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More CFLs

e A={a't’c" |i<jori=k}

B ={w | w € {a,b,c}" contains the same number of as as bs and cs combined}
C={1"+1"=1"" | m,n21}; ¥ = {1,+,=}

D = (abb™ | bbaa)”*

E ={w | we{0,1}* and w™ is a binary number not divisible by 5}
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Another proof that regular languages are context-free

We can encode the computation of a DFA on a string using a CFG

Give a DFA M = (Q, X, 4, qp, F'), we can construct an equivalent CFG
G =(V,3,R,S) where
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Another proof that regular languages are context-free

We can encode the computation of a DFA on a string using a CFG

Give a DFA M = (Q, X, 4, qp, F'), we can construct an equivalent CFG
G =(V,3,R,S) where

e states of M are variables in G

® (p is the start variable, and

e transitions 0(q,t) = r become rules ¢ — tr

If on input w = wywsy:+-w,, M goes through states rq,ry,...,7,, then
g = WITr] = W1WaTg = **» = W{Wy Wy Ty
So G has derived the string wr,, but this still has a variable

What additional rules should we add to end up with a string of terminals?
For each state ¢ € F, add a rule ¢ — ¢ @



Formally

Proof.

Given a DFA M = (Q, %, 0, qo, F'), we can construct an equivalent CFG
G =(V,%,R,S) where

V=Q
S =qo

R={q-tr : (qg,t)=r}u{g—>ec : q€F}
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Formally

Proof.

Given a DFA M = (Q, %, 0, qo, F'), we can construct an equivalent CFG
G =(V,%,R,S) where

V=Q
S =qo

R={q-tr : (qg,t)=r}u{g—>ec : q€F}

If rg,71,...,7, is the computation of M on input w = wywsy**-w,, then r¢g = ¢y and
o(ri—1,w;)=r;forl<i<n

*
By construction rg = wir; = wiwory = wWiWyr W, Ty

Therefore, w € L(M) iff r,, € F iff r,, = ¢ iff gy = w iff w € L(Q) 0
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Returning to our language

E={w|we{0,1}" and w” is a binary number not divisible by 5}

Qo = 0Q | 1Q2

Q1 0Q3|1Q | €
Q2 — 0Q1 | 1Q3 | €
Q3 > 0Q, | 1Qq | e
Qs —0Q2 | 1Q4 | €




Chomsky Normal Form (CNF)

A CFG G = (V,X,R,S) is in Chomsky Normal Form if all rules have one of these
forms

e S — ¢ where S is the start variable
e A—> BC where A€V and B,C € V \ {5}
e A—>t whereAeVandte X

Note
e The only rule with € on the right has the start variable on the left

e The start variable doesn't appear on the right hand side of any rule



CNF example

Let A={w | we {a,b}* and w = w"}.

CFG in CNF

S—> AU | BV |al|b|e
T - AU | BV |a|b
U->TA

V -TB

A—>a

B—-b

Derivation of baaab

S



CNF example

Let A={w | we {a,b}* and w = w"}.

CFG in CNF

S—> AU | BV |al|b|e
T - AU | BV |a|b
U->TA

V -TB

A—>a

B—-b

Derivation of baaab

S = BV



CNF example
Let A= {w | w e {a,b}* and w = w"*}.

CFG in CNF Derivation of baaab

S—> AU | BV |a|b]e S = BV
T— AU | BV |a|b %
U-TA
V -TB
A—-a
B-b



CNF example

Let A={w | we {a,b}* and w = w"}.

CFG in CNF

S—> AU | BV |al|b|e
T - AU | BV |a|b
U->TA

V -TB

A—>a

B—-b

Derivation of baaab

S = BV
= bV
= bTB



CNF example

Let A={w | we {a,b}* and w = w"}.

CFG in CNF

S—> AU | BV |al|b|e
T - AU | BV |a|b
U->TA

V -TB

A—>a

B—-b

Derivation of baaab

S = BV
= bV
= bT'B
= bAUB



CNF example

Let A= {w | w e {a,b}* and w = w"*}.

CFG in CNF Derivation of baaab
S—> AU | BV |a|b]e S = BV
T—> AU | BV |a|b = bV
U—->TA = bTB
V -TB = bAUB
A—a = baUB
B-b



CNF example

Let A= {w | w e {a,b}* and w = w"*}.

CFG in CNF Derivation of baaab
S—> AU | BV |a|b]e S = BV
T—> AU | BV |a|b = bV
U—->TA = bTB
V -TB = bAUB
A—a = baUB
B-b = baT AB



CNF example

Let A={w | we {a,b}* and w = w"}.

CFG in CNF Derivation of baaab
S—> AU | BV |a|b]e S = BV
T—> AU | BV |a|b = bV
U—->TA = bTB
V -TB = bAUB
A—a = baUB
B-b = baT AB

= baaAdB



CNF example

Let A= {w | w e {a,b}* and w = w"*}.
CFG in CNF Derivation of baaab
S—> AU | BV |a|b]e S = BV
T - AU | BV |a|b = bV
U-TA = bTB
V -TB = bAUB
A—>a = balUB
B-b = baTAB
= baaAB
= baaaB



CNF example

Let A= {w | w e {a,b}* and w = w"*}.

CFG in CNF Derivation of baaab
S—> AU | BV |a|b]e S = BV
T—-AU | BV |a]|b = bV
U-TA = bTB
V->TB = bAUB
A—>a = balUB
B-b = baTAB

= baaAB
= baaaB
= baaab



Converting to CNF

Theorem
Every context-free language A is generated by some CFG in CNF.

Proof.
Given a CFG G = (V, X, R, S) generating A, we construct a new CFG
G'=(V',2,R',S") in CNF generating A.
There are five steps.
START Add a new start variable

BIN Replace rules with RHS longer than two with multiple rules each of
which has a RHS of length two

DEL-e Remove all e-rules (A — ¢)
UNIT Remove all unit-rules (A — B)

TERM Add a variable and rule for each terminal (7" — t¢) and replace terminals
on the RHS of rules

g
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Proof continued

In the following z e VuX andu € (Su V)"
START Add a new start variable S’ and a rule S' = S
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Proof continued

In the following z e VuX andu € (Su V)"
START Add a new start variable S’ and a rule S' = S

BIN Replace each rule A —» zu with the rules A - xA; and A; — u and
repeat until the RHS of every rule has length at most two
DEL-c For each rule of the form A — ¢ other than S' — ¢ remove A — ¢ and
update all rules with A in the RHS
e B— A. Add rule B — ¢ unless B — ¢ has already been removed

e B— AA. Add rule B - A and if B — ¢ has not already been
removed, add it



Proof continued

In the following z e VuX andu € (Su V)"
START Add a new start variable S' and a rule $' = §
BIN Replace each rule A —» zu with the rules A - xA; and A; — u and
repeat until the RHS of every rule has length at most two
DEL-c For each rule of the form A — ¢ other than S' — ¢ remove A — ¢ and
update all rules with A in the RHS

e B— A. Add rule B — ¢ unless B — ¢ has already been removed

e B— AA. Add rule B - A and if B — ¢ has not already been
removed, add it

e BoxAorB— Ax. Addrule B — x



Proof continued

In the following z e VuX andu € (Su V)"

START
BIN

DEL-¢

UNIT

Add a new start variable S’ and a rule S' = S

Replace each rule A — zu with the rules A - 2A; and A; — u and
repeat until the RHS of every rule has length at most two
For each rule of the form A — ¢ other than S’ — & remove A — & and
update all rules with A in the RHS
e B— A. Add rule B — ¢ unless B — ¢ has already been removed
e B— AA. Add rule B - A and if B — ¢ has not already been
removed, add it
e BoxAorB— Ax. Addrule B — x
For each rule A —» B, remove it and add rules A — « for each B — «
unless A — u is a unit rule already removed



Proof continued

In the following z e VuX andu € (Su V)"

START
BIN

DEL-¢

UNIT

TERM

Add a new start variable S' and a rule ' —» $

Replace each rule A — zu with the rules A - 2A; and A; — u and
repeat until the RHS of every rule has length at most two

For each rule of the form A — ¢ other than S' — € remove A — ¢ and
update all rules with A in the RHS

e B— A. Add rule B — ¢ unless B — ¢ has already been removed

e B— AA. Add rule B - A and if B — ¢ has not already been
removed, add it

e BoxAorB— Ax. Addrule B — x

For each rule A —» B, remove it and add rules A — « for each B — «
unless A — u is a unit rule already removed

For each t € X, add a new variable T and a rule T' — t; replace each ¢ in
the RHS of nonunit rules with T’

g
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Proof continued

In the following z e VuX andu € (Su V)"
START Add a new start variable S’ and a rule S' = S

BIN Replace each rule A —» zu with the rules A - xA; and A; — u and
repeat until the RHS of every rule has length at most two
DEL-c For each rule of the form A — ¢ other than S' — ¢ remove A — ¢ and
update all rules with A in the RHS
e B— A. Add rule B — ¢ unless B — ¢ has already been removed
e B— AA. Add rule B - A and if B — ¢ has not already been
removed, add it
e BoxAorB— Ax. Addrule B — x
UNIT For each rule A —» B, remove it and add rules A — u for each B — u
unless A — u is a unit rule already removed
TERM For each t € X, add a new variable T and a rule T' — t; replace each ¢ in
the RHS of nonunit rules with T’
Each of the five steps preserves the language generated by the grammar so @
L(G") = A. O
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Example

Convert to CNF
A—- BAB | B¢
B—00]|e¢

START:
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Example

Convert to CNF
A—- BAB | B¢
B —-00|e¢

START:
S—A

A—-> BAB | B¢
B —00|e¢

BIN: Replace A - BAB:
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Remove B — «:
S—>Ale

A_’BAllBlAl
B — 00
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Don't add A — ¢ because we

already removed it

Remove A; — &:
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B — 00
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Don't add A — ¢ because we
already removed it
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Example

Convert to CNF DEL-c: Remove A — &: Remove A; — &:
A—- BAB|B|e S—>Ale S—>Ale
B —-00|e¢ A—- BA, | B A—- BA, | B| A
B—-00]|e B — 00
START:
S5 A A, - AB | B Ay - AB|B| A
A—- BAB|B|e Remove B — ¢: Don't add A — ¢ because we
B —00|e¢ S—>Ale already removed it
A - BA, | B| A
BIN: Replace A - BAB: UNIT: Remove S — A
S A B =00 S BA, | B| A |c
A- BA|B|e A~ AB[ B[ Ale A - BA, | B| A
B —00]|¢ Don't add A — ¢ because we B — 00
A, - AB already removed it A, - AB|B| A

g
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Example continued

From previous slide
S—>BA|B|A|e
A - BA, | B| A
B — 00
A - AB|B| A
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Example continued

From previous slide
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Example continued

From previous slide
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Example continued

From previous slide
S—>BA|B|A|e
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Remove S — A, Remove A — A,
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Don't add S —» B or S — ADon't add A — B because
because we removed them we removed it

Don't add A — A because
Remove A - B it's useless
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Example continued

Copied from the previous slide
S —> BA;|e|00]| AB
A - BA;| 00| AB
B — 00
Ay - AB| A| 00

Remove A1 —» A
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Example continued

Copied from the previous slide
S —> BA;|e|00]| AB
A - BA;| 00| AB
B — 00
Ay - AB| A| 00

Remove A1 —» A
S —> BA;|e|00| AB

A— BA;, | 00| AB
B — 00

12 /23



Example continued

Copied from the previous slide TERM: Add Z — 0
S —> BA;|e|00]| AB
A - BA;| 00| AB
B — 00
Ay - AB| A| 00

Remove A1 —» A
S —> BA;|e|00| AB

A— BA;, | 00| AB
B — 00
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Example continued

Copied from the previous slide
S —> BA;|e|00]| AB
A - BA;| 00| AB
B — 00
Ay - AB| A| 00

Remove A1 —» A
S —> BA;|e|00| AB

A— BA;, | 00| AB
B — 00

TERM: Add Z - 0
S—>BA |e|ZZ | AB
A—-> BA, | ZZ | AB
B-ZZ
A - AB | ZZ | BA,;
Z -0
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Caution

Sipser gives a different procedure
@ START
® DEL-¢
© UNIT
O BIN
©® TERM

This procedure works but can lead to an exponential blow up in the number of rules!

In general, if DEL-¢ comes before BIN, then |G'| is O(22|G|);
if BIN comes before DEL-¢, then |G'| is O(|G|?)

UNIT is responsible for the quadratic blow up

So use whichever procedure you'd like, but Sipser's can be very bad
(Sipser’s is bad if you have long rules with lots of variables with e-rules) @
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Example blow up

A - BCDEEDCB | CBEDDEBC
B—-o0]|e
C-1]e
D-2]|¢
E-3]e¢

has five variables and 10 rules

Converting using START, BIN, DEL-¢, UNIT, TERM gives a CFG with 18 variables
and 125 rules
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Example blow up

A - BCDEEDCB | CBEDDEBC
B—-o0]|e
C-1]e
D-2]|¢
E-3]e¢

has five variables and 10 rules

Converting using START, BIN, DEL-¢, UNIT, TERM gives a CFG with 18 variables
and 125 rules

Converting using START, DEL-¢, UNIT, BIN, TERM gives a CFG with 1394 variables
and 1953 rules

g
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Prefix
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Prefix

Recall PREFIX(L) = {w | for some = € ©*, wz € L}

Theorem
The class of context-free languages is closed under PREFIX.

Proof idea
Consider the language {w#w"™ | w € {a,b}*} generated by

T — aTa|bTb | #
Let's convert to CNF

S— AU | BV | #

T—- AU | BV | #

U-TA

V -TB

A—a

B-b @
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Derivation of ab#ba

S
S = AU

= alU / \
= aTA A U
= aBVA
= abV A
= abT BA

= ab#BA / \
= ab#bA B V a
= ab#ba

The prefix ab# includes b T B
— all terminals from subtrees with a blue root;

— some terminals from subtrees with a violet root; @
— no terminals from subtrees with a red root # b
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Desired derivation for the prefix

We would like a derivation like this

S
S = AU
= al

= aTA A U

= aBV A / \

= abV A

= abT' BA 2 T 4

= ab#BA / \

= ab#c A B 14 €

= ab#ce / \
Everything left of the violet path is produced b T B

Everything right of the violet path becomes ¢
The leaf connected to the violet path is produced
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The proof idea

The violet path corresponds to the point where we “split” the prefix from the
remainder of the string

We want to construct a CFG that keeps track of whether a given variable in the
derivation is

L left of the split,
S part of the split, or
R right of the split

We can construct a new CFG whose variables are (A, L), (A, S), or (A, R) where A is
a variable in the original CFG

We have to deal with the three types of rules
e S—¢
e A—- BC
e At
and produce new rules corresponding to the variable on the LHS being left of, right of, @

or on the split
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Proof
If L = @, then PREFIX(L) = @ which is CF.

Otherwise, let L be CF and generated by the CFG G = (V, X, R, S) in CNF.

Construct a new CFG (not in CNF) G'=(V',%,R',S") where

V={(AD)| AeV and D € {L, S, R}}
S =(s3,58)

Now we just need to specify R'. We'll start with R' = @ and add rules to it
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Proof continued

Since L is nonempty, £ € PREFIX(L) so add the rule (S, S) — ¢ to R'

For each rule of the form A — BC in R, add the following rules to R

(A, L) - (B,L){(C, L) left of the split
(A,S) = (B,L){C,S) | (B,S){C, R) one of B or C' is on the split
(A,R) - (B,R){(C,R) right of the split
For each rule of the form A — ¢ in R, add the following rules to R
(A, L) -t
(A,S) >t
(A,R) —> ¢
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Proof continued

*
For each w = wywg-+-w, € L, S = A;Ay-+-A,, where A; = w;
By construction,

(S,8) = (A1, L)-(Ai_1, L)Y(As, S)Y(As1, R)-(Ap, R)

*
= WiWay W,

foreach1<i<n
le., G' derives the prefix of every string in L

A similar argument works to show that if G' derives a string then it's a prefix of some
string in L O

g
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Applying the construction

Deriving ab#

(S,S) = (A, L){U,S)
= a(U,5)
= a(T, S)(A, R)
a(B, LV, S)(A, R)
= ab( SYA, R)
= ab(T,S)(BA, R)
= ab#(B, R){A, R)
= ab#(A R)
= ab#




Similarities with regular expression

Proving things about

e Regular languages. Assume there exists a regular expression that generates the
language and consider the six cases

e Context-free languages. Assume there exists a CFG that generates the language
and consider the three types of rules
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