CS 301
Lecture 19 - Diagonalization and undecidable languages

Sizes of sets

Two sets X and Y have the same size if there is a bijection between them, $f: X \rightarrow Y$ What's a bijection?

Sizes of sets

Two sets X and Y have the same size if there is a bijection between them, $f: X \rightarrow Y$ What's a bijection?

Recall $f: X \rightarrow Y$ is a bijection if
(1) for all $a, b \in X, f(a)=f(b)$ implies $a=b$ (injective)
(2) for all $y \in Y$, there exists $x \in X$ such that $y=f(x)$ (surjective)

Example

The natural numbers and the integers have the same size

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{N} \\
& f(x)= \begin{cases}2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { if } x<0\end{cases}
\end{aligned}
$$

Example

The natural numbers and the integers have the same size

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{N} \\
& f(x)= \begin{cases}2 x & \text { if } x \geq 0 \\
-2 x-1 & \text { if } x<0\end{cases} \\
& \vdots \\
&-2 \mapsto 3 \\
&-1 \mapsto 1 \\
& 0 \mapsto 0 \\
& 1 \mapsto 2 \\
& 2 \mapsto 4 \\
& \vdots
\end{aligned}
$$

Example

The integers and the rational numbers have the same size

Example

The integers and the rational numbers have the same size
The fundamental theorem of arithmetic tells us that every positive integer can be expressed uniquely as a product of prime powers

$$
p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots
$$

where p_{i} are the primes in order ($2,3,5,7$, etc.) and $n_{i} \in \mathbb{N}$ and finitely many n_{i} are nonzero

Example

The integers and the rational numbers have the same size
The fundamental theorem of arithmetic tells us that every positive integer can be expressed uniquely as a product of prime powers

$$
p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots
$$

where p_{i} are the primes in order (2, 3, 5, 7, etc.) and $n_{i} \in \mathbb{N}$ and finitely many n_{i} are nonzero

Similarly, every positive rational number can be expressed uniquely as a product of prime powers

$$
p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots
$$

where p_{i} are the primes in order and
$n_{i} \in \mathbb{Z}$ and finitely many n_{i} are nonzero

Example continued

Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be our bijection from before Define $g: \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
g\left(p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots\right)=p_{1}^{f\left(n_{1}\right)} p_{2}^{f\left(n_{2}\right)} p_{3}^{f\left(n_{3}\right)} \cdots
$$

Note that we're mapping the integer exponents to natural number exponents and the (infinitely many) 0 exponents remain 0 because $f(0)=0$

Example continued

Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be our bijection from before
Define $g: \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
g\left(p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots\right)=p_{1}^{f\left(n_{1}\right)} p_{2}^{f\left(n_{2}\right)} p_{3}^{f\left(n_{3}\right)} \cdots
$$

Note that we're mapping the integer exponents to natural number exponents and the (infinitely many) 0 exponents remain 0 because $f(0)=0$

Since f is a bijection, g is a bijection (this isn't hard to show)

Example continued

Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be our bijection from before
Define $g: \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
g\left(p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots\right)=p_{1}^{f\left(n_{1}\right)} p_{2}^{f\left(n_{2}\right)} p_{3}^{f\left(n_{3}\right)} \cdots
$$

Note that we're mapping the integer exponents to natural number exponents and the (infinitely many) 0 exponents remain 0 because $f(0)=0$

Since f is a bijection, g is a bijection (this isn't hard to show)
Finally, let's define our bijection $h: \mathbb{Q} \rightarrow \mathbb{Z}$

$$
h(x)= \begin{cases}g(x) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -g(-x) & \text { if } x<0\end{cases}
$$

Example continued

Let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be our bijection from before
Define $g: \mathbb{Q}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
g\left(p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} \cdots\right)=p_{1}^{f\left(n_{1}\right)} p_{2}^{f\left(n_{2}\right)} p_{3}^{f\left(n_{3}\right)} \cdots
$$

Note that we're mapping the integer exponents to natural number exponents and the (infinitely many) 0 exponents remain 0 because $f(0)=0$

Since f is a bijection, g is a bijection (this isn't hard to show)
Finally, let's define our bijection $h: \mathbb{Q} \rightarrow \mathbb{Z}$

$$
h(x)= \begin{cases}g(x) & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -g(-x) & \text { if } x<0\end{cases}
$$

And just for fun, $f \circ h: \mathbb{Q} \rightarrow \mathbb{N}$ is a bijection

Countable

A set X is countable if it is finite or it has the same size as \mathbb{N}

UIC

Countable

A set X is countable if it is finite or it has the same size as \mathbb{N}
Countably infinite sets include \mathbb{N}, \mathbb{Z}, and \mathbb{Q}

Countable

A set X is countable if it is finite or it has the same size as \mathbb{N}
Countably infinite sets include \mathbb{N}, \mathbb{Z}, and \mathbb{Q}
Subsets of countable sets are countable (intuitively true but a hassle to prove without some additional math or an alternative, but equivalent definition of countability)

Each language is a countable set

Given an alphabet Σ, the language Σ^{*} is countably infinite. How do we show this?

Each language is a countable set

Given an alphabet Σ, the language Σ^{*} is countably infinite. How do we show this?

List the strings in lexicographic order to construct the mapping E.g., $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ given by

$$
\begin{aligned}
& \varepsilon \mapsto 0 \\
& 0 \mapsto 1 \\
& 1 \mapsto 2 \\
& 00 \mapsto 3 \\
& 01 \mapsto 4 \\
& 10 \mapsto 5 \\
& 11 \mapsto 6 \\
& 000 \mapsto 7 \\
& \vdots
\end{aligned}
$$

Each language is a countable set

Given an alphabet Σ, the language Σ^{*} is countably infinite. How do we show this?

List the strings in lexicographic order to construct the mapping E.g., $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ given by

$$
\begin{aligned}
& \varepsilon \mapsto 0 \\
& 0 \mapsto 1 \\
& 1 \mapsto 2 \\
& 00 \mapsto 3 \\
& 01 \mapsto 4 \\
& 10 \mapsto 5 \\
& 11 \mapsto 6 \\
& 000 \mapsto 7 \\
& \vdots
\end{aligned}
$$

Every language $L \subseteq \Sigma^{*}$ is thus countable

Diagonalization: infinite sequences over $\{0,1\}$

Theorem
The set S of all infinite sequences over $\{0,1\}$ is uncountable

Diagonalization: infinite sequences over $\{0,1\}$

Theorem
The set S of all infinite sequences over $\{0,1\}$ is uncountable
Proof.
Assume S is countable so there's a bijection $f: \mathbb{N} \rightarrow S$
We can construct a new infinite sequence $\mathbf{b}=b_{0}, b_{1}, \ldots$ that differs from every sequence in S.

n					n	n
n						
0	0	0	1	0	1	\cdots
1	1	0	0	0	1	\cdots
2	0	1	1	0	0	\cdots
3	1	1	0	1	0	\cdots
\vdots			\vdots			

Diagonalization: infinite sequences over $\{0,1\}$

Theorem
The set S of all infinite sequences over $\{0,1\}$ is uncountable
Proof.
Assume S is countable so there's a bijection $f: \mathbb{N} \rightarrow S$
We can construct a new infinite sequence $\mathbf{b}=b_{0}, b_{1}, \ldots$ that differs from every sequence in S.

In particular, b_{i} will differ from $f(i)$ in position i

$$
b_{i}= \begin{cases}0 & \text { if the } i \text { th element of } f(i) \text { is } 1 \\ 1 & \text { if the } i \text { th element of } f(i) \text { is } 0\end{cases}
$$

b $=1100 \cdots$

Diagonalization: infinite sequences over $\{0,1\}$

Theorem
The set S of all infinite sequences over $\{0,1\}$ is uncountable
Proof.
Assume S is countable so there's a bijection $f: \mathbb{N} \rightarrow S$
We can construct a new infinite sequence $\mathbf{b}=b_{0}, b_{1}, \ldots$ that differs from every sequence in S.

In particular, b_{i} will differ from $f(i)$ in position i

$$
b_{i}= \begin{cases}0 & \text { if the } i \text { th element of } f(i) \text { is } 1 \\ 1 & \text { if the } i \text { th element of } f(i) \text { is } 0\end{cases}
$$

b $=1100 \cdots$

Now $\mathbf{b} \in S$ but for all $i, f(i) \neq \mathbf{b}$ which is a contradiction so S must not be countable

There are a countable number of Turing machines

Consider any fixed binary representation of a TM
E.g., given

$$
\begin{aligned}
Q & =\{1,2, \ldots, k\} \\
\Sigma & =\{1,2, \ldots, m\} \\
\Gamma & =\{1,2, \ldots, n\} \\
\delta & : Q \times \Gamma \rightarrow Q \times \Gamma \times\{1,2\} \quad \text { where } 1=\mathrm{L} \text { and } 2=\mathrm{R} \\
M & =\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
\end{aligned}
$$

here's one possible representation

$$
\begin{aligned}
\langle\delta(q, a)\rangle & =0^{r} 10^{b} 10^{d} \\
\langle\delta\rangle & =\langle\delta(1,1)\rangle 11\langle\delta(1,2)\rangle 11 \cdots 11\langle\delta(k, n)\rangle \\
\langle M\rangle & =0^{k} 1110^{m} 1110^{n} 111\langle\delta\rangle 1110^{q_{\text {accept }}} 1110^{q_{\text {reject }}}
\end{aligned}
$$

where $\delta(q, a)=(r, b, d)$

Thus $\langle M\rangle$ is an element of $\{0,1\}^{*}$

There are a countable number of Turing machines continued

For simplicity, for all $x \in\{0,1\}^{*}$ such that x is not a valid encoding of a TM, define x to be a TM with $q_{0}=q_{\text {reject }}$

There are a countable number of Turing machines continued

For simplicity, for all $x \in\{0,1\}^{*}$ such that x is not a valid encoding of a TM, define x to be a TM with $q_{0}=q_{\text {reject }}$

Now every binary string is a valid encoding of a TM, i.e.,

$$
\{0,1\}^{*}=\{\langle M\rangle \mid\langle M\rangle \text { is is a } \mathrm{TM}\}
$$

There are a countable number of Turing machines continued

For simplicity, for all $x \in\{0,1\}^{*}$ such that x is not a valid encoding of a TM, define x to be a TM with $q_{0}=q_{\text {reject }}$

Now every binary string is a valid encoding of a TM, i.e.,

$$
\{0,1\}^{*}=\{\langle M\rangle \mid\langle M\rangle \text { is is a } \mathrm{TM}\}
$$

Since $\{0,1\}^{*}$ is countable, there are a countable number of Turing machines

There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable

There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable
Proof.
We proved that Σ^{*} is countably infinite; let $f: \mathbb{N} \rightarrow \Sigma^{*}$ be a bijection
For each language L over Σ, define an infinite sequence $\mathbf{b}=b_{0}, b_{1}, \ldots$ over $\{0,1\}$ where

$$
b_{i}= \begin{cases}0 & \text { if } f(i) \notin L \\ 1 & \text { if } f(i) \in L\end{cases}
$$

\mathbf{b} is called the characteristic sequence of L

There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable
Proof.
We proved that Σ^{*} is countably infinite; let $f: \mathbb{N} \rightarrow \Sigma^{*}$ be a bijection
For each language L over Σ, define an infinite sequence $\mathbf{b}=b_{0}, b_{1}, \ldots$ over $\{0,1\}$ where

$$
b_{i}= \begin{cases}0 & \text { if } f(i) \notin L \\ 1 & \text { if } f(i) \in L\end{cases}
$$

b is called the characteristic sequence of L
Each characteristic sequence defines a language and each language has a unique characteristic sequence

We proved that there are uncountably many infinite binary sequences so there are uncountably many languages over Σ

A simple corollary

There are (uncountably many) languages that are not Turing-recognizable (and thus not decidable)

An explicit undecidable language

Theorem
The language Diag $=\{\langle M\rangle \mid M$ is a $T M$ and does not accept $\langle M\rangle\}$ is undecidable

An explicit undecidable language

Theorem
The language Diag $=\{\langle M\rangle \mid M$ is a $T M$ and does not accept $\langle M\rangle\}$ is undecidable
Proof.
Assume that D is a TM that decides DiAG
Is $\langle D\rangle \in$ Diag?

An explicit undecidable language

Theorem
The language DiAG $=\{\langle M\rangle \mid M$ is a TM and does not accept $\langle M\rangle\}$ is undecidable
Proof.
Assume that D is a TM that decides DiAG
Is $\langle D\rangle \in$ Diag?

Two options

- If $\langle D\rangle \in$ Diag, then since D decides Diag, D must accept $\langle D\rangle$ but then by definition of Diag, $\langle D\rangle \notin$ Diag

An explicit undecidable language

Theorem
The language DiAG $=\{\langle M\rangle \mid M$ is a TM and does not accept $\langle M\rangle\}$ is undecidable
Proof.
Assume that D is a TM that decides DiAg
Is $\langle D\rangle \in$ Diag?

Two options

- If $\langle D\rangle \in$ Diag, then since D decides Diag, D must accept $\langle D\rangle$ but then by definition of Diag, $\langle D\rangle \notin$ Diag
- If $\langle D\rangle \notin$ Diag, then since D decides Diag, D must reject $\langle D\rangle$ but if D rejects $\langle D\rangle$, then by definition, $\langle D\rangle \in$ DIAG
Either option leads to a contradiction so Diag must not be decidable

An explicit undecidable language

Theorem
The language DIAG $=\{\langle M\rangle \mid M$ is a TM and does not accept $\langle M\rangle\}$ is undecidable
Proof.
Assume that D is a TM that decides DiAG
Is $\langle D\rangle \in$ Diag?

Two options

- If $\langle D\rangle \in$ Diag, then since D decides Diag, D must accept $\langle D\rangle$ but then by definition of Diag, $\langle D\rangle \notin$ Diag
- If $\langle D\rangle \notin$ Diag, then since D decides Diag, D must reject $\langle D\rangle$ but if D rejects $\langle D\rangle$, then by definition, $\langle D\rangle \in$ DIAG
Either option leads to a contradiction so Diag must not be decidable

Replacing "reject" with "does not accept" in the proof shows that DiAG is not only not decidable, it's not even Turing-recognizable!

Acceptance problem for TMs

Theorem
The language $A_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and $w \in L(M)\}$ is undecidable How should we approach problems like this?

Proving that a language is not decidable

To prove that a language A is undecidable,
(1) Assume that A is decidable and let R be a TM that decides A
(2) Select an undecidable language B
(3) Construct a new TM D that decides B and that uses R as a subroutine
(4) Since B is undecidable but D is a decider, this is a contradiction and our assumption in step 1 must be wrong so A is undecidable
Steps 2 and 3 are the hard steps that require some cleverness

Proof

Proof that $A_{\text {TМ }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides DiAg.

Proof

Proof that $A_{\text {TM }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides Diag.
$D=$ "On input $\langle M\rangle$,
(1) Run R on $\langle M,\langle M\rangle\rangle$
(2) If R accepts, reject; otherwise accept."

We need to show that $L(D)=$ DIAG and that D is a decider.

Proof

Proof that $A_{\text {Tм }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides Diag.
$D=$ "On input $\langle M\rangle$,
(1) Run R on $\langle M,\langle M\rangle\rangle$
(2) If R accepts, reject; otherwise accept."

We need to show that $L(D)=$ DIAG and that D is a decider.
By assumption, R is a decider so it halts on $\langle M,\langle M\rangle\rangle$ and thus D halts on all input so it is a decider

Proof

Proof that $A_{\text {TM }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides DiAg.
$D=$ "On input $\langle M\rangle$,
(1) Run R on $\langle M,\langle M\rangle\rangle$
(2) If R accepts, reject; otherwise accept."

We need to show that $L(D)=$ DIAG and that D is a decider.
By assumption, R is a decider so it halts on $\langle M,\langle M\rangle\rangle$ and thus D halts on all input so it is a decider

If $\langle M\rangle \in \operatorname{DiAG}$, then $\langle M\rangle \notin L(M)$ so R rejects and D accepts so $\langle M\rangle \in L(D)$.

Proof

Proof that $A_{\text {TM }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides DiAg.
$D=$ "On input $\langle M\rangle$,
(1) Run R on $\langle M,\langle M\rangle\rangle$
(2) If R accepts, reject; otherwise accept."

We need to show that $L(D)=$ DiAG and that D is a decider.
By assumption, R is a decider so it halts on $\langle M,\langle M\rangle\rangle$ and thus D halts on all input so it is a decider

If $\langle M\rangle \in$ Diag, then $\langle M\rangle \notin L(M)$ so R rejects and D accepts so $\langle M\rangle \in L(D)$.
If $\langle M\rangle \notin$ DiAG, then $\langle M\rangle \in L(M)$ so R accepts and D rejects so $\langle M\rangle \notin L(D)$.

Proof

Proof that $A_{\text {TM }}$ is undecidable.
Assume that $A_{\text {TM }}$ is decidable with decider R.
Let's build a TM D that decides DiAg.
$D=$ "On input $\langle M\rangle$,
(1) Run R on $\langle M,\langle M\rangle\rangle$
(2) If R accepts, reject; otherwise accept."

We need to show that $L(D)=$ DiAG and that D is a decider.
By assumption, R is a decider so it halts on $\langle M,\langle M\rangle\rangle$ and thus D halts on all input so it is a decider

If $\langle M\rangle \in$ Diag, then $\langle M\rangle \notin L(M)$ so R rejects and D accepts so $\langle M\rangle \in L(D)$.
If $\langle M\rangle \notin$ DiAG, then $\langle M\rangle \in L(M)$ so R accepts and D rejects so $\langle M\rangle \notin L(D)$.
Thus D decides Diag. This is a contradiction so $A_{\text {TM }}$ must not be decidable.

Halting problem for TMs

Theorem
The language $\operatorname{Halt}_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and M halts when run on $w\}$ is undecidable

Assume that Halt H_{tM} is decided by TM H. How do we use H to construct a decider D for $A_{\text {TM }}$?

Proof

Proof.

Assume H is a decider for Halt Tm $^{\text {and }}$ and a decider D for $A_{\text {TM }}$.
$D=$ "On input $\langle M, w\rangle$,
(1) Run H on $\langle M, w\rangle$ and if H rejects, reject.
(2) Run M on w and if M accepts, accept; otherwise reject."
D is a decider because if M loops on w, then H and D will reject. Otherwise, M will halt on w so D will halt.

If $w \in L(M)$, then M halts on w so H will accept and then D will accept.
If $w \notin L(M)$, then there are two options. If M loops on w, then H and thus D will reject. If M rejects w, then H will accept but D will reject.

Co-Turing-recognizable (CoRE)

A language L is co-Turing-recognizable (coRE) if \bar{L} is Turing-recognizable (RE)

Co-Turing-recognizable (CoRE)

A language L is co-Turing-recognizable (coRE) if \bar{L} is Turing-recognizable (RE)
Theorem
A language L is decidable $\Longleftrightarrow L$ is $R E$ and L is coRE

Co-Turing-recognizable (CoRE)

A language L is co-Turing-recognizable (coRE) if \bar{L} is Turing-recognizable (RE)
Theorem
A language L is decidable $\Longleftrightarrow L$ is $R E$ and L is coRE
To prove this, we need to prove three things
(1) If L is decidable, then L is RE
(2) If L is decidable, then L is coRE
(3) If L is RE and coRE, then L is decidable

Parts 1 and 2 together show the \Longrightarrow direction and part 3 shows the \Longleftarrow direction

Proof

Proof.
\Longrightarrow :
If L is decidable, then there is some decider M such that $L(M)=L$. Thus L is RE.

Proof

Proof.

\Longrightarrow :
If L is decidable, then there is some decider M such that $L(M)=L$. Thus L is RE.
By swapping the accept and reject states of M, we get a new decider M^{\prime} that decides \bar{L}. Thus L is coRE.

Proof

Proof.

\Longrightarrow :
If L is decidable, then there is some decider M such that $L(M)=L$. Thus L is RE.
By swapping the accept and reject states of M, we get a new decider M^{\prime} that decides L. Thus L is coRE.

If L is RE, then there is some TM M_{1} that recognizes it If L is coRE, then there is some TM M_{2} that recognizes \bar{L}

Build $M=$ "On input w,
(1) Run M_{1} and M_{2} on w simultaneously (e.g., with 2 tapes)
(2) If M_{1} accepts, accept. If M_{2} accepts, reject."

One of M_{1} or M_{2} must accept, so M will halt on any input and thus decides L.

$A_{\text {TM }}$ is RE but not coRE

Theorem
$A_{\text {TM }}$ is RE but not coRE
Proof.
Since $A_{\text {TM }}$ is not decidable, if we show that it is RE, then it can't be coRE because then it would be decidable.

We can build R to recognize $A_{\text {TM }}$ as follows.
$R=$ "On input $\langle M, w\rangle$,
(1) Run M on w.
(2) If M accepts, accept; if M rejects, reject."

$A_{\text {TM }}$ is RE but not coRE

Theorem

$A_{\text {TM }}$ is RE but not coRE
Proof.
Since $A_{\text {TM }}$ is not decidable, if we show that it is RE, then it can't be coRE because then it would be decidable.

We can build R to recognize $A_{\text {TM }}$ as follows.
$R=$ "On input $\langle M, w\rangle$,
(1) Run M on w.
(2) If M accepts, accept; if M rejects, reject."

Note that if M loops on w, then R will loop, but this is okay because R just needs to recognize $A_{\text {TM }}$, not decide it

Proof continued

There are three cases
(1) $\langle M, w\rangle \in A_{\text {TM }}$. M will accept w so R will accept.

Proof continued

There are three cases
(1) $\langle M, w\rangle \in A_{\text {TM }}$. M will accept w so R will accept.
(2 $\langle M, w\rangle \notin A_{\text {TM. }}$. M will either loop on w or reject and R will do the same.

Proof continued

There are three cases
(1) $\langle M, w\rangle \in A_{\text {TM }}$. M will accept w so R will accept.
(2 $\langle M, w\rangle \notin A_{\text {TM. }}$. M will either loop on w or reject and R will do the same.
(3) The input isn't a valid encoding of $\langle M, w\rangle$. R will reject before step 1 .

Proof continued

There are three cases
(1) $\langle M, w\rangle \in A_{\text {TM }}$. M will accept w so R will accept.
(2 $\langle M, w\rangle \notin A_{\text {TM. }}$. M will either loop on w or reject and R will do the same.
(3) The input isn't a valid encoding of $\langle M, w\rangle$. R will reject before step 1 .

Thus $L(R)=A_{\text {TM }}$ so $A_{\text {TM }}$ is RE.

Emptiness problem for TMs

Theorem
The language $E_{T M}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)=\varnothing\}$ is coRE.
To prove this, we need only give a TM that recognizes $\overline{E_{\mathrm{TM}}}$

Emptiness problem for TMs

Theorem
The language $E_{T M}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)=\varnothing\}$ is coRE.
To prove this, we need only give a TM that recognizes $\overline{E_{\mathrm{TM}}}$
Proof.
Let $R=$ "On input w,
(1) If $w \neq\langle M\rangle$ for some TM M, accept.
(2) For $n=0$ up to ∞
(3) For each string $w \in \Sigma^{*}$ of length at most n
(4) Simulate M on w for at most n steps.
(5) If M accepts w, accept."

Emptiness problem for TMs

Theorem

The language $E_{T M}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)=\varnothing\}$ is coRE.
To prove this, we need only give a TM that recognizes $\overline{E_{\mathrm{TM}}}$
Proof.
Let $R=$ "On input w,
(1) If $w \neq\langle M\rangle$ for some TM M, accept.
(2) For $n=0$ up to ∞
(3) For each string $w \in \Sigma^{*}$ of length at most n
(4) Simulate M on w for at most n steps.
(5) If M accepts w, accept."

If $L(M) \neq \varnothing$, then there is some w that M will accept so R will accept $\langle M\rangle$.

Emptiness problem for TMs

Theorem

The language $E_{T M}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)=\varnothing\}$ is coRE.
To prove this, we need only give a TM that recognizes $\overline{E_{\mathrm{TM}}}$
Proof.
Let $R=$ "On input w,
(1) If $w \neq\langle M\rangle$ for some TM M, accept.
(2) For $n=0$ up to ∞
(3) For each string $w \in \Sigma^{*}$ of length at most n
(4) Simulate M on w for at most n steps.
(5) If M accepts w, accept."

If $L(M) \neq \varnothing$, then there is some w that M will accept so R will accept $\langle M\rangle$.

If $L(M)=\varnothing$, then M will never accept so R will loop on $\langle M\rangle$.
Thus $L(R)=\overline{E_{\mathrm{TM}}}$ so E_{TM} is coRE.

Emptiness problem for TMs is undecidable

Theorem
The language $E_{T M}$ is undecidable.

Emptiness problem for TMs is undecidable

Theorem
The language $E_{T M}$ is undecidable.
Corollary
The language $E_{T M}$ is not $R E$.

Emptiness problem for TMs is undecidable

Theorem
The language $E_{T M}$ is undecidable.
Corollary
The language $E_{T M}$ is not $R E$.
Proof of the corollary.
Since E_{TM} is coRE, if it were RE , then it would be decidable, contradicting the theorem.

Proof idea for showing E_{TM} is undecidable

- Assume E decides E_{TM}
- Build a decider for $A_{\text {TM }}$ using E
- Along the way, we're going to construct an entirely new TM M_{w} and we're going to run E on $\left\langle M_{w}\right\rangle$

We'll use the idea of constructing new TMs in a bunch of different proofs

Proof

Proof.

Assume that E decides $E_{\text {Тм }}$. Build D to decide $A_{\text {Tм }}$.
$D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM $M_{w}=$ 'On any input x,
(1) Replace x on the tape with w and run M on w.
(2) If M accepts, accept; if M rejects, reject.'
(2) Run E on $\left\langle M_{w}\right\rangle$.
(3) If E accepts, reject; otherwise accept."

Note that M_{w} is never run. It is only constructed so that $\left\langle M_{w}\right\rangle$ can be given as input to decider E.

Proof

Proof.

Assume that E decides $E_{\text {Tм }}$. Build D to decide $A_{\text {Tм }}$.
$D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM $M_{w}=$ 'On any input x,
(1) Replace x on the tape with w and run M on w.
(2) If M accepts, accept; if M rejects, reject.'
(2) Run E on $\left\langle M_{w}\right\rangle$.
(3) If E accepts, reject; otherwise accept."

Note that M_{w} is never run. It is only constructed so that $\left\langle M_{w}\right\rangle$ can be given as input to decider E.

If $w \in L(M)$, then $L\left(M_{w}\right)=\Sigma^{*} \neq \varnothing$ so E rejects and D accepts.

Proof

Proof.

Assume that E decides $E_{\text {TM }}$. Build D to decide $A_{\text {TM }}$.
$D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM $M_{w}=$ 'On any input x,
(1) Replace x on the tape with w and run M on w.
(2) If M accepts, accept; if M rejects, reject.'
(2) Run E on $\left\langle M_{w}\right\rangle$.
(3) If E accepts, reject; otherwise accept."

Note that M_{w} is never run. It is only constructed so that $\left\langle M_{w}\right\rangle$ can be given as input to decider E.

If $w \in L(M)$, then $L\left(M_{w}\right)=\Sigma^{*} \neq \varnothing$ so E rejects and D accepts.
If $w \notin L(M)$, then $L\left(M_{w}\right)=\varnothing$ so E accepts and D rejects. Thus $L(D)=E_{\mathrm{TM}}$.

Proof

Proof.
Assume that E decides $E_{\text {Tм }}$. Build D to decide $A_{\text {Tм }}$.
$D=$ "On input $\langle M, w\rangle$,
(1) Construct a new TM $M_{w}=$ 'On any input x,
(1) Replace x on the tape with w and run M on w.
(2) If M accepts, accept; if M rejects, reject.'
(2) Run E on $\left\langle M_{w}\right\rangle$.
(3) If E accepts, reject; otherwise accept."

Note that M_{w} is never run. It is only constructed so that $\left\langle M_{w}\right\rangle$ can be given as input to decider E.

If $w \in L(M)$, then $L\left(M_{w}\right)=\Sigma^{*} \neq \varnothing$ so E rejects and D accepts.
If $w \notin L(M)$, then $L\left(M_{w}\right)=\varnothing$ so E accepts and D rejects. Thus $L(D)=E_{\mathrm{TM}}$.
Constructing M_{w} can't loop and E is a decider so D is a decider.

