CS 301

Lecture 09 — Context-free grammars
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Context-free grammars (CFGs)

Method of generating (or describing) languages by giving rules to derive strings

Rules contain
Terminals symbols from an alphabet (written in typewriter font)

Variables which expand to sequences of terminals and variables (typically upper
case letters)

Rules have a variable on the left, an arrow (—), and a sequence of terminals and
variables on the right

Example:
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Context-free grammars (CFGs)

Method of generating (or describing) languages by giving rules to derive strings

Rules contain
Terminals symbols from an alphabet (written in typewriter font)
Variables which expand to sequences of terminals and variables (typically upper
case letters)

Rules have a variable on the left, an arrow (—), and a sequence of terminals and
variables on the right

E le:
xampe We often combine multiple rules with the
S - AB same left-hand side using |
A — aA S AB
A—e A—adle
B —bb B—bB | ¢

B-c¢ @



Deriving strings

A CFG derives a string by starting with the start variable (usually the variable on the
left in the first rule) and applying rules until no variables remain

The CFG

S — AB
A—-adle
B —>bB|e¢

derives the following strings

S=>AB =>eB > cc=¢
S = AB = aAB = acB = acc = a

S = AB = aAB = aaAB = aacB = aabB = aabe = aab



Derivations

The order in which we replace a variable in a derivation with the RHS of a production
rule doesn't matter’

In a left-most derivation, we replace the left-most variable in each step

In a right-most derivation, we replace the right-most variable in each step

1 . ,
except in one case we'll get to



Left-most/right-most derivation example

S — ST | aTa
T—-S|aTal|b

Left-most derivation of aabaaaba:

S =
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Left-most/right-most derivation example

S — ST | aTa
T—-S|aTal|b

Left-most derivation of aabaaaba:

S = 8T
= aTlaT
= aaTlaaT
= aabaal

= aabaaala
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Left-most/right-most derivation example

S — ST | aTa
T—-S|aTal|b

Left-most derivation of aabaaaba:

S = 8T
= aTlaT
= aaTlaaT
= aabaal
= aabaaal’a

= aabaaaba
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Left-most/right-most derivation example

S — ST | aTa
T—-S|aTal|b
Left-most derivation of aabaaaba: i o
Right-most derivation of aabaaaba:
S = ST

S = ST
= aTaT
= SaTa
= aaTlaaT
= Saba

= aabaaTl’

= al'aaba
= aabaaala

= aal'aaaba
=> aabaaaba

= aabaaaba



Another example
The CFG

S —aSb|¢e
derives

S =¢
S = aSb = ab
S = aSb = aaSbb = aabb

S =alSb= .- =a"Sb = a"b"

The language of this CFG is {a"b" | n = 0}



Nested brackets

Given the alphabet ¥ = {(,), [,]}, design a CFG that generates the language of
properly nested brackets.

° ¢
e ()
e [1]
(OO



Nested brackets

Given the alphabet ¥ = {(,), [,]}, design a CFG that generates the language of
properly nested brackets.

° ¢
e ()
e [1]
(OO

S—P|B|SS|e
P (S
B - [S]



More CFG examples

Let ¥ = {a,b} Construct a CFG for the languages over

A=%"

B = {w | w contains at least three bs}

C = {w | w starts and ends with different symbols}

D = {w | the length of w is odd and the middle symbol is b}
E={w|w=w"}

F=90



Formally speaking
A CFG is a 4-tuple G = (V, X, R, S) where
e V is a finite set of variables (or nonterminals)
e Y is a finite set of terminals (V NX¥ = @)
e R is a finite set of production rules
e S €V is the start variable
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Formally speaking
A CFG is a 4-tuple G = (V, X, R, S) where

e V is a finite set of variables (or nonterminals)
e Y is a finite set of terminals (V NX¥ = @)
e R is a finite set of production rules

e S € V is the start variable

If u,v,w € (X UV)* and G has a rule A = v, then we say uAw yields uvw and write
vAw = wvw

*
We say u derives v, written u = v to mean either u = v or there exist
Uy, Us, ..., Uy € (ZU V) such that

u=u1=>u2=}...=>un=fu

The language of G is L(G) = {w | w € ¥* and S = w}
We say G generates a language A if L(G) = A



Arithmetic expressions

Given the alphabet ¥ = {(,),0,1,2,3,4,5,6,7,8,9}, design a CFG that generates the
language of arithmetic expressions

o 37
e 8+22-8/6
e 10%(8-2)

An expression can be a number or two expressions separated by an operator or a
parenthesized expression
A number is one or more digits
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Arithmetic expressions

Given the alphabet ¥ = {(,),0,1,2,3,4,5,6,7,8,9}, design a CFG that generates the
language of arithmetic expressions

o 37
e 8+22-8/6
e 10%(8-2)

An expression can be a number or two expressions separated by an operator or a
parenthesized expression
A number is one or more digits

E - N|ExE | E/E| E+E | E-E | (E)
N - DN |D
D—-o0|1]|2]|3|4|5|6]|7]|8]9
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Parse trees give a way to visualize a derivation

E—-> N|ExE | E/E| E+E | E-E | (E)
N> DN |D
D—-o0|1]2]|3|4|5]|6|7]|8]9

Derivation Parse tree
E E

11/22
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Parse trees give a way to visualize a derivation

E—-> N|ExE | E/E| E+E | E-E | (E)
N> DN |D
D—-o0|1]2]|3|4|5]|6|7]|8]9

Derivation Parse tree
F = F+F E
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree
E E E E
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree

E = FE+F E F = FE+F
= E+ExE |\ = N+E
E + E
= N+ExE = D+E
| /N
N EF *x B

O—=2—M9

/N
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree

F = FE+F E F = FE+F E
= E+E*E VRN — N+E VIR
— N+ExE ¥ * E — D+E o+ F
= D+ExFE N E/*\E = 3+F N
| |
D D
|
3
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree

F = E+F
= F+E*E
= N+E*xE
= D+ExE
= 3+L*E

E
¥
p
:

E
1N
+ E
/1N

E x B

E = BE+E
= N+E
= D+F
= 3+F
= 3+L*x [

w—O—=2—m5

1N
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree
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Different derivations can give rise to the same parse tree
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Different derivations can give rise to the same parse tree
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree

F = E+F E F = E+F E
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SVEE TN SG iN
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Different derivations can give rise to the same parse tree

Two different derivations give the same parse tree

You can think of the derivations as filling out the tree in different orders

F = E+F E F = FE+F E

— E+E*E VRN = N+E AN

= N+ExF E /E\ = D+F E /E\

= DrExE E | E = 3k N E | E

= 3+FxF ‘ ‘ ‘ = 3+[x [ ‘ ‘ ‘

= 3+/N*F D N N = 3+/N*F D N N

= 3+D*E ‘ ‘ = 3+DxFE ‘ ‘

= 3+8xF D | D = 3+8%E D | D

= 3+8% NV ‘ ‘ = 3+8% NV ‘ ‘
3 + 8 x 7 3 8 7

= 3+8%] = 3+8*]

= 3+8%7 = 3+8x*7
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Different derivations can give rise to different parse trees

Two different left-most derivations give rise to different parse trees

E = E+E E E = FExFE E
= N+E RN = E+E+E RN
= D+F K /E\ = N+ExFE / K
= 3+ N E | E = DrExb g N
= 3+F*L | | | = 3+FExE | |
= 3+N*FE D N N = 3+/N*F N D
= 3+D*E ‘ ‘ = 3+D*E ‘
= 3+8xF D | D = 3+8xF D
= 3+8% NV ‘ ‘ = 3+8% N ‘
= 3+8*D 8 x 7 = 3+8%D 3
= 3+8*7 = 3+8%*7




Ambiguity
Our grammar can derive this string in two different ways
/ E E
E E

AN /

O—=2—m

®—5—Z— 1 ///
AN

N—D— =z

AN
/

w—g—=2—1

* +

3 + * 7

This grammar is ambiguous because it has two different parse trees for the same string
in the language

Imagine a calculator or a compiler parsing this expression @

Depending on which parse tree it used, it gets different results
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Resolving ambiguity

In some cases, we can redesign the grammar to get rid of ambiguity

Instead of just expressions, let's have expressions (E), terms (T'), and factors (F')

E-E+T |E-T|T
T->TxF|T/F | F
F->(E)|N

N - DN |D
D—-o0|1]--]9

This CFG has exactly the same lan-
guage as the previous one but now
there's exactly one way to parse
3+8%*7
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Resolving ambiguity

In some cases, we can redesign the grammar to get rid of ambiguity

Instead of just expressions, let's have expressions (E), terms (T'), and factors (F')

&

E-E+T |E-T|T
T->TxF|T/F | F
F->(E)|N

N - DN |D
D—-o0|1]--]9

/

* — N

This CFG has exactly the same lan-
guage as the previous one but now
there's exactly one way to parse
3+8%*7

w—O—=2—"—~8—
N—g ez

SN, /
AN

15 /22



Ambiguity

Equivalent statements about a CFG G
® G is ambiguous if a word in L(G) has two different parse trees
® G is ambiguous if a word in L(G) has two different left-most derivations
© G is ambiguous if a word in L(G) has two different right-most derivations

It is not the case that G is ambiguous if a word merely has two different derivations

16 /22



Context-free languages

A language A is a context-free language (CFL) if there is a CFG G that generates A
(i.e., L(G) = A)

Theorem
Context-free languages are closed under union, concatenation, and Kleene star.

17 /22



Union

Proof.
Let G4 = (V1,X%, Ry, S1) generate A and G5 = (V5, 3, Ry, S9) generate B
(assume Vi NV, = @, otherwise rename some variables)
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Union

Proof.
Let G4 = (V1,X%, Ry, S1) generate A and G5 = (V5, 3, Ry, S9) generate B
(assume V3 NV, = @, otherwise rename some variables)

Construct a new CFG G = (V, X, R, S) to generate A U B where

V=V, uV,u{S)
R=R1UR2U{S—>51|SQ}

If w € A, then GG derives w, S; = w, and so GG derives w via S = 5] = w.
If w € B, then Sy S wso S = So = w. In either case w € L(G).

IfweL(G),theneitherS=>51=*>worS=>Sg=*>w. Thus w € AU B. O
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Concatenation

Proof.
Let G4 = (V1,X%, Ry, S1) generate A and G5 = (V5, 3, Ry, S9) generate B
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Concatenation

Proof.
Let G4 = (V1,X%, Ry, S1) generate A and G5 = (V5, 3, Ry, S9) generate B

Construct a new CFG G = (V, X, R, S) to generate A o B where

V=Viulu{S}
R:R1UR2U{S—>5152}

A similar argument shows why L(G) = Ao B O
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Kleene star

Proof.
Let G4 = (V1,X%, Ry, S1) generate A.
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Kleene star

Proof.
Let G4 = (V1,X%, Ry, S1) generate A.

Construct a new CFG G = (V, %, R, S) to generate A™ where

V =V u{s}
R=R,U{S - SS;|¢e}
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Regular languages are context-free

Theorem
Every regular language is context-free.

21/22



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.

We can use induction on the structure of regular expressions.

Three base cases

21/22



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.

We can use induction on the structure of regular expressions.

Three base cases
e 3. S-S5



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.

We can use induction on the structure of regular expressions.

Three base cases
e 3. S-S5

e c. S—e¢



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.
We can use induction on the structure of regular expressions.
Three base cases

e 3. S-S5

e c. S—e¢

o tforted. S—t



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.

We can use induction on the structure of regular expressions.

Three base cases
e 3. S-S5
e c. S—e¢
o tforted. S—t

Three inductive cases.

L4 R1R2
o Ry | Ry
° RT



Regular languages are context-free

Theorem
Every regular language is context-free.

Proof.
We can use induction on the structure of regular expressions.
Three base cases

e 3. S-S5

e c. S—e¢

o tforted. S—t

Three inductive cases.

L4 R1R2
o Ry | Ry
° RT

By the inductive hypothesis, L(R;) and L(Ry) are context-free and context-free
languages are closed under concatenation, union, and star.



Ambiguity

An inherently ambiguous context-free language is one in which every context-free
grammar is ambiguous

{aibjck | ¢ = j or j =k} is inherently ambiguous
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