we haven’t proved this)
• Left/right quotient by a language (we haven’t proved this)
• . . .

38 / 39



Closure properties of nonregular languages
The class of nonregular languages is closed under
• Complement
• Reversal

The class of nonregular languages is not closed under
• Union
• Concatenation (we haven’t proved this)
• Kleene star (we haven’t proved this)
• Intersection
• Prefix (we haven’t proved this)
• Suffix (we haven’t proved this)
• Left/right quotient by a string/language (we haven’t proved this)

39 / 39


