
CS 301
Lecture 13 – Closure properties of context-free languages

1 / 18



CFLs and PDAs

Theorem
Every context-free language can be recognized by some PDA.

Proof idea.
1 Use the PDA’s stack to perform a left-most derivation of a word in the language
2 Match the PDA’s input symbols against the stack, popping each one
3 Accept if stack is empty when there’s no more input

2 / 18



What we’d like to do
Consider the language A = {w ∣ w ∈ {a, b}∗ and w is not a palindrome}
What CFG generates that language?

S → aSa ∣ bSb ∣ aTb ∣ bTa
T → aT ∣ bT ∣ ε

A left-most derivation of the string abaaa is

S ⇒ aSa⇒ abTaa⇒ abaTaa⇒ abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
1 The first step in the derivation S ⇒ aSa requires popping one symbol and

pushing three
2 We can only replace symbols at the top of the stack

3 / 18



What we’d like to do
Consider the language A = {w ∣ w ∈ {a, b}∗ and w is not a palindrome}
What CFG generates that language?

S → aSa ∣ bSb ∣ aTb ∣ bTa
T → aT ∣ bT ∣ ε

A left-most derivation of the string abaaa is

S ⇒ aSa⇒ abTaa⇒ abaTaa⇒ abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
1 The first step in the derivation S ⇒ aSa requires popping one symbol and

pushing three
2 We can only replace symbols at the top of the stack

3 / 18



What we’d like to do
Consider the language A = {w ∣ w ∈ {a, b}∗ and w is not a palindrome}
What CFG generates that language?

S → aSa ∣ bSb ∣ aTb ∣ bTa
T → aT ∣ bT ∣ ε

A left-most derivation of the string abaaa is

S ⇒ aSa⇒ abTaa⇒ abaTaa⇒ abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
1 The first step in the derivation S ⇒ aSa requires popping one symbol and

pushing three
2 We can only replace symbols at the top of the stack

3 / 18



What we’d like to do
Consider the language A = {w ∣ w ∈ {a, b}∗ and w is not a palindrome}
What CFG generates that language?

S → aSa ∣ bSb ∣ aTb ∣ bTa
T → aT ∣ bT ∣ ε

A left-most derivation of the string abaaa is

S ⇒ aSa⇒ abTaa⇒ abaTaa⇒ abaaa.

We want to start by pushing S on the stack, then performing the derivation step by
step so that abaaa ends on the stack, and then match the input

There are two complications
1 The first step in the derivation S ⇒ aSa requires popping one symbol and

pushing three
2 We can only replace symbols at the top of the stack

3 / 18



Pushing multiple symbols

We would like to write a transition like q r
ε, S → aTb

but δ ∶ Q × Σε × Γε → P (Q × Γε) doesn’t allow that

Instead, use multiple transitions q r
ε, S → b ε, ε→ T ε, ε→ a

Note that the symbols are pushed on in reverse order

4 / 18



Pushing multiple symbols

We would like to write a transition like q r
ε, S → aTb

but δ ∶ Q × Σε × Γε → P (Q × Γε) doesn’t allow that

Instead, use multiple transitions q r
ε, S → b ε, ε→ T ε, ε→ a

Note that the symbols are pushed on in reverse order

4 / 18



We can only replace symbols at the top of the stack
Rather than first deriving the whole string on the stack and then matching the input,
• If the top of the stack is a terminal, match it to the next input symbol

t, t→ ε
for each t ∈ Σ

• If the top of the stack is a variable, replace it with the RHS of a corresponding rule

In fact, we only need four main states plus
any additional states necessary to push mul-
tiple symbols

The qloop state is where all the real work
happens

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

... ...

5 / 18



We can only replace symbols at the top of the stack
Rather than first deriving the whole string on the stack and then matching the input,
• If the top of the stack is a terminal, match it to the next input symbol

t, t→ ε
for each t ∈ Σ

• If the top of the stack is a variable, replace it with the RHS of a corresponding rule

In fact, we only need four main states plus
any additional states necessary to push mul-
tiple symbols

The qloop state is where all the real work
happens

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

... ...

5 / 18



Example

S → aSa ∣ bSb ∣ aTb ∣ bTa

T → aT ∣ bT ∣ ε

1 For each t ∈ Σ, add the transition
t, t→ ε from qloop to qloop

2 For each rule A→ u1u2⋯un for
ui ∈ V ∪ Σ, add n − 1 new states (if
n > 1) and transitions to pop A and
push u1, u2, . . . , un on in reverse order

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

[The rules on the right need 10 extra states
to make this a proper PDA]

6 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $

2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$

3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$

4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$

5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$

6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$

7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$

8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$

9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$

10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$

11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $

12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Running the PDA on some input

Consider running the PDA on the input
abaaa. The stack is shown on the right after
each step

1 push $; $
2 push S; S$
3 pop S, push aSa; aSa$
4 read and pop a; Sa$
5 pop S, push bTa; bTaa$
6 read and pop b; Taa$
7 pop T , push aT ; aTaa$
8 read and pop a; Taa$
9 pop T , push ε; aa$
10 read and pop a; a$
11 read and pop a; $
12 pop $ and accept; ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

7 / 18



Proving that every CFL is recognized by a PDA
Proof.
Let A be a CFL generated by a CFG G = (V,Σ, R, S).

Construct the PDA M = (Q,Σ,Γ, δ, q0, {qa}) with states Q = {q0, q1, qloop, qa} ∪ E
where E are the extra states we need for each rule and Γ = V ∪ Σ ∪ {$}.

Start with then transitions
ε, ε→ $ from q0 to q1,
ε, ε→ S from q1 to qloop, and
ε, $ → ε from qloop to qa

For each t ∈ Σ, add the transition t, t→ ε from qloop to qloop.

For each rule A→ u add the states and transitions necessary to pop A and push u in
reverse order from qloop to qloop.

8 / 18



Proving that every CFL is recognized by a PDA
Proof.
Let A be a CFL generated by a CFG G = (V,Σ, R, S).

Construct the PDA M = (Q,Σ,Γ, δ, q0, {qa}) with states Q = {q0, q1, qloop, qa} ∪ E
where E are the extra states we need for each rule and Γ = V ∪ Σ ∪ {$}.

Start with then transitions
ε, ε→ $ from q0 to q1,
ε, ε→ S from q1 to qloop, and
ε, $ → ε from qloop to qa

For each t ∈ Σ, add the transition t, t→ ε from qloop to qloop.

For each rule A→ u add the states and transitions necessary to pop A and push u in
reverse order from qloop to qloop.

8 / 18



Proving that every CFL is recognized by a PDA
Proof.
Let A be a CFL generated by a CFG G = (V,Σ, R, S).

Construct the PDA M = (Q,Σ,Γ, δ, q0, {qa}) with states Q = {q0, q1, qloop, qa} ∪ E
where E are the extra states we need for each rule and Γ = V ∪ Σ ∪ {$}.

Start with then transitions
ε, ε→ $ from q0 to q1,
ε, ε→ S from q1 to qloop, and
ε, $ → ε from qloop to qa

For each t ∈ Σ, add the transition t, t→ ε from qloop to qloop.

For each rule A→ u add the states and transitions necessary to pop A and push u in
reverse order from qloop to qloop.

8 / 18



Proving that every CFL is recognized by a PDA
Proof.
Let A be a CFL generated by a CFG G = (V,Σ, R, S).

Construct the PDA M = (Q,Σ,Γ, δ, q0, {qa}) with states Q = {q0, q1, qloop, qa} ∪ E
where E are the extra states we need for each rule and Γ = V ∪ Σ ∪ {$}.

Start with then transitions
ε, ε→ $ from q0 to q1,
ε, ε→ S from q1 to qloop, and
ε, $ → ε from qloop to qa

For each t ∈ Σ, add the transition t, t→ ε from qloop to qloop.

For each rule A→ u add the states and transitions necessary to pop A and push u in
reverse order from qloop to qloop.

8 / 18



Proving that every CFL is recognized by a PDA
Proof.
Let A be a CFL generated by a CFG G = (V,Σ, R, S).

Construct the PDA M = (Q,Σ,Γ, δ, q0, {qa}) with states Q = {q0, q1, qloop, qa} ∪ E
where E are the extra states we need for each rule and Γ = V ∪ Σ ∪ {$}.

Start with then transitions
ε, ε→ $ from q0 to q1,
ε, ε→ S from q1 to qloop, and
ε, $ → ε from qloop to qa

For each t ∈ Σ, add the transition t, t→ ε from qloop to qloop.

For each rule A→ u add the states and transitions necessary to pop A and push u in
reverse order from qloop to qloop.

8 / 18



Proof continued
Consider running M on input w = w1w2⋯wn for wi ∈ Σ.

The first time M enters state qloop, the stack is S$ and no input has been read.

Every subsequent time it enters qloop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

I.e., if k symbols have been read from the input and the stack is s, then w1w2⋯wks is
a step in the derivation of w

9 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $

q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$

qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$

qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$

qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$

qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$

qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$

qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$

qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$

qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$

qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $

qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε

qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Returning to the example

S ⇒ aSa ⇒ abTaa ⇒ abaTaa ⇒ abaaa

State Action Input read Stack

q0 push $ ε $
q1 push S ε S$
qloop pop S, push aSa ε aSa$
qloop read and pop a a Sa$
qloop pop S, push bTa a bTaa$
qloop read and pop b ab Taa$
qloop pop T , push aT ab aTaa$
qloop read and pop a aba Taa$
qloop pop T , push ε aba aa$
qloop read and pop a abaa a$
qloop read and pop a abaaa $
qloop pop $ abaaa ε
qa accept abaaa ε

q0

q1

qloop

qa

ε, ε→ $

ε, ε→ S

ε, $ → ε

a, a → ε
b, b → ε

ε, S → aSa
ε, S → bSb
ε, S → aTb
ε, S → bTa
ε, T → aT
ε, T → bT
ε, T → ε

10 / 18



Back from example
Consider running M on input w = w1w2⋯wn for wi ∈ Σ.

The first time M enters state qloop, the stack is S$ and no input has been read.

Every subsequent time it enters qloop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

I.e., if k symbols have been read from the input and the stack is s, then w1w2⋯wks is
a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched.
Therefore, each string accepted by M is in A.

For each w ∈ A, there is some left-most derivation of w by G. By construction, M
performs the derivation on the stack while matching leading terminals.

Thus L(M) = A.

11 / 18



Back from example
Consider running M on input w = w1w2⋯wn for wi ∈ Σ.

The first time M enters state qloop, the stack is S$ and no input has been read.

Every subsequent time it enters qloop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

I.e., if k symbols have been read from the input and the stack is s, then w1w2⋯wks is
a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched.
Therefore, each string accepted by M is in A.

For each w ∈ A, there is some left-most derivation of w by G. By construction, M
performs the derivation on the stack while matching leading terminals.

Thus L(M) = A.

11 / 18



Back from example
Consider running M on input w = w1w2⋯wn for wi ∈ Σ.

The first time M enters state qloop, the stack is S$ and no input has been read.

Every subsequent time it enters qloop, the input read so far concatenated with the
stack is a step in some left-most derivation of w (followed by a $).

I.e., if k symbols have been read from the input and the stack is s, then w1w2⋯wks is
a step in the derivation of w

M accepts w once the derivation is complete and all terminals have been matched.
Therefore, each string accepted by M is in A.

For each w ∈ A, there is some left-most derivation of w by G. By construction, M
performs the derivation on the stack while matching leading terminals.

Thus L(M) = A.

11 / 18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

1 First, convert the PDA to one that
• has a single accepting state qa;
• empties its stack before accepting; and
• either pushes a symbol or pops a symbol, but not both, on each transition

2 Next, construct a CFG that
• has variables that are pairs of states ⟨q, r⟩ from the PDA;
• has start variable ⟨q0, qa⟩;
• has rules ⟨q, q⟩ → ε for each q ∈ Q;
• has rules ⟨p, r⟩ → ⟨p, q⟩⟨q, r⟩ for each p, q, r ∈ Q; and
• has rules ⟨p, q⟩ → a⟨r, s⟩b for p, q, r, s ∈ Q and a, b ∈ Σε if (r, u) ∈ δ(p, a, ε) and

(q, ε) ∈ δ(s, b, u)
3 Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ∗

⇒ x ∈ Σ∗ iff
starting M in state q with an empty stack and running on input x causes M to
move to state r and end with an empty stack

4 Conclude that ⟨q0, qa⟩
∗
⇒ w iff w ∈ L(M)

12 / 18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

1 First, convert the PDA to one that
• has a single accepting state qa;
• empties its stack before accepting; and
• either pushes a symbol or pops a symbol, but not both, on each transition

2 Next, construct a CFG that
• has variables that are pairs of states ⟨q, r⟩ from the PDA;
• has start variable ⟨q0, qa⟩;
• has rules ⟨q, q⟩ → ε for each q ∈ Q;
• has rules ⟨p, r⟩ → ⟨p, q⟩⟨q, r⟩ for each p, q, r ∈ Q; and
• has rules ⟨p, q⟩ → a⟨r, s⟩b for p, q, r, s ∈ Q and a, b ∈ Σε if (r, u) ∈ δ(p, a, ε) and

(q, ε) ∈ δ(s, b, u)
3 Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ∗

⇒ x ∈ Σ∗ iff
starting M in state q with an empty stack and running on input x causes M to
move to state r and end with an empty stack

4 Conclude that ⟨q0, qa⟩
∗
⇒ w iff w ∈ L(M)

12 / 18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

1 First, convert the PDA to one that
• has a single accepting state qa;
• empties its stack before accepting; and
• either pushes a symbol or pops a symbol, but not both, on each transition

2 Next, construct a CFG that
• has variables that are pairs of states ⟨q, r⟩ from the PDA;
• has start variable ⟨q0, qa⟩;
• has rules ⟨q, q⟩ → ε for each q ∈ Q;
• has rules ⟨p, r⟩ → ⟨p, q⟩⟨q, r⟩ for each p, q, r ∈ Q; and
• has rules ⟨p, q⟩ → a⟨r, s⟩b for p, q, r, s ∈ Q and a, b ∈ Σε if (r, u) ∈ δ(p, a, ε) and

(q, ε) ∈ δ(s, b, u)

3 Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ∗
⇒ x ∈ Σ∗ iff

starting M in state q with an empty stack and running on input x causes M to
move to state r and end with an empty stack

4 Conclude that ⟨q0, qa⟩
∗
⇒ w iff w ∈ L(M)

12 / 18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

1 First, convert the PDA to one that
• has a single accepting state qa;
• empties its stack before accepting; and
• either pushes a symbol or pops a symbol, but not both, on each transition

2 Next, construct a CFG that
• has variables that are pairs of states ⟨q, r⟩ from the PDA;
• has start variable ⟨q0, qa⟩;
• has rules ⟨q, q⟩ → ε for each q ∈ Q;
• has rules ⟨p, r⟩ → ⟨p, q⟩⟨q, r⟩ for each p, q, r ∈ Q; and
• has rules ⟨p, q⟩ → a⟨r, s⟩b for p, q, r, s ∈ Q and a, b ∈ Σε if (r, u) ∈ δ(p, a, ε) and

(q, ε) ∈ δ(s, b, u)
3 Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ∗

⇒ x ∈ Σ∗ iff
starting M in state q with an empty stack and running on input x causes M to
move to state r and end with an empty stack

4 Conclude that ⟨q0, qa⟩
∗
⇒ w iff w ∈ L(M)

12 / 18



Going the other direction

Theorem
If a language is recognized by a PDA, then it is context-free.
Proof idea.

1 First, convert the PDA to one that
• has a single accepting state qa;
• empties its stack before accepting; and
• either pushes a symbol or pops a symbol, but not both, on each transition

2 Next, construct a CFG that
• has variables that are pairs of states ⟨q, r⟩ from the PDA;
• has start variable ⟨q0, qa⟩;
• has rules ⟨q, q⟩ → ε for each q ∈ Q;
• has rules ⟨p, r⟩ → ⟨p, q⟩⟨q, r⟩ for each p, q, r ∈ Q; and
• has rules ⟨p, q⟩ → a⟨r, s⟩b for p, q, r, s ∈ Q and a, b ∈ Σε if (r, u) ∈ δ(p, a, ε) and

(q, ε) ∈ δ(s, b, u)
3 Prove (by induction) that each variable ⟨q, r⟩ has the property ⟨q, r⟩ ∗

⇒ x ∈ Σ∗ iff
starting M in state q with an empty stack and running on input x causes M to
move to state r and end with an empty stack

4 Conclude that ⟨q0, qa⟩
∗
⇒ w iff w ∈ L(M)

12 / 18



Closure properties of CFLs
The class of context-free languages is closed under
• Union
• Concatenation
• Kleene star
• Prefix
• Suffix
• Reversal
• Intersection with a regular language
• Quotient by a string
• Quotient by a regular language

We proved closure under union, concatenation, Kleene star, and Prefix previously

13 / 18



Reversal

Theorem
Context-free languages are closed under reversal.
Proof. Let B be a context-free language generated by a CFG G = (V,Σ, R, S).

Construct CFG G
′
= (V,Σ, R′, S) where

R
′
= {A→ u

R ∣ A→ u is a rule in R}.

To prove that L(G′) = BR, we want to show that for each variable A ∈ V and
u ∈ (V ∪ Σ)∗, A ∗

⇒G u in n steps iff A
∗
⇒G′ u

R in n steps.

Let’s write
k
⇒ to mean

∗
⇒ in exactly k steps.

14 / 18



Reversal

Theorem
Context-free languages are closed under reversal.
Proof. Let B be a context-free language generated by a CFG G = (V,Σ, R, S).

Construct CFG G
′
= (V,Σ, R′, S) where

R
′
= {A→ u

R ∣ A→ u is a rule in R}.

To prove that L(G′) = BR, we want to show that for each variable A ∈ V and
u ∈ (V ∪ Σ)∗, A ∗

⇒G u in n steps iff A
∗
⇒G′ u

R in n steps.

Let’s write
k
⇒ to mean

∗
⇒ in exactly k steps.

14 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Proof continued
Base case n = 0. If A

0
⇒G u, then u = uR = A so A

0
⇒G′ u

R, and vice versa.

Inductive step. Assume that for all n > 0, A ∈ V , and u ∈ (V ∪ Σ)∗, A n−1
⇒G u iff

A
n−1
⇒G′ u

R.

If A
n
⇒G u, then there is some C ∈ V and x, y, z ∈ (V ∪ Σ)∗ such that u = xyz,

A
n−1
⇒G xCz, and C ⇒G y.

By the inductive hypothesis A
n−1
⇒G′ z

R
Cx

R and by construction C ⇒G′ y
R. Thus

A
n
⇒G′ z

R
y
R
x
R
= (xyz)R = u

R. Swapping G and G′ shows the converse.

Thus, A
n
⇒G u iff A

n
⇒G′ u

R.

Therefore, for w ∈ B, S
∗
⇒G w iff S

∗
⇒G′ w

R so L(G′) = BR.

15 / 18



Suffix

Theorem
Context free languages are closed under Suffix.

Proof.
Since Suffix(A) = Prefix(AR)R and CFLs are closed under reversal and Prefix,
CFLs are closed under Suffix.

16 / 18



Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M1 = (Q1,Σ,Γ, δ1, q1, F1) and B be a regular
language recognized by the NFA M2 = (Q2,Σ, δ2, q2, F2).

Construct the PDA M = (Q,Σ,Γ, δ, q0, F ) where

Q = Q1 ×Q2

q0 = (q1, q2)
F = F1 × F2

δ((q, r), a, b) = {((s, t), c) ∣ (s, c) ∈ δ1(q, a, b) and t ∈ δ2(r, a)} for a ∈ Σε, b, c ∈ Γε

As M runs on input w, its stack and the first element of its state change according to
δ1 whereas the second element of its state changes according to δ2.

M accepts w iff M1 accepts w and M2 accepts w. Therefore, L(M) = A ∩B.

17 / 18



Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M1 = (Q1,Σ,Γ, δ1, q1, F1) and B be a regular
language recognized by the NFA M2 = (Q2,Σ, δ2, q2, F2).

Construct the PDA M = (Q,Σ,Γ, δ, q0, F ) where

Q = Q1 ×Q2

q0 = (q1, q2)
F = F1 × F2

δ((q, r), a, b) = {((s, t), c) ∣ (s, c) ∈ δ1(q, a, b) and t ∈ δ2(r, a)} for a ∈ Σε, b, c ∈ Γε

As M runs on input w, its stack and the first element of its state change according to
δ1 whereas the second element of its state changes according to δ2.

M accepts w iff M1 accepts w and M2 accepts w. Therefore, L(M) = A ∩B.

17 / 18



Intersection of a CFL and a regular language

Theorem
The intersection of a CFL and a regular language is context-free.

Proof.
Let A be a CFL recognized by the PDA M1 = (Q1,Σ,Γ, δ1, q1, F1) and B be a regular
language recognized by the NFA M2 = (Q2,Σ, δ2, q2, F2).

Construct the PDA M = (Q,Σ,Γ, δ, q0, F ) where

Q = Q1 ×Q2

q0 = (q1, q2)
F = F1 × F2

δ((q, r), a, b) = {((s, t), c) ∣ (s, c) ∈ δ1(q, a, b) and t ∈ δ2(r, a)} for a ∈ Σε, b, c ∈ Γε

As M runs on input w, its stack and the first element of its state change according to
δ1 whereas the second element of its state changes according to δ2.

M accepts w iff M1 accepts w and M2 accepts w. Therefore, L(M) = A ∩B.
17 / 18



What about intersection with another CFL?
Are context-free languages closed under intersection?

Consider Σ = {a, b, c} and

A = {ambmcn ∣ m,n ≥ 0}
B = {ambncn ∣ m,n ≥ 0}

Both B and C are context-free. Is

A ∩B = {anbncn ∣ n ≥ 0}?

How can we keep track of how many as and bs we’ve seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we’ll see that B ∩ C is not context-free!

18 / 18



What about intersection with another CFL?
Are context-free languages closed under intersection?

Consider Σ = {a, b, c} and

A = {ambmcn ∣ m,n ≥ 0}
B = {ambncn ∣ m,n ≥ 0}

Both B and C are context-free. Is

A ∩B = {anbncn ∣ n ≥ 0}?

How can we keep track of how many as and bs we’ve seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we’ll see that B ∩ C is not context-free!

18 / 18



What about intersection with another CFL?
Are context-free languages closed under intersection?

Consider Σ = {a, b, c} and

A = {ambmcn ∣ m,n ≥ 0}
B = {ambncn ∣ m,n ≥ 0}

Both B and C are context-free. Is

A ∩B = {anbncn ∣ n ≥ 0}?

How can we keep track of how many as and bs we’ve seen to ensure we get the same
number of cs using a PDA?

How about trying to generate such strings with a CFG?

Next time, we’ll see that B ∩ C is not context-free!

18 / 18


