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Lecture 14 – Non-context-free languages
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Review of “pumpable” languages
Recall we call a language L pumpable with pumping length p if for all w ∈ L with
∣w∣ ≥ p, there exist strings x, y, z ∈ Σ∗ with w = xyz such that

1 for all i ≥ 0, xy
i
z ∈ L;

2 ∣y∣ > 0; and
3 ∣xy∣ ≤ p

Then we proved that regular languages are pumpable

This let us prove a language was not regular by showing it isn’t pumpable
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CF-pumpability
A language L is CF-pumpable with pumping length p if for all w ∈ L with ∣w∣ ≥ p,
there exist strings u, v, x, y, z ∈ Σ∗ such that

1 for all i ≥ 0, uv
i
xy

i
z ∈ L;

2 ∣vy∣ > 0; and
3 ∣vxy∣ ≤ p

Rather than dividing the string into 3 pieces, we’re dividing it into 5

Two of the pieces (v and y) are pumped together

Condition 2 tells us that at least one of v or y must not be ε
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Example pumpable language
The language A = {w#w

R ∣ w ∈ {a, b}∗} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs
R for c ∈ {a, b} and

s ∈ {a, b}∗. Note ∣w∣ = 3 + 2∣s∣ ≥ 3

Let u = s

v = c

x = #

y = c

z = s
R

1 for any i ≥ 0, uv
i
xy

i
z = sc

i#c
i
s
R
= (sc

i)#(sc
i)R ∈ L

2 ∣vy∣ = ∣cc∣ = 2 > 0
3 ∣vxy∣ = ∣c#c∣ = 3 ≤ p
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Parse trees
CFG for A = {w#w

R ∣ w ∈ {a, b}∗}: S → aSa ∣ bSb ∣ #
Consider a parse tree for w = aab#baa

S

a S

a S

b S

#

b

a

a

i = 1:

S

a S

a S

#

a

a

i = 0:
S

a S

a S

b S

b S

#

b

b

a

a

i = 2:

u = aa, v = b, x = #, y = b, z = aa
• Pumping down replaces the yellow trapezoid with the violet trapezoid
• Pumping up replaces the violet trapezoid with the yellow trapezoid
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CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

Proof idea.
Consider a CFG G = (V, Σ, R, S) in CNF

Set p large enough that any string of length at least p repeats some variable in its
derivation (it turns out p = 2∣V ∣ + 1 works)

This repeated variable, call it R, will play
the same role as the repeated state did in
proving that regular languages are pumpable

Note that this means R
∗
⇒ vxy and R

∗
⇒ x

S

R

R

u v x y z
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Condition 1: ∀i ≥ 0. uv
i
xy

i
z ∈ L

S

R

R

i = 1:

u v x y z

S

R

i = 0:

u

x

z

S

R

R

R

i = 2:

u v

v x y

y z

• Pumping down replaces the yellow triangle with the violet triangle
• Pumping up replaces the violet triangle with the yellow triangle
• We can pump up arbitrarily by repeating this process

Thus we’ve satisfied the first condition:
1 for all i ≥ 0, uv

i
xy

i
z ∈ L
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Condition 2: ∣vy∣ > 0

To see that at least one of v or y is not ε, let’s look at
R

∗
⇒ vRy

Since G is in CNF, we must have R ⇒ AB
∗
⇒ vRy for

some variables A and B

Two cases:

• A
∗
⇒ vRs and B

∗
⇒ t where st = y

t (and thus y) cannot be ε because G is in CNF

• A
∗
⇒ s and B

∗
⇒ tRy where st = v

s (and thus v) cannot be ε because G is in CNF

In either case, we’ve satisfied the second condition:
2 ∣vy∣ > 0

S

R

R

u v x y z
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Condition 3: ∣vxy∣ ≤ p

For strings with length at least p = 2∣V ∣ + 1 we said there
had to be a repeated variable

Looking at all subtrees of height at most ∣V ∣ + 1, there
must be a repeated variable (pigeonhole principle), so pick
one of those for R that derives vxy

Now since R is at distance at most ∣V ∣+1 from the leaves,
we must have ∣vxy∣ ≤ 2∣V ∣

≤ p

(A perfect binary tree of height h has 2h leaves, but the
last level of interior nodes in a parse tree for a grammar in
CNF have a single child each)

Therefore, we’ve satisfied the final condition:
3 ∣vxy∣ ≤ p

S

R

R

u v x y z
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Showing that a language is not context-free
We can prove that a language is not context-free by showing that it violates the
pumping lemma for context-free languages

Steps:
1 Assume the language, L, is context-free with some unspecified pumping length p

2 Pick string w ∈ L such that ∣w∣ ≥ p

3 Consider every division of w into uvxyz = w such that ∣vy∣ > 0, and ∣vxy∣ ≤ p

4 For each possible division, show that for some i, uv
i
xy

i
z ∉ L
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Example
B = {anbncn ∣ n ≥ 0} is not context-free

First, assume B is context-free with pumping length p

Select w = apbpcp which is in B and has length 3p ≥ p

Now consider all possible uvxyz = w with ∣vy∣ > 0 and ∣vxy∣ ≤ p

• At least one of v or y contains two distinct symbols. Then uv
2
xy

2
z contains

symbols out of order so uv
2
xy

2
z ∉ B

• Both v and y contain the same symbol (v = am, y = an; v = bm, y = bn; or
v = cm, y = cn). Then uxz doesn’t have the same number of as, bs, and cs, so
uv

0
xy

0
z ∉ B

• v and y contain different symbols, but only a single type each (v = am, y = bn;
v = am, y = cn; or v = bm, y = cn). Again, uxz doesn’t have the same number
of as, bs, and cs so uv

0
xy

0
z ∉ B
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Using closure properties
Using the pumping lemma for CFLs is a pain

We can prove that

C = {w ∣ w ∈ {a, b, c}∗ and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?

Intersect with a∗b∗c∗:

C ∩ a∗b∗c∗ = B

Since context-free languages are closed under intersection with a regular language, if C
were context-free, then B would be context-free.

This is a contradiction so C is not context-free.
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Another example
D = {anba2nba3n ∣ n ≥ 0} is not context-free

Pick w = apba2pba3p and consider uvxyz = w such that ∣vy∣ > 0 and ∣vxy∣ ≤ p

• If v or y contains b, then pumping down gives a string with too few bs
• If x doesn’t contain a b, then vxy = am is in the first, second, or third run of as,

for some m. In any case, pumping down gives a string with as in the wrong ratio
• If x contains a b, then either v = am is in the first run of as and y = an is in the

second, or v is in the second and y is in the third. In either case, pumping down
gives a string with as in the wrong ratio
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second, or v is in the second and y is in the third. In either case, pumping down
gives a string with as in the wrong ratio
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Pumping lemma for CFLs is case analysis hell
Proofs using the pumping lemma always devolve to examining a bunch of cases

These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!

If you cannot, here are some general hints

• Try to select w that will lead to as few cases as possible
• Use the fact that ∣vxy∣ ≤ p to constrain the cases; e.g., if you need some as

followed by some bs followed by some cs, try to have at least p of each so that
vxy cannot come from all three

• Try to cover as many similar cases at once as possible; e.g., if several cases are
analogous, try to address them in one argument
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Intersection of CFLs
We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?

No!

What are two context-free languages whose intersection is not context-free?

E = {ambmcn ∣ m, n ≥ 0}
F = {ambncn ∣ m, n ≥ 0}

E ∩ F = {anbncn ∣ n ≥ 0}
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