
CS 301
Lecture 19 – Diagonalization and undecidable languages

1 / 26



Sizes of sets
Two sets X and Y have the same size if there is a bijection between them, f ∶ X → Y
What’s a bijection?

Recall f ∶ X → Y is a bijection if
1 for all a, b ∈ X, f(a) = f(b) implies a = b (injective)
2 for all y ∈ Y , there exists x ∈ X such that y = f(x) (surjective)

2 / 26



Sizes of sets
Two sets X and Y have the same size if there is a bijection between them, f ∶ X → Y
What’s a bijection?

Recall f ∶ X → Y is a bijection if
1 for all a, b ∈ X, f(a) = f(b) implies a = b (injective)
2 for all y ∈ Y , there exists x ∈ X such that y = f(x) (surjective)

2 / 26



Example
The natural numbers and the integers have the same size

f ∶ Z→ N

f(x) = {2x if x ≥ 0
−2x − 1 if x < 0

⋮

−2↦ 3
−1↦ 1

0↦ 0
1↦ 2
2↦ 4
⋮

3 / 26



Example
The natural numbers and the integers have the same size

f ∶ Z→ N

f(x) = {2x if x ≥ 0
−2x − 1 if x < 0

⋮

−2↦ 3
−1↦ 1

0↦ 0
1↦ 2
2↦ 4
⋮

3 / 26



Example
The integers and the rational numbers have the same size

The fundamental theorem of arithmetic tells us that every positive integer can be
expressed uniquely as a product of prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order (2, 3, 5, 7, etc.) and
ni ∈ N and finitely many ni are nonzero

Similarly, every positive rational number can be expressed uniquely as a product of
prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order and
ni ∈ Z and finitely many ni are nonzero

4 / 26



Example
The integers and the rational numbers have the same size

The fundamental theorem of arithmetic tells us that every positive integer can be
expressed uniquely as a product of prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order (2, 3, 5, 7, etc.) and
ni ∈ N and finitely many ni are nonzero

Similarly, every positive rational number can be expressed uniquely as a product of
prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order and
ni ∈ Z and finitely many ni are nonzero

4 / 26



Example
The integers and the rational numbers have the same size

The fundamental theorem of arithmetic tells us that every positive integer can be
expressed uniquely as a product of prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order (2, 3, 5, 7, etc.) and
ni ∈ N and finitely many ni are nonzero

Similarly, every positive rational number can be expressed uniquely as a product of
prime powers

p
n1
1 p

n2
2 p

n3
3 ⋯

where pi are the primes in order and
ni ∈ Z and finitely many ni are nonzero

4 / 26



Example continued
Let f ∶ Z→ N be our bijection from before
Define g ∶ Q+ → Z+ by

g(pn1
1 p

n2
2 p

n3
3 ⋯ ) = pf(n1)

1 p
f(n2)
2 p

f(n3)
3 ⋯

Note that we’re mapping the integer exponents to natural number exponents and the
(infinitely many) 0 exponents remain 0 because f(0) = 0

Since f is a bijection, g is a bijection (this isn’t hard to show)

Finally, let’s define our bijection h ∶ Q→ Z

h(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x) if x > 0
0 if x = 0
−g(−x) if x < 0

And just for fun, f ◦ h ∶ Q→ N is a bijection

5 / 26



Example continued
Let f ∶ Z→ N be our bijection from before
Define g ∶ Q+ → Z+ by

g(pn1
1 p

n2
2 p

n3
3 ⋯ ) = pf(n1)

1 p
f(n2)
2 p

f(n3)
3 ⋯

Note that we’re mapping the integer exponents to natural number exponents and the
(infinitely many) 0 exponents remain 0 because f(0) = 0

Since f is a bijection, g is a bijection (this isn’t hard to show)

Finally, let’s define our bijection h ∶ Q→ Z

h(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x) if x > 0
0 if x = 0
−g(−x) if x < 0

And just for fun, f ◦ h ∶ Q→ N is a bijection

5 / 26



Example continued
Let f ∶ Z→ N be our bijection from before
Define g ∶ Q+ → Z+ by

g(pn1
1 p

n2
2 p

n3
3 ⋯ ) = pf(n1)

1 p
f(n2)
2 p

f(n3)
3 ⋯

Note that we’re mapping the integer exponents to natural number exponents and the
(infinitely many) 0 exponents remain 0 because f(0) = 0

Since f is a bijection, g is a bijection (this isn’t hard to show)

Finally, let’s define our bijection h ∶ Q→ Z

h(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x) if x > 0
0 if x = 0
−g(−x) if x < 0

And just for fun, f ◦ h ∶ Q→ N is a bijection

5 / 26



Example continued
Let f ∶ Z→ N be our bijection from before
Define g ∶ Q+ → Z+ by

g(pn1
1 p

n2
2 p

n3
3 ⋯ ) = pf(n1)

1 p
f(n2)
2 p

f(n3)
3 ⋯

Note that we’re mapping the integer exponents to natural number exponents and the
(infinitely many) 0 exponents remain 0 because f(0) = 0

Since f is a bijection, g is a bijection (this isn’t hard to show)

Finally, let’s define our bijection h ∶ Q→ Z

h(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x) if x > 0
0 if x = 0
−g(−x) if x < 0

And just for fun, f ◦ h ∶ Q→ N is a bijection
5 / 26



Countable
A set X is countable if it is finite or it has the same size as N

Countably infinite sets include N, Z, and Q

Subsets of countable sets are countable (intuitively true but a hassle to prove without
some additional math or an alternative, but equivalent definition of countability)

6 / 26



Countable
A set X is countable if it is finite or it has the same size as N

Countably infinite sets include N, Z, and Q

Subsets of countable sets are countable (intuitively true but a hassle to prove without
some additional math or an alternative, but equivalent definition of countability)

6 / 26



Countable
A set X is countable if it is finite or it has the same size as N

Countably infinite sets include N, Z, and Q

Subsets of countable sets are countable (intuitively true but a hassle to prove without
some additional math or an alternative, but equivalent definition of countability)

6 / 26



Each language is a countable set
Given an alphabet Σ, the language Σ∗ is countably infinite. How do we show this?

List the strings in lexicographic order to construct the mapping
E.g., f ∶ {0, 1}∗ → N given by

ε↦ 0
0↦ 1
1↦ 2

00↦ 3
01↦ 4
10↦ 5
11↦ 6

000↦ 7
⋮

Every language L ⊆ Σ∗ is thus countable

7 / 26



Each language is a countable set
Given an alphabet Σ, the language Σ∗ is countably infinite. How do we show this?

List the strings in lexicographic order to construct the mapping
E.g., f ∶ {0, 1}∗ → N given by

ε↦ 0
0↦ 1
1↦ 2

00↦ 3
01↦ 4
10↦ 5
11↦ 6

000↦ 7
⋮

Every language L ⊆ Σ∗ is thus countable

7 / 26



Each language is a countable set
Given an alphabet Σ, the language Σ∗ is countably infinite. How do we show this?

List the strings in lexicographic order to construct the mapping
E.g., f ∶ {0, 1}∗ → N given by

ε↦ 0
0↦ 1
1↦ 2

00↦ 3
01↦ 4
10↦ 5
11↦ 6

000↦ 7
⋮

Every language L ⊆ Σ∗ is thus countable
7 / 26



Diagonalization: infinite sequences over {0, 1}
Theorem
The set S of all infinite sequences over {0, 1} is uncountable

Proof.

Assume S is countable so there’s a bijection f ∶ N→ S

We can construct a new infinite sequence b = b0, b1, . . .
that differs from every sequence in S.

In particular, bi will differ from f(i) in position i

bi = {0 if the ith element of f(i) is 1
1 if the ith element of f(i) is 0

Now b ∈ S but for all i, f(i) ≠ b which is a contradiction
so S must not be countable

n f(n)
0 0 0 1 0 1 ⋯
1 1 0 0 0 1 ⋯
2 0 1 1 0 0 ⋯
3 1 1 0 1 0 ⋯
⋮ ⋮

b = 1100⋯

8 / 26



Diagonalization: infinite sequences over {0, 1}
Theorem
The set S of all infinite sequences over {0, 1} is uncountable

Proof.

Assume S is countable so there’s a bijection f ∶ N→ S

We can construct a new infinite sequence b = b0, b1, . . .
that differs from every sequence in S.

In particular, bi will differ from f(i) in position i

bi = {0 if the ith element of f(i) is 1
1 if the ith element of f(i) is 0

Now b ∈ S but for all i, f(i) ≠ b which is a contradiction
so S must not be countable

n f(n)
0 0 0 1 0 1 ⋯
1 1 0 0 0 1 ⋯
2 0 1 1 0 0 ⋯
3 1 1 0 1 0 ⋯
⋮ ⋮

b = 1100⋯

8 / 26



Diagonalization: infinite sequences over {0, 1}
Theorem
The set S of all infinite sequences over {0, 1} is uncountable

Proof.

Assume S is countable so there’s a bijection f ∶ N→ S

We can construct a new infinite sequence b = b0, b1, . . .
that differs from every sequence in S.

In particular, bi will differ from f(i) in position i

bi = {0 if the ith element of f(i) is 1
1 if the ith element of f(i) is 0

Now b ∈ S but for all i, f(i) ≠ b which is a contradiction
so S must not be countable

n f(n)
0 0 0 1 0 1 ⋯
1 1 0 0 0 1 ⋯
2 0 1 1 0 0 ⋯
3 1 1 0 1 0 ⋯
⋮ ⋮

b = 1100⋯

8 / 26



Diagonalization: infinite sequences over {0, 1}
Theorem
The set S of all infinite sequences over {0, 1} is uncountable

Proof.

Assume S is countable so there’s a bijection f ∶ N→ S

We can construct a new infinite sequence b = b0, b1, . . .
that differs from every sequence in S.

In particular, bi will differ from f(i) in position i

bi = {0 if the ith element of f(i) is 1
1 if the ith element of f(i) is 0

Now b ∈ S but for all i, f(i) ≠ b which is a contradiction
so S must not be countable

n f(n)
0 0 0 1 0 1 ⋯
1 1 0 0 0 1 ⋯
2 0 1 1 0 0 ⋯
3 1 1 0 1 0 ⋯
⋮ ⋮

b = 1100⋯

8 / 26



There are a countable number of Turing machines
Consider any fixed binary representation of a TM

E.g., given
Q = {1, 2, . . . , k}
Σ = {1, 2, . . . ,m}
Γ = {1, 2, . . . , n}
δ ∶ Q × Γ→ Q × Γ × {1, 2} where 1 = L and 2 = R
M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

here’s one possible representation

⟨δ(q, a)⟩ = 0r10b10d where δ(q, a) = (r, b, d)
⟨δ⟩ = ⟨δ(1, 1)⟩ 11 ⟨δ(1, 2)⟩ 11 ⋯ 11 ⟨δ(k, n)⟩

⟨M⟩ = 0k 111 0m 111 0n 111 ⟨δ⟩ 111 0qaccept 111 0qreject

Thus ⟨M⟩ is an element of {0, 1}∗

9 / 26



There are a countable number of Turing machines continued
For simplicity, for all x ∈ {0, 1}∗ such that x is not a valid encoding of a TM, define x
to be a TM with q0 = qreject

Now every binary string is a valid encoding of a TM, i.e.,

{0, 1}∗ = {⟨M⟩ ∣ ⟨M⟩ is is a TM}

Since {0, 1}∗ is countable, there are a countable number of Turing machines

10 / 26



There are a countable number of Turing machines continued
For simplicity, for all x ∈ {0, 1}∗ such that x is not a valid encoding of a TM, define x
to be a TM with q0 = qreject

Now every binary string is a valid encoding of a TM, i.e.,

{0, 1}∗ = {⟨M⟩ ∣ ⟨M⟩ is is a TM}

Since {0, 1}∗ is countable, there are a countable number of Turing machines

10 / 26



There are a countable number of Turing machines continued
For simplicity, for all x ∈ {0, 1}∗ such that x is not a valid encoding of a TM, define x
to be a TM with q0 = qreject

Now every binary string is a valid encoding of a TM, i.e.,

{0, 1}∗ = {⟨M⟩ ∣ ⟨M⟩ is is a TM}

Since {0, 1}∗ is countable, there are a countable number of Turing machines

10 / 26



There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable

Proof.
We proved that Σ∗ is countably infinite; let f ∶ N→ Σ∗ be a bijection

For each language L over Σ, define an infinite sequence b = b0, b1, . . . over {0, 1}
where

bi = {0 if f(i) ∉ L
1 if f(i) ∈ L

b is called the characteristic sequence of L

Each characteristic sequence defines a language and each language has a unique
characteristic sequence

We proved that there are uncountably many infinite binary sequences so there are
uncountably many languages over Σ

11 / 26



There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable

Proof.
We proved that Σ∗ is countably infinite; let f ∶ N→ Σ∗ be a bijection

For each language L over Σ, define an infinite sequence b = b0, b1, . . . over {0, 1}
where

bi = {0 if f(i) ∉ L
1 if f(i) ∈ L

b is called the characteristic sequence of L

Each characteristic sequence defines a language and each language has a unique
characteristic sequence

We proved that there are uncountably many infinite binary sequences so there are
uncountably many languages over Σ

11 / 26



There are an uncountable number of languages

Theorem
For every alphabet Σ, the set of all languages over Σ is uncountable

Proof.
We proved that Σ∗ is countably infinite; let f ∶ N→ Σ∗ be a bijection

For each language L over Σ, define an infinite sequence b = b0, b1, . . . over {0, 1}
where

bi = {0 if f(i) ∉ L
1 if f(i) ∈ L

b is called the characteristic sequence of L

Each characteristic sequence defines a language and each language has a unique
characteristic sequence

We proved that there are uncountably many infinite binary sequences so there are
uncountably many languages over Σ 11 / 26



A simple corollary
There are (uncountably many) languages that are not Turing-recognizable (and thus
not decidable)

12 / 26



An explicit undecidable language

Theorem
The language Diag = {⟨M⟩ ∣ M is a TM and does not accept ⟨M⟩} is undecidable

Proof.
Assume that D is a TM that decides Diag
Is ⟨D⟩ ∈ Diag?

Two options

• If ⟨D⟩ ∈ Diag, then since D decides Diag, D must accept ⟨D⟩ but then by
definition of Diag, ⟨D⟩ ∉ Diag

• If ⟨D⟩ ∉ Diag, then since D decides Diag, D must reject ⟨D⟩ but if D rejects
⟨D⟩, then by definition, ⟨D⟩ ∈ Diag

Either option leads to a contradiction so Diag must not be decidable

Replacing “reject” with “does not accept” in the proof shows that Diag is not only
not decidable, it’s not even Turing-recognizable!

13 / 26



An explicit undecidable language

Theorem
The language Diag = {⟨M⟩ ∣ M is a TM and does not accept ⟨M⟩} is undecidable

Proof.
Assume that D is a TM that decides Diag
Is ⟨D⟩ ∈ Diag?

Two options

• If ⟨D⟩ ∈ Diag, then since D decides Diag, D must accept ⟨D⟩ but then by
definition of Diag, ⟨D⟩ ∉ Diag

• If ⟨D⟩ ∉ Diag, then since D decides Diag, D must reject ⟨D⟩ but if D rejects
⟨D⟩, then by definition, ⟨D⟩ ∈ Diag

Either option leads to a contradiction so Diag must not be decidable

Replacing “reject” with “does not accept” in the proof shows that Diag is not only
not decidable, it’s not even Turing-recognizable!

13 / 26



An explicit undecidable language

Theorem
The language Diag = {⟨M⟩ ∣ M is a TM and does not accept ⟨M⟩} is undecidable

Proof.
Assume that D is a TM that decides Diag
Is ⟨D⟩ ∈ Diag?

Two options
• If ⟨D⟩ ∈ Diag, then since D decides Diag, D must accept ⟨D⟩ but then by

definition of Diag, ⟨D⟩ ∉ Diag

• If ⟨D⟩ ∉ Diag, then since D decides Diag, D must reject ⟨D⟩ but if D rejects
⟨D⟩, then by definition, ⟨D⟩ ∈ Diag

Either option leads to a contradiction so Diag must not be decidable

Replacing “reject” with “does not accept” in the proof shows that Diag is not only
not decidable, it’s not even Turing-recognizable!

13 / 26



An explicit undecidable language

Theorem
The language Diag = {⟨M⟩ ∣ M is a TM and does not accept ⟨M⟩} is undecidable

Proof.
Assume that D is a TM that decides Diag
Is ⟨D⟩ ∈ Diag?

Two options
• If ⟨D⟩ ∈ Diag, then since D decides Diag, D must accept ⟨D⟩ but then by

definition of Diag, ⟨D⟩ ∉ Diag
• If ⟨D⟩ ∉ Diag, then since D decides Diag, D must reject ⟨D⟩ but if D rejects

⟨D⟩, then by definition, ⟨D⟩ ∈ Diag
Either option leads to a contradiction so Diag must not be decidable

Replacing “reject” with “does not accept” in the proof shows that Diag is not only
not decidable, it’s not even Turing-recognizable!

13 / 26



An explicit undecidable language

Theorem
The language Diag = {⟨M⟩ ∣ M is a TM and does not accept ⟨M⟩} is undecidable

Proof.
Assume that D is a TM that decides Diag
Is ⟨D⟩ ∈ Diag?

Two options
• If ⟨D⟩ ∈ Diag, then since D decides Diag, D must accept ⟨D⟩ but then by

definition of Diag, ⟨D⟩ ∉ Diag
• If ⟨D⟩ ∉ Diag, then since D decides Diag, D must reject ⟨D⟩ but if D rejects

⟨D⟩, then by definition, ⟨D⟩ ∈ Diag
Either option leads to a contradiction so Diag must not be decidable

Replacing “reject” with “does not accept” in the proof shows that Diag is not only
not decidable, it’s not even Turing-recognizable!

13 / 26



Acceptance problem for TMs

Theorem
The language ATM = {⟨M,w⟩ ∣ M is a TM and w ∈ L(M)} is undecidable
How should we approach problems like this?

14 / 26



Proving that a language is not decidable
To prove that a language A is undecidable,

1 Assume that A is decidable and let R be a TM that decides A
2 Select an undecidable language B
3 Construct a new TM D that decides B and that uses R as a subroutine
4 Since B is undecidable but D is a decider, this is a contradiction and our

assumption in step 1 must be wrong so A is undecidable
Steps 2 and 3 are the hard steps that require some cleverness

15 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.

D = “On input ⟨M⟩,
1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.

16 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.
D = “On input ⟨M⟩,

1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.

16 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.
D = “On input ⟨M⟩,

1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.

16 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.
D = “On input ⟨M⟩,

1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.

16 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.
D = “On input ⟨M⟩,

1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.

16 / 26



Proof
Proof that ATM is undecidable.
Assume that ATM is decidable with decider R.

Let’s build a TM D that decides Diag.
D = “On input ⟨M⟩,

1 Run R on ⟨M, ⟨M⟩⟩
2 If R accepts, reject; otherwise accept.”

We need to show that L(D) = Diag and that D is a decider.

By assumption, R is a decider so it halts on ⟨M, ⟨M⟩⟩ and thus D halts on all input
so it is a decider

If ⟨M⟩ ∈ Diag, then ⟨M⟩ ∉ L(M) so R rejects and D accepts so ⟨M⟩ ∈ L(D).

If ⟨M⟩ ∉ Diag, then ⟨M⟩ ∈ L(M) so R accepts and D rejects so ⟨M⟩ ∉ L(D).

Thus D decides Diag. This is a contradiction so ATM must not be decidable.
16 / 26



Halting problem for TMs

Theorem
The language HaltTM = {⟨M,w⟩ ∣ M is a TM and M halts when run on w} is
undecidable

Assume that HaltTM is decided by TM H. How do we use H to construct a decider
D for ATM?

17 / 26



Proof

Proof.
Assume H is a decider for HaltTM and build a decider D for ATM.
D = “On input ⟨M,w⟩,

1 Run H on ⟨M,w⟩ and if H rejects, reject.
2 Run M on w and if M accepts, accept; otherwise reject.”

D is a decider because if M loops on w, then H and D will reject. Otherwise, M will
halt on w so D will halt.

If w ∈ L(M), then M halts on w so H will accept and then D will accept.

If w ∉ L(M), then there are two options. If M loops on w, then H and thus D will
reject. If M rejects w, then H will accept but D will reject.

18 / 26



Co-Turing-recognizable (CoRE)
A language L is co-Turing-recognizable (coRE) if L is Turing-recognizable (RE)

Theorem
A language L is decidable ⟺ L is RE and L is coRE

To prove this, we need to prove three things
1 If L is decidable, then L is RE
2 If L is decidable, then L is coRE
3 If L is RE and coRE, then L is decidable

Parts 1 and 2 together show the ⟹ direction and part 3 shows the⟸ direction

19 / 26



Co-Turing-recognizable (CoRE)
A language L is co-Turing-recognizable (coRE) if L is Turing-recognizable (RE)

Theorem
A language L is decidable ⟺ L is RE and L is coRE

To prove this, we need to prove three things
1 If L is decidable, then L is RE
2 If L is decidable, then L is coRE
3 If L is RE and coRE, then L is decidable

Parts 1 and 2 together show the ⟹ direction and part 3 shows the⟸ direction

19 / 26



Co-Turing-recognizable (CoRE)
A language L is co-Turing-recognizable (coRE) if L is Turing-recognizable (RE)

Theorem
A language L is decidable ⟺ L is RE and L is coRE

To prove this, we need to prove three things
1 If L is decidable, then L is RE
2 If L is decidable, then L is coRE
3 If L is RE and coRE, then L is decidable

Parts 1 and 2 together show the ⟹ direction and part 3 shows the⟸ direction

19 / 26



Proof

Proof.
⟹ :
If L is decidable, then there is some decider M such that L(M) = L. Thus L is RE.

By swapping the accept and reject states of M , we get a new decider M ′ that decides
L. Thus L is coRE.

⟸:
If L is RE, then there is some TM M1 that recognizes it
If L is coRE, then there is some TM M2 that recognizes L

Build M = “On input w,
1 Run M1 and M2 on w simultaneously (e.g., with 2 tapes)
2 If M1 accepts, accept. If M2 accepts, reject.”

One of M1 or M2 must accept, so M will halt on any input and thus decides L.

20 / 26



Proof

Proof.
⟹ :
If L is decidable, then there is some decider M such that L(M) = L. Thus L is RE.

By swapping the accept and reject states of M , we get a new decider M ′ that decides
L. Thus L is coRE.

⟸:
If L is RE, then there is some TM M1 that recognizes it
If L is coRE, then there is some TM M2 that recognizes L

Build M = “On input w,
1 Run M1 and M2 on w simultaneously (e.g., with 2 tapes)
2 If M1 accepts, accept. If M2 accepts, reject.”

One of M1 or M2 must accept, so M will halt on any input and thus decides L.

20 / 26



Proof

Proof.
⟹ :
If L is decidable, then there is some decider M such that L(M) = L. Thus L is RE.

By swapping the accept and reject states of M , we get a new decider M ′ that decides
L. Thus L is coRE.

⟸:
If L is RE, then there is some TM M1 that recognizes it
If L is coRE, then there is some TM M2 that recognizes L

Build M = “On input w,
1 Run M1 and M2 on w simultaneously (e.g., with 2 tapes)
2 If M1 accepts, accept. If M2 accepts, reject.”

One of M1 or M2 must accept, so M will halt on any input and thus decides L.

20 / 26



ATM is RE but not coRE

Theorem
ATM is RE but not coRE
Proof.
Since ATM is not decidable, if we show that it is RE, then it can’t be coRE because
then it would be decidable.

We can build R to recognize ATM as follows.
R = “On input ⟨M,w⟩,

1 Run M on w.
2 If M accepts, accept; if M rejects, reject.”

Note that if M loops on w, then R will loop, but this is okay because R just needs to
recognize ATM, not decide it

21 / 26



ATM is RE but not coRE

Theorem
ATM is RE but not coRE
Proof.
Since ATM is not decidable, if we show that it is RE, then it can’t be coRE because
then it would be decidable.

We can build R to recognize ATM as follows.
R = “On input ⟨M,w⟩,

1 Run M on w.
2 If M accepts, accept; if M rejects, reject.”

Note that if M loops on w, then R will loop, but this is okay because R just needs to
recognize ATM, not decide it

21 / 26



Proof continued
There are three cases

1 ⟨M,w⟩ ∈ ATM. M will accept w so R will accept.

2 ⟨M,w⟩ ∉ ATM. M will either loop on w or reject and R will do the same.
3 The input isn’t a valid encoding of ⟨M,w⟩. R will reject before step 1.

Thus L(R) = ATM so ATM is RE.

22 / 26



Proof continued
There are three cases

1 ⟨M,w⟩ ∈ ATM. M will accept w so R will accept.
2 ⟨M,w⟩ ∉ ATM. M will either loop on w or reject and R will do the same.

3 The input isn’t a valid encoding of ⟨M,w⟩. R will reject before step 1.

Thus L(R) = ATM so ATM is RE.

22 / 26



Proof continued
There are three cases

1 ⟨M,w⟩ ∈ ATM. M will accept w so R will accept.
2 ⟨M,w⟩ ∉ ATM. M will either loop on w or reject and R will do the same.
3 The input isn’t a valid encoding of ⟨M,w⟩. R will reject before step 1.

Thus L(R) = ATM so ATM is RE.

22 / 26



Proof continued
There are three cases

1 ⟨M,w⟩ ∈ ATM. M will accept w so R will accept.
2 ⟨M,w⟩ ∉ ATM. M will either loop on w or reject and R will do the same.
3 The input isn’t a valid encoding of ⟨M,w⟩. R will reject before step 1.

Thus L(R) = ATM so ATM is RE.

22 / 26



Emptiness problem for TMs

Theorem
The language ETM = {⟨M⟩ ∣ M is a TM and L(M) = ∅} is coRE.
To prove this, we need only give a TM that recognizes ETM

Proof.
Let R = “On input w,

1 If w ≠ ⟨M⟩ for some TM M , accept.
2 For n = 0 up to ∞
3 For each string w ∈ Σ∗ of length at most n
4 Simulate M on w for at most n steps.
5 If M accepts w, accept.”

If L(M) ≠ ∅, then there is some w that M will accept so R will accept ⟨M⟩.

If L(M) = ∅, then M will never accept so R will loop on ⟨M⟩.

Thus L(R) = ETM so ETM is coRE.

23 / 26



Emptiness problem for TMs

Theorem
The language ETM = {⟨M⟩ ∣ M is a TM and L(M) = ∅} is coRE.
To prove this, we need only give a TM that recognizes ETM

Proof.
Let R = “On input w,

1 If w ≠ ⟨M⟩ for some TM M , accept.
2 For n = 0 up to ∞
3 For each string w ∈ Σ∗ of length at most n
4 Simulate M on w for at most n steps.
5 If M accepts w, accept.”

If L(M) ≠ ∅, then there is some w that M will accept so R will accept ⟨M⟩.

If L(M) = ∅, then M will never accept so R will loop on ⟨M⟩.

Thus L(R) = ETM so ETM is coRE.

23 / 26



Emptiness problem for TMs

Theorem
The language ETM = {⟨M⟩ ∣ M is a TM and L(M) = ∅} is coRE.
To prove this, we need only give a TM that recognizes ETM

Proof.
Let R = “On input w,

1 If w ≠ ⟨M⟩ for some TM M , accept.
2 For n = 0 up to ∞
3 For each string w ∈ Σ∗ of length at most n
4 Simulate M on w for at most n steps.
5 If M accepts w, accept.”

If L(M) ≠ ∅, then there is some w that M will accept so R will accept ⟨M⟩.

If L(M) = ∅, then M will never accept so R will loop on ⟨M⟩.

Thus L(R) = ETM so ETM is coRE.

23 / 26



Emptiness problem for TMs

Theorem
The language ETM = {⟨M⟩ ∣ M is a TM and L(M) = ∅} is coRE.
To prove this, we need only give a TM that recognizes ETM

Proof.
Let R = “On input w,

1 If w ≠ ⟨M⟩ for some TM M , accept.
2 For n = 0 up to ∞
3 For each string w ∈ Σ∗ of length at most n
4 Simulate M on w for at most n steps.
5 If M accepts w, accept.”

If L(M) ≠ ∅, then there is some w that M will accept so R will accept ⟨M⟩.

If L(M) = ∅, then M will never accept so R will loop on ⟨M⟩.

Thus L(R) = ETM so ETM is coRE.
23 / 26



Emptiness problem for TMs is undecidable

Theorem
The language ETM is undecidable.

Corollary
The language ETM is not RE.

Proof of the corollary.
Since ETM is coRE, if it were RE, then it would be decidable, contradicting the
theorem.

24 / 26



Emptiness problem for TMs is undecidable

Theorem
The language ETM is undecidable.
Corollary
The language ETM is not RE.

Proof of the corollary.
Since ETM is coRE, if it were RE, then it would be decidable, contradicting the
theorem.

24 / 26



Emptiness problem for TMs is undecidable

Theorem
The language ETM is undecidable.
Corollary
The language ETM is not RE.

Proof of the corollary.
Since ETM is coRE, if it were RE, then it would be decidable, contradicting the
theorem.

24 / 26



Proof idea for showing ETM is undecidable

• Assume E decides ETM

• Build a decider for ATM using E
• Along the way, we’re going to construct an entirely new TM Mw and we’re going

to run E on ⟨Mw⟩

We’ll use the idea of constructing new TMs in a bunch of different proofs

25 / 26



Proof

Proof.
Assume that E decides ETM. Build D to decide ATM.
D = “On input ⟨M,w⟩,

1 Construct a new TM Mw = ‘On any input x,
1 Replace x on the tape with w and run M on w.
2 If M accepts, accept; if M rejects, reject.’

2 Run E on ⟨Mw⟩.
3 If E accepts, reject; otherwise accept.”

Note that Mw is never run. It is only constructed so that ⟨Mw⟩ can be given as input
to decider E.

If w ∈ L(M), then L(Mw) = Σ∗ ≠ ∅ so E rejects and D accepts.

If w ∉ L(M), then L(Mw) = ∅ so E accepts and D rejects. Thus L(D) = ETM.

Constructing Mw can’t loop and E is a decider so D is a decider.

26 / 26



Proof

Proof.
Assume that E decides ETM. Build D to decide ATM.
D = “On input ⟨M,w⟩,

1 Construct a new TM Mw = ‘On any input x,
1 Replace x on the tape with w and run M on w.
2 If M accepts, accept; if M rejects, reject.’

2 Run E on ⟨Mw⟩.
3 If E accepts, reject; otherwise accept.”

Note that Mw is never run. It is only constructed so that ⟨Mw⟩ can be given as input
to decider E.

If w ∈ L(M), then L(Mw) = Σ∗ ≠ ∅ so E rejects and D accepts.

If w ∉ L(M), then L(Mw) = ∅ so E accepts and D rejects. Thus L(D) = ETM.

Constructing Mw can’t loop and E is a decider so D is a decider.

26 / 26



Proof

Proof.
Assume that E decides ETM. Build D to decide ATM.
D = “On input ⟨M,w⟩,

1 Construct a new TM Mw = ‘On any input x,
1 Replace x on the tape with w and run M on w.
2 If M accepts, accept; if M rejects, reject.’

2 Run E on ⟨Mw⟩.
3 If E accepts, reject; otherwise accept.”

Note that Mw is never run. It is only constructed so that ⟨Mw⟩ can be given as input
to decider E.

If w ∈ L(M), then L(Mw) = Σ∗ ≠ ∅ so E rejects and D accepts.

If w ∉ L(M), then L(Mw) = ∅ so E accepts and D rejects. Thus L(D) = ETM.

Constructing Mw can’t loop and E is a decider so D is a decider.

26 / 26



Proof

Proof.
Assume that E decides ETM. Build D to decide ATM.
D = “On input ⟨M,w⟩,

1 Construct a new TM Mw = ‘On any input x,
1 Replace x on the tape with w and run M on w.
2 If M accepts, accept; if M rejects, reject.’

2 Run E on ⟨Mw⟩.
3 If E accepts, reject; otherwise accept.”

Note that Mw is never run. It is only constructed so that ⟨Mw⟩ can be given as input
to decider E.

If w ∈ L(M), then L(Mw) = Σ∗ ≠ ∅ so E rejects and D accepts.

If w ∉ L(M), then L(Mw) = ∅ so E accepts and D rejects. Thus L(D) = ETM.

Constructing Mw can’t loop and E is a decider so D is a decider.

26 / 26


	Diagonalization
	Applications to languages
	Undecidability
	CoRE

