CS 301

Lecture 13 — Closure properties of context-free languages
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CFLs and PDAs

Theorem
Every context-free language can be recognized by some PDA.

Proof idea.

@ Use the PDA's stack to perform a left-most derivation of a word in the language
® Match the PDA's input symbols against the stack, popping each one

© Accept if stack is empty when there's no more input
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Consider the language A = {w | w € {a,b}" and w is not a palindrome}
What CFG generates that language?
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What we'd like to do

Consider the language A = {w | w € {a,b}" and w is not a palindrome}
What CFG generates that language?

S = aSa |bSb | aTb | bTa
T —aT | 0T | e

A left-most derivation of the string abaaa is
S = aSa = abTaa = abaTaa = abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
@ The first step in the derivation S = aSa requires popping one symbol and

pushing three @

® We can only replace symbols at the top of the stack
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Pushing multiple symbols

e, S —alb
We would like to write a transition like

but d: Qx X, xI'y » P(Q xT.) doesn't allow that
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Pushing multiple symbols

e, S —alb
We would like to write a transition like

but d: Qx X, xI'y » P(Q xT.) doesn't allow that

e S>b ee-oT €,e—>a

Instead, use multiple transitions @/NO/NO/N@

Note that the symbols are pushed on in reverse order



We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,

e If the top of the stack is a terminal, match it to the next input symbol
t,t = ¢
foreacht e X

e If the top of the stack is a variable, replace it with the RHS of a corresponding rule



We can only replace symbols at the top of the stack

Rather than first deriving the whole string on the stack and then matching the input,
e If the top of the stack is a terminal, match it to the next input symbol

t,t = ¢
foreacht € X

e If the top of the stack is a variable, replace it with the RHS of a corresponding rule

In fact, we only need four main states plus
any additional states necessary to push mul-
tiple symbols

The qoop state is where all the real work
happens

—(@)

g,e—>$

®

g,e— S



Example

|

OO ®

S — aSa|bSb|alb | bTa
T —al |bT | e c e

@ For each t € X, add the transition
t,t = € from gioop tO Gioop

g, 8 = aSa
@® For each rule A — ujug---u,, for g,e > £,S - bSb
u; € V. UX, add n — 1 new states (if e, 8 = aTb
n > 1) and transitions to pop A and :’Z : i Uems £,S - bTa
push wuq,usg, ..., u, On in reverse order ’ e, T — aT
e$-oc¢ e, T = vT
e,T —¢

[The rules on the right need 10 extra states @
to make this a proper PDA]
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Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

® push $; $

|

& ®

€, —

€,€ =

a,a—¢ q
|
b,b— ¢ ooP

,$—-e¢

€, S - aSa
€,9 > bsSb
e, S - alb
e, S > bla
e, T — aTl
e, T — bl
g,T —¢
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Running the PDA on some input

Consider running the PDA on the input

abaaa. The stack is shown on the right after _’

each step
@ push $; $ 8E= ?
® push S; S$ e
© pop S, push aSa; aSa$ ? .S > aSa
O read and pop a; Sa$ c,e—> S £,5 — bSb
® pop S, push bTa; bTaa$ a8 e e, S - alb
@ read and pop b; Taa$ b:b Se €5 - bTa
@ pop T, push aT; aTaa$ &1 —al

e.$ o ¢ e, T = bT

® read and pop a; Taa$ ’ e T — ¢
O pop T, push ¢; aa$
i read and pop a; a$
® read and pop a; $

® pop $ and accept; €
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Proving that every CFL is recognized by a PDA

Proof.
Let A be a CFL generated by a CFG G = (V, X, R, S).

Construct the PDA M = (Q,%,T',6, qo, {qq}) with states @ = {qo, q1, dioop> G} U E
where F are the extra states we need for each rule and ' = V U X U {$}.

Start with then transitions
g,e = $ from ¢ to q,
g,e = S from g; to gioep, and
£,$ = & from gioop t0 ¢4

For each t € ¥, add the transition ¢, — € from gjo0p t0 Gioop-

For each rule A — u add the states and transitions necessary to pop A and push v in
reverse order from gjoop t0 Gioop-

g



Proof continued

Consider running M on input w = wywsy-+-w, for w; € 3.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gioop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w



Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read  Stack

90 push $ e $
£, —

O ®

€, S - aSa
€, €,5 = bSb
e, S —>alb

a,a— e
bb— ¢ Qioop €, S - bla
e, T'"— aTl
€,$—’€ 57T_)bT

e,T — ¢ @
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read  Stack
90 push $ e $
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£, >
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read  Stack _)
q0 push $ e $
q1 push S e S$ g,e—>$
Qoop  POP S, push aSa e aSa$ ﬂ
! €,8 - aSa
g,e—> 8 €, 8 - bSb
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b,b - & €, 5 - bTla
e, T"— aTl
e,$-¢ e, T - vT

e,T — e @
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S = aSa = abTaa = abaTaa = abaaa

State Action Input read  Stack _,
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Returning to the example

S = aSa = abTaa = abaTaa = abaaa

State Action Input read  Stack _,
o push $ e $

Q1 push S e S g,e—>$
Qloop  POP S, push aSa ¢ aSa$

Qloop  read and pop a a Sa$ °
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Qloop  read and pop b ab Taa$ g,e— S
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read  Stack _,
o push $ e $

q1 push S e S$ g,e—>$
Qloop  POP S, push aSa ¢ aSa$

Qloop  read and pop a a Sa$ °
Qloop  POP S, push bT'a a bTaa$

Qloop  read and pop b ab Taa$ ge— S
Qloop  POp T, push aT ab aTaa$

Qloop ~ 'ead and pop a aba Taa$ z’z : &
Gloop pop T, push ¢ aba aa$ ’ €

Qloop  read and pop a abaa a$ e$ e
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Returning to the example

S = aSa = abTaa = abaTlaa = abaaa

State Action Input read  Stack
0 push $ e $

q push S e S$
Qoop  POP S, push aSa e aSa$
Qloop  read and pop a a Sa$
Qioop  POP S, push bTa a bTaa$
Qloop  read and pop b ab Taa$
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Qloop pop $ abaaa ¢

Qa accept abaaa ¢

€, >
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Back from example

Consider running M on input w = wywsy-+-w, for w; € 3.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gioop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w
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Back from example

Consider running M on input w = wywsy--w,, for w; € X.
The first time M enters state gio0p, the stack is S$ and no input has been read.

Every subsequent time it enters gioop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

l.e., if k& symbols have been read from the input and the stack is s, then wyjwsy:+-wys is
a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched.
Therefore, each string accepted by M is in A.

For each w € A, there is some left-most derivation of w by G. By construction, M
performs the derivation on the stack while matching leading terminals.

Thus L(M) = A. O @
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Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.

Proof idea.
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@ First, convert the PDA to one that

e has a single accepting state q,;

e empties its stack before accepting; and

e either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that

e has variables that are pairs of states (g, r) from the PDA;

e has start variable {qq, q,);

e has rules {(q,q) — ¢ for each ¢ € Q;

e has rules (p,r) = (p,q){q,r) for each p,q,7 € Q; and
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Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.

Proof idea.

@ First, convert the PDA to one that
e has a single accepting state q,;
e empties its stack before accepting; and
e either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that
e has variables that are pairs of states (g, r) from the PDA;
e has start variable {qq, q,);
has rules (¢, q) — ¢ for each q € Q;
has rules {(p,7) = (p,q){q,r) for each p,q,r € Q; and
has rules (p,q) — a{r,s)b for p,q,r,s € Q and a,b € X, if (r,u) € 6(p,a,e) and
(q,¢) € 6(s,b,u)
© Prove (by induction) that each variable (g, ) has the property (g, r) = ore xtiff
starting M in state ¢ with an empty stack and running on input x causes M to
move to state r and end with an empty stack @
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e has a single accepting state q,;
e empties its stack before accepting; and
e either pushes a symbol or pops a symbol, but not both, on each transition
® Next, construct a CFG that
e has variables that are pairs of states (g, r) from the PDA;
e has start variable {qq, q,);
has rules (¢, q) — ¢ for each q € Q;
has rules {(p,7) = (p,q){q,r) for each p,q,r € Q; and
has rules (p,q) — a{r,s)b for p,q,r,s € Q and a,b € X, if (r,u) € 6(p,a,e) and
(q,¢) € 6(s,b,u)
© Prove (by induction) that each variable (g, ) has the property (g, r) = ore xtiff
starting M in state ¢ with an empty stack and running on input x causes M to
move to state r and end with an empty stack @

@ Conclude that (qo,q,) = w iff w € L(M)

12/18



Closure properties of CFLs

The class of context-free languages is closed under
e Union
e Concatenation
e Kleene star
e PREFIX
e SUFFIX
e Reversal
e Intersection with a regular language
e Quotient by a string
e Quotient by a regular language
We proved closure under union, concatenation, Kleene star, and PREFIX previously
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Reversal

Theorem

Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG G = (V,X, R, S).

Construct CFG G' = (V,E,R',S) where

R'z{A—»uR|A—>uisaruIeinR}.
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Reversal

Theorem
Context-free languages are closed under reversal.

Proof. Let B be a context-free language generated by a CFG G = (V,X, R, S).
Construct CFG G' = (V,E,R’,S) where
RI:{A—>uR | A > uisarulein R}.

To prove that L(G') = BR, we want to show that for each variable A € V' and
ve(Vux)*, 4 =*>G u in n steps iff A =*>G' u®inn steps.

k *
Let's write = to mean = in exactly k steps.
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Proof continued

0 R 0 R .
Base case n =0. If A =g u, thenu=u"=Aso A= u'", and vice versa.
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Base case n =0. If A =g u, thenu=u"=Aso A= u'", and vice versa.

Inductive step. Assume that foralln >0, A€V, andue (Vux)* A n=_>1G w iff

n—1 R
A =g u

If A ;G u, then there is some C € V and z,y,z € (V U X)* such that u = zyz,

A n=_>1G xzCz, and C' =4 y.

-1
By the inductive hypothesis A n=>Gr 2*C2™ and by construction C' = yR_ Thus
A S zRyR:cR = (a:yz)R =u”. Swapping G and G' shows the converse.
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Proof continued

0 R 0 R .
Base case n =0. If A =g u, thenu=u"=Aso A= u'", and vice versa.

Inductive step. Assume that foralln >0, A€V, andue (Vux)* A n=_>1G w iff
A n=_>1g' ’LLR.

If A ;G u, then there is some C € V and z,y,z € (V U X)* such that u = zyz,
A n=_>1G xzCz, and C' =4 y.

n—1
By the inductive hypothesis A = 2*C2™ and by construction C' = yR_ Thus
A S zRyR:cR = (a:yz)R =u”. Swapping G and G' shows the converse.

Thus, A D¢ uiff A =g u’™.

Therefore, for w € B, S = ¢ w iff S =g w™ so L(G') = BX. 0

15/18



Suffix

Theorem
Context free languages are closed under SUFFIX.

Proof.
Since SUFFIX(A) = PREFIX(AR)R and CFLs are closed under reversal and PREFIX,
CFLs are closed under SUFFIX. Ol
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Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.
Proof.

Let A be a CFL recognized by the PDA M; = (Q1,%,T',01,¢1, F1) and B be a regular
language recognized by the NFA My = (Q2, X, 0o, qo, F5).
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Let A be a CFL recognized by the PDA M; = (Q1,%,T',01,¢1, F1) and B be a regular
language recognized by the NFA My = (Q2, X, 0o, qo, F5).
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Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M; = (Q1,%,T',01,¢1, F1) and B be a regular
language recognized by the NFA My = (Q2, X, 0o, qo, F5).

Construct the PDA M = (Q, X%, T, 4, qp, F') where

Q=01 XQs
CI0=(CJ1,Q2)
F:Fl XF2

5((q,r),a, b) = {((s,t),c) | (s,¢) € 61(q,a,b) and t € (52(r,a)} fora € X, b,cel,

As M runs on input w, its stack and the first element of its state change according to
01 whereas the second element of its state changes according to ds.

M accepts w iff M, accepts w and My accepts w. Therefore, L(M) = An B. O
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What about intersection with another CFL?

Are context-free languages closed under intersection?
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What about intersection with another CFL?
Are context-free languages closed under intersection?
Consider 3 = {a,b, c} and

A={a"v"c" | m,n =0}

B ={a"b"c" | m,n 20}
Both B and C' are context-free. Is
AnB={a"v"c" | n20}?

How can we keep track of how many as and bs we've seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?
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Are context-free languages closed under intersection?
Consider 3 = {a,b, c} and

A={a"v"c" | m,n =0}

B ={a"b"c" | m,n 20}
Both B and C' are context-free. Is
AnB={a"v"c" | n20}?

How can we keep track of how many as and bs we've seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we'll see that B N C is not context-free! @
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