CS 301

Lecture 11 - Review

Exam topics

Broadly speaking: Everything about regular languages

- Alphabets, strings, languages
- DFAs, both the mathematical definition as a 5-tuple and as a diagram
- NFAs
- Regular expressions
- Conversions between DFAs, NFAs, and regular expressions
- Nonregular languages
- Closure properties of regular and nonregular languages
- Pumping lemma for regular languages

Types of exam questions

The questions from the exam fall into these types (the exam doesn't include every type of question)

- True/false questions with explanation
- Constructions
- Construct a DFA/NFA/regular expression for a regular language
- Convert an NFA to a DFA
- Convert a DFA/NFA to a regular expression
- Convert a regular expression to an NFA
- Prove that regular languages are closed under an operation
- Perform a construction: Given a DFA/NFA/regex for some languages, build a new DFA/NFA/regex for the result of the operation (e.g., how we proved that regular languages are closed under Prefix)
- Write the operation in terms of other operations under which regular languages are closed (e.g., Suffix or intersection)
- Prove that a language isn't regular
- Assume it is regular and apply the pumping lemma for regular languages and arrive at a contradiction
- Assume it is regular and apply closure properties of regular languages to arrive at a contradiction

Some useful notation: δ^{*}

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the transition function takes a state and a symbol and returns a state

$$
\delta: Q \times \Sigma \rightarrow Q
$$

We can extend this notation to a function that takes a state and a string and returns a state

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow Q
$$

We can define δ^{*} recursively by

$$
\begin{aligned}
\delta^{*}(q, \varepsilon) & =q & & \text { for all } q \in Q \\
\delta^{*}(q, t x) & =\delta^{*}(\delta(q, t), x) & & \text { for } q \in Q, t \in \Sigma, \text { and } x \in \Sigma^{*}
\end{aligned}
$$

$\delta^{*}(q, w)=r$ means that starting in state q and moving from state to state according to δ on the symbols of w, the DFA ends in state r

Example

$$
\delta^{*}\left(q_{3}, \text { abaa }\right)=q_{7}
$$

Example

$\delta^{*}\left(q_{3}\right.$, abaa $)=q_{7}$

$$
\delta^{*}\left(q_{4}, \varepsilon\right)=
$$

Example

$$
\begin{aligned}
\delta^{*}\left(q_{3}, \text { abaa }\right) & =q_{7} \\
\delta^{*}\left(q_{4}, \varepsilon\right) & =q_{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
\delta^{*}\left(q_{3}, \text { abaa }\right) & =q_{7} \\
\delta^{*}\left(q_{4}, \varepsilon\right) & =q_{4} \\
\delta^{*}\left(q_{0}, \mathrm{ba}\right) & =
\end{aligned}
$$

Example

$$
\begin{aligned}
\delta^{*}\left(q_{3}, \text { abaa }\right) & =q_{7} \\
\delta^{*}\left(q_{4}, \varepsilon\right) & =q_{4} \\
\delta^{*}\left(q_{0}, \mathrm{ba}\right) & =q_{2}
\end{aligned}
$$

Utility of δ^{*}

Remember what it means for a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ to accept a string $w=w_{1} w_{2} \cdots w_{n}$:
There exist states $r_{0}, r_{1}, \ldots, r_{n}$ such that
(1) $r_{0}=q_{0}$
(2) $r_{i}=\delta\left(r_{i-1}, w_{i}\right)$ for all $0<i \leq n$
(3) $r_{n} \in F$

Equivalently: M accepts w if $\delta^{*}\left(q_{0}, w\right) \in F$
Useful fact: If $x, y \in \Sigma^{*}$, then

$$
\delta^{*}(q, x y)=\delta^{*}\left(\delta^{*}(q, x), y\right)
$$

Use of δ^{*} in a proof

Recall that given a language A and a string u, both over alphabet Σ, we defined the left quotient of A by u as

$$
u^{-1} A=\left\{x \mid x \in \Sigma^{*} \text { and } u x \in A\right\}
$$

Theorem
If A is a regular language and u is a string, then $u^{-1} A$ is regular.

Use of δ^{*} in a proof

Recall that given a language A and a string u, both over alphabet Σ, we defined the left quotient of A by u as

$$
u^{-1} A=\left\{x \mid x \in \Sigma^{*} \text { and } u x \in A\right\}
$$

Theorem
If A is a regular language and u is a string, then $u^{-1} A$ is regular.
Proof.
Let $M=\left(Q, \Sigma, q_{0}, F\right)$ be a DFA that recognizes a language A.
Construct $M^{\prime}=\left(Q, \Sigma, q_{0}^{\prime}, F\right)$ where $q_{0}^{\prime}=\delta^{*}\left(q_{0}, u\right)$.

Use of δ^{*} in a proof

Recall that given a language A and a string u, both over alphabet Σ, we defined the left quotient of A by u as

$$
u^{-1} A=\left\{x \mid x \in \Sigma^{*} \text { and } u x \in A\right\}
$$

Theorem

If A is a regular language and u is a string, then $u^{-1} A$ is regular.
Proof.
Let $M=\left(Q, \Sigma, q_{0}, F\right)$ be a DFA that recognizes a language A.
Construct $M^{\prime}=\left(Q, \Sigma, q_{0}^{\prime}, F\right)$ where $q_{0}^{\prime}=\delta^{*}\left(q_{0}, u\right)$.
M^{\prime} accepts a string x if and only if $\delta^{*}\left(q_{0}^{\prime}, x\right) \in F$. But

$$
\delta^{*}\left(q_{0}^{\prime}, x\right)=\delta^{*}\left(\delta^{*}\left(q_{0}, u\right), x\right)=\delta^{*}\left(q_{0}, u x\right)
$$

Thus M^{\prime} accepts x iff $\delta^{*}\left(q_{0}, u x\right) \in F$ iff M accepts $u x$.
Therefore $L\left(M^{\prime}\right)=u^{-1} A$ so $u^{-1} A$ is regular.

Non sequitur

