CS 301

Lecture 14 — Non-context-free languages

/15

Review of “pumpable” languages

Recall we call a language L pumpable with pumping length p if for all w € L with
|w| = p, there exist strings x,y,z € ¥ with w = zyz such that

@ for all i = 0, a;yiz €L,

® |y| > 0; and

© |zyl=<p

Then we proved that regular languages are pumpable

This let us prove a language was not regular by showing it isn't pumpable

CF-pumpability

A language L is CF-pumpable with pumping length p if for all w € L with |w| = p,
there exist strings u, v, z,y,z € X" such that

@ foralli>0, uvixyiz € L:

® |vy| > 0; and

© |vzy| <p

Rather than dividing the string into 3 pieces, we're dividing it into 5
Two of the pieces (v and y) are pumped together

Condition 2 tells us that at least one of v or y must not be &

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

15

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs” for c € {a,b} and
s € {a,b}". Note |w| =3 +2|s| =3

15

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs” for c € {a,b} and
s € {a,b}". Note |w| =3 +2|s| =3

Letu=s
v=c
xr=*#
y=c
z=s"

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs” for c € {a,b} and
s € {a,b}". Note |w| =3 +2|s| =3

Letu=s
v=c
xr=*#
y=c
z=s"

@ for any i = 0, wv'zy'z = sc'#c's™ = (sci)#(sci)R €L

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs” for c € {a,b} and
s € {a,b}". Note |w| =3 +2|s| =3

Letu=s
v=c
xr=*#
y=c
z=s"

@ forany i > 0, wv'zy'z = sc'#c's™ = (sc)#(sc)~ e L
@ loyl = lecl =2 >0

15

Example pumpable language

The language A = {w#wR | w € {a,b}"} is CF-pumpable with pumping length p = 3

Every string in w of length at least 3 has the form w = sc#cs” for c € {a,b} and
s € {a,b}". Note |w| =3 +2|s| =3

Letu=s
v=c
xr=*#
y=c
z=s"

@ forany i > 0, wv'zy'z = sc'#c's™ = (sc)#(sc)~ e L
@ loyl = lecl =2 >0
© |vay| = |cttc| =3 <p

15

Parse trees
CFG for A = {w#w™ | w € {a,b}*}: S — aSa|bSb | #

Consider a parse tree for w = aab#baa
1= 1:

u=aa, v=b x=# y=Db, z=aa

Pumping down replaces the yellow trapezoid with the violet trapezoid

Pumping up replaces the violet trapezoid with the yellow trapezoid

5/15

Parse trees

CFG for A = {w#w™ | w € {a,b}*}: S — aSa|bSb | #
Consider a parse tree for w = aab#baa
1 =0:

g\ N

a a

a

N\

b

A\

IS
1]

aa,v=b,x=#, y=Db, 2 =aa

Pumping down replaces the yellow trapezoid with the violet trapezoid

Pumping up replaces the violet trapezoid with the yellow trapezoid

g

Parse trees

CFG for A = {w#w™ | w € {a,b}*}: S — aSa|bSb | #
Consider a parse tree for w = aab#baa

/LN /1
b b bb/S\bb

u=aa, v=bx=# y=Db, z=aa
e Pumping down replaces the yellow trapezoid with the violet trapezoid

e Pumping up replaces the violet trapezoid with the yellow trapezoid

g

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

Proof idea.

Consider a CFG G = (V, 3, R, S) in CNF

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

Proof idea.
Consider a CFG G = (V,X, R, S) in CNF

Set p large enough that any string of length at least p repeats some variable in its
derivation (it turns out p = 2Vl works)

CFLs are CF-pumpable

Theorem (Pumping lemma for context-free languages)
Context-free languages are CF-pumpable

Proof idea.
Consider a CFG G = (V,X, R, S) in CNF

Set p large enough that any string of length at least p repeats some variable in its
derivation (it turns out p = 2Vl works)

This repeated variable, call it R, will play

S
the same role as the repeated state did in
proving that regular languages are pumpable R
Note that this means R = vy and R - /R\

6/15

Condltlon 1 Vi 0.uv' :cy 2z €L

A/

Z Yy~ z

vox Yy
e Pumping down replaces the yellow triangle with the violet triangle
e Pumping up replaces the violet triangle with the yellow triangle
e We can pump up arbitrarily by repeating this process

Thus we've satisfied the first condition:

@ for all 7 = 0, uvza:ylz €L

Condition 2: |vy| > 0

To see that at least one of v or y is not ¢, let’'s look at
*
R = vRy

A

Condition 2: |vy| > 0

To see that at least one of v or y is not ¢, let’'s look at
*
R = vRy

Since G is in CNF, we must have R = AB = vRy for
some variables A and B

Two cases:

A

Condition 2: |vy| > 0

To see that at least one of v or y is not ¢, let’'s look at
*
R = vRy

Since G is in CNF, we must have R = AB = vRy for
some variables A and B

Two cases:

o A=*>vRsandB=*>twherest:y
t (and thus y) cannot be ¢ because G is in CNF

A

Condition 2: |vy| > 0

To see that at least one of v or y is not ¢, let’'s look at

S
R = vRy
R
Since G is in CNF, we must have R = AB = vRy for /\
some variables A and B R
Two cases: /\
u v T Yy 2z

o A:*>vRsandB=*>tWherest:y
t (and thus y) cannot be ¢ because G is in CNF

o A=*>sandB=*>tRyWherest:v
s (and thus v) cannot be € because G is in CNF

Condition 2: |vy| > 0

To see that at least one of v or y is not ¢, let’'s look at

S
R = vRy
R
Since G is in CNF, we must have R = AB = vRy for /\
some variables A and B R
Two cases: /\
u v T Yy 2z

o A:*>vRsandB=*>tWherest:y
t (and thus y) cannot be ¢ because G is in CNF

o A=*>sandB=*>tRyWherest:v
s (and thus v) cannot be € because G is in CNF

In either case, we've satisfied the second condition:
@ |vy| >0

Condition 3: |vay| < p

For strings with length at least p = 9Vl 4+ 1 we said there
had to be a repeated variable

A

Condition 3: |vay| < p

_ oV

For strings with length at least p + 1 we said there

had to be a repeated variable

Looking at all subtrees of height at most |V| + 1, there
must be a repeated variable (pigeonhole principle), so pick
one of those for R that derives vxy

A

Condition 3: |vay| < p

_ oV

For strings with length at least p + 1 we said there S
had to be a repeated variable
R
Looking at all subtrees of height at most |V| + 1, there
must be a repeated variable (pigeonhole principle), so pick R
one of those for R that derives vxy /\
v T Yy 2z

Now since R is at distance at most |V | +1 from the leaves,
|

we must have |vzy| < oVl < P

(A perfect binary tree of height h has 2" leaves, but the
last level of interior nodes in a parse tree for a grammar in
CNF have a single child each)

Condition 3: |vay| < p

_ oV

For strings with length at least p + 1 we said there S
had to be a repeated variable
R
Looking at all subtrees of height at most |V| + 1, there
must be a repeated variable (pigeonhole principle), so pick R
one of those for R that derives vxy /\
v T Yy 2z

Now since R is at distance at most |V | +1 from the leaves,
I <
=p

we must have |vzy| < olV

(A perfect binary tree of height h has 2" leaves, but the
last level of interior nodes in a parse tree for a grammar in
CNF have a single child each)

Therefore, we've satisfied the final condition: @
© |vry| <p

Showing that a language is not context-free

We can prove that a language is not context-free by showing that it violates the
pumping lemma for context-free languages

Steps:
@ Assume the language, L, is context-free with some unspecified pumping length p
@® Pick string w € L such that |w| = p
© Consider every division of w into wvxyz = w such that |vy| > 0, and |vay| < p

O For each possible division, show that for some i, uv'zy'z ¢ L

10/15

Example

B ={a"b"c" | n = 0} is not context-free

11/15

Example

B ={a"b"c" | n = 0} is not context-free

First, assume B is context-free with pumping length p

11/15

Example
B ={a"b"c" | n = 0} is not context-free
First, assume B is context-free with pumping length p

Select w = a’b”c” which is in B and has length 3p = p

11/15

Example

B ={a"b"c" | n = 0} is not context-free
First, assume B is context-free with pumping length p
PpP P

Select w = which is in B and has length 3p = p

Now consider all possible uvzyz = w with |vy| > 0 and |vzy| < p

11/15

Example

B ={a"b"c" | n = 0} is not context-free

First, assume B is context-free with pumping length p

Select w = a’b”c” which is in B and has length 3p = p

Now consider all possible uvzyz = w with |vy| > 0 and |vzy| < p

e At least one of v or y contains two distinct symbols. Then uv2xy22 contains
2 2
symbols out of order so uv zy 2z ¢ B

11/15

Example

B ={a"b"c" | n = 0} is not context-free
First, assume B is context-free with pumping length p
Select w = a’b”c” which is in B and has length 3p = p

Now consider all possible uvzyz = w with |vy| > 0 and |vzy| < p
e At least one of v or y contains two distinct symbols. Then uv2xy22 contains
2 2
symbols out of order so uv zy 2z ¢ B
e Both v and y contain the same symbol (v =a"", y=a";v=b", y =b"; or
v=c",y=c"). Then uzz doesn't have the same number of as, bs, and cs, so
uvoxyoz ¢ B

11/15

Example

B ={a"b"c" | n = 0} is not context-free

First, assume B is context-free with pumping length p

Select w = a’b”c” which is in B and has length 3p = p

Now consider all possible uvzyz = w with |vy| > 0 and |vzy| < p

e At least one of v or y contains two distinct symbols. Then uv2xy22 contains
symbols out of order so uvznyZ ¢ B

e Both v and y contain the same symbol (v =a"", y=a";v=b", y =b"; or
v=c",y=c"). Then uzz doesn't have the same number of as, bs, and cs, so
uvoxyoz ¢ B

e v and y contain different symbols, but only a single type each (v =a"", y =b";

m n m n . 1
v=a ,y=c;orv=b,y=c). Again, urz doesn't have the same number
0.0

of as, bs, and cs so uv zy 2z ¢ B

g

11/15

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that
C ={w | we{ab,c}" and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?

12 /15

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that
C ={w | we{ab,c}" and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?

Intersect with a*b*c™:

Cna'v'c* =B

12 /15

Using closure properties

Using the pumping lemma for CFLs is a pain
We can prove that
C ={w | we{ab,c}" and w has the same number of as, bs, and cs}

is not context-free by intersecting it with a regular language
What language should we choose?

Intersect with a*b*c™:
Cna'v'c* =B

Since context-free languages are closed under intersection with a regular language, if C'
were context-free, then B would be context-free.

This is a contradiction so C' is not context-free. @

12 /15

Another example

2n

D = {a"ba’"ba” | n = 0} is not context-free

13/15

Another example

2n

D = {a"ba’"ba” | n = 0} is not context-free

Pick w = a”’ba®’ba®® and consider wvzyz = w such that |vy| > 0 and |vzy| < p

13 /15

Another example

2n

D = {a"ba’"ba” | n = 0} is not context-free

Pick w = a”’ba®’ba®® and consider wvzyz = w such that |vy| > 0 and |vzy| < p

e If v or y contains b, then pumping down gives a string with too few bs

13 /15

Another example

2n

D = {a"ba’"ba” | n = 0} is not context-free

Pick w = a”’ba®’ba®® and consider wvzyz = w such that |vy| > 0 and |vzy| < p
e If v or y contains b, then pumping down gives a string with too few bs

e If x doesn't contain a b, then vxy = a' is in the first, second, or third run of as,
for some m. In any case, pumping down gives a string with as in the wrong ratio

13 /15

Another example

D = {a"ba’"ba” | n = 0} is not context-free

Pick w = a”’ba®’ba®® and consider wvzyz = w such that |vy| > 0 and |vzy| < p
e If v or y contains b, then pumping down gives a string with too few bs
e If x doesn't contain a b, then vxy = a' is in the first, second, or third run of as,
for some m. In any case, pumping down gives a string with as in the wrong ratio
e If = contains a b, then either v = a"" is in the first run of as and y = a" is in the
second, or v is in the second and y is in the third. In either case, pumping down
gives a string with as in the wrong ratio

13 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases

14 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases

These proofs are inelegant and painful to read/write

14 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write

Try to use closure properties whenever possible!

14 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write
Try to use closure properties whenever possible!

If you cannot, here are some general hints

e Try to select w that will lead to as few cases as possible

14 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write
Try to use closure properties whenever possible!

If you cannot, here are some general hints
e Try to select w that will lead to as few cases as possible

e Use the fact that |vxy| < p to constrain the cases; e.g., if you need some as
followed by some bs followed by some cs, try to have at least p of each so that
vxy cannot come from all three

14 /15

Pumping lemma for CFLs is case analysis hell

Proofs using the pumping lemma always devolve to examining a bunch of cases
These proofs are inelegant and painful to read/write
Try to use closure properties whenever possible!

If you cannot, here are some general hints
e Try to select w that will lead to as few cases as possible

e Use the fact that |vxy| < p to constrain the cases; e.g., if you need some as
followed by some bs followed by some cs, try to have at least p of each so that
vxy cannot come from all three

e Try to cover as many similar cases at once as possible; e.g., if several cases are
analogous, try to address them in one argument

14 /15

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?

15/15

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?
No!

What are two context-free languages whose intersection is not context-free?

15/15

Intersection of CFLs

We know that the intersection of a CFL and a regular language is context-free

Is the intersection of two CFLs necessarily context-free?
No!

What are two context-free languages whose intersection is not context-free?

E={a""c" | m,n 20}
F={a"0"c" | m,n =0}

EnF={a"v"<" | n=20}

15/15

