CS 301

Lecture 20 — Reductions

/17



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

17



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

Example:
A: Passing CS 301
B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 301 reduces to the
problem of getting good grades) because

e If you get good grades, then you will pass
e If you fail, then you did not get good grades (contrapositive)



Reductions

Reductions are a way of saying, “If problem B can be solved, then problem A can as
well”

Example:
A: Passing CS 301
B: Getting good grades on assignments, labs, and exams

We say that A reduces to B (i.e., the problem of passing CS 301 reduces to the
problem of getting good grades) because

e If you get good grades, then you will pass

e If you fail, then you did not get good grades (contrapositive)

But note:
e Passing CS 301 doesn't say anything about your grade

e Getting bad grades doesn’'t mean you'll fail



Reduction of languages

We say language A reduces to language B (written A < B) to mean
“If B is decidable, then A is decidable”

We use a reduction A < B in two different ways

e Proving that language A is decidable. “Good-news reduction.” If B is decidable,
then A is decidable

e Proving that language B is undecidable. “Bad-news reduction.” If A is
undecidable, then B is undecidable



“Good-news reduction”

To prove that language A is decidable, we need to build a TM D that decides it

If B is a decidable language, we can let R be a TM that decides B and use it as a
subroutine in D
D ="On input __,

@ Using the input, construct some input for R
@® Run R on that input (it's possible we need to use R multiple times)

© Make some decision to accept or reject based on the outcome of R"

Now we just need to prove that L(D) = A and that D is a decider

In this way, we have reduced A to B (i.e., A < B)



“Bad-news reduction”

To prove that language B is undecidable, we need to pick an undecidable language A
and show that A < B

We start by assuming that B is decidable

Just as with the good-news reduction, we let R be a decider for B and use it as
subroutine to construct a decider for A

D ="Oninput __,
@ Using the input, construct some input for R
® Run R on that input (it's possible we need to use R multiple times)
© Make some decision to accept or reject based on the outcome of R”

Now we just need to prove that L(D) = A and that D is a decider

Since A is undecidable and we were able to construct a decider for it, our assumption @
that B is decidable must be wrong

5/17



Good-news reductions we've already seen

AnFa = Apra

ARex < AnFa
* EQpra < Epra

Every regular language A < Apga

e Every context-free language A < Acrg



Bad-news reductions we've already seen

e DIAG < A1y
e Atm < HALTTMm
* Arv < Em



Equality of TMs

Let's prove that
EQtm = {(My, M) | My, My are TMs and L(M;) = L(M>)}

is undecidable

Let's perform a bad-news reduction from ETpy

Proof.

Assume that EQty is decided by some TM R and build a TM to decide Erpy:
D = "On input (M),



Equality of TMs

Let's prove that
EQtm = {(My, M) | My, My are TMs and L(M;) = L(M>)}

is undecidable

Let's perform a bad-news reduction from ETpy

Proof.

Assume that EQty is decided by some TM R and build a TM to decide Erpy:
D = "On input (M),

@® Construct TM M’ such that L(M') = @



Equality of TMs
Let's prove that
EQtm = {(My, My) | My, My are TMs and L(M;) = L(Ma)}

is undecidable

Let's perform a bad-news reduction from ETpy

Proof.

Assume that EQty is decided by some TM R and build a TM to decide Erpy:
D = "On input (M),

@® Construct TM M’ such that L(M') = @
® Run Ron (M, M')



Equality of TMs

Let's prove that
EQtm = {(My, My) | My, My are TMs and L(M;) = L(Ma)}
is undecidable

Let's perform a bad-news reduction from ETpy

Proof.

Assume that EQty is decided by some TM R and build a TM to decide Erpy:

D = "On input (M),
@® Construct TM M’ such that L(M') = @
® Run Ron (M, M')
© If R accepts, then accept; otherwise reject’

Since R is a decider, D is a decider
Clearly D accepts (M) iff R accepts (M, M') iff L(M) = @ so L(D) = Etu



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A < B
How do we do this? Try to prove it



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A < B
How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A < B
How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true

Hint 2: The proposition P = true is true



Reducing decidable languages to regular languages

Prove that if A is decidable and B is regular, then A < B
How do we do this? Try to prove it

Hint: You want to prove that the logical proposition “B is decidable implies A is
decidable” is true

Hint 2: The proposition P = true is true

Proof.
Since A is decidable, then the implication "B is decidable implies A is decidable” is
always true. O

More general statement: If A is decidable and B is arbitrary, then A < B. Same proof.

g



Checking if the language of a TM is regular

Theorem
REGULARTY = {{M) | M isa TM and L(M) is regular} is undecidable

To prove this, we want to perform a bad-news reduction from some undecidable
language

A useful technique for languages involving properties of languages of TMs (here the
property is that the language is regular) involves reducing from Aty

Given a TM M and a string w, we want to construct a new TM M’ such that the
language of M’ is regular if w € L(M) and is nonregular if w ¢ L(M)

10/17



Proof

Let’s construct a TM whose language is {0,1}" if w € L(M) and is {0"1" | n = 0} if
w ¢ L(M)

Proof.
Assume that REGULART) is decided by some TM R. Build D to decide Aty
D ="On input (M, w),

® Construct a new TM
M' ="“On input x,
@ If x =0"1" for some n, accept
® Otherwise, run M on w and if M accepts, accept; otherwise reject”

® Run R on (M') and if R accepts, then accept; otherwise reject”

11/17



Proof

Let’s construct a TM whose language is {0,1}" if w € L(M) and is {0"1" | n = 0} if
w ¢ L(M)

Proof.
Assume that REGULART) is decided by some TM R. Build D to decide Aty

D ="On input (M, w),

® Construct a new TM
M' ="“On input x,
@ If x =0"1" for some n, accept
® Otherwise, run M on w and if M accepts, accept; otherwise reject”

® Run R on (M') and if R accepts, then accept; otherwise reject”
We need to show that D is a decider and we need to show that L(D) = Atm

Why is D a decider?

11/17



Proof
Let’s construct a TM whose language is {0,1}" if w € L(M) and is {0"1" | n = 0} if
w ¢ L(M)

Proof.
Assume that REGULART) is decided by some TM R. Build D to decide Aty
D ="On input (M, w),

® Construct a new TM
M' ="“On input x,
@ If x =0"1" for some n, accept
® Otherwise, run M on w and if M accepts, accept; otherwise reject”

® Run R on (M') and if R accepts, then accept; otherwise reject”
We need to show that D is a decider and we need to show that L(D) = Atm

Why is D a decider? Note that we never run M'. Al D does is construct a new TM
and then run a decider on its representation

g

11/17



Proof

Let’s construct a TM whose language is {0,1}" if w € L(M) and is {0"1" | n = 0} if
w ¢ L(M)
Proof.
Assume that REGULART) is decided by some TM R. Build D to decide Aty
D ="On input (M, w),
(1) Co’nstruct anew TM
M ="On input z,
@ If x =0"1" for some n, accept
® Otherwise, run M on w and if M accepts, accept; otherwise reject”

® Run R on (M') and if R accepts, then accept; otherwise reject”
We need to show that D is a decider and we need to show that L(D) = Atm

Why is D a decider? Note that we never run M'. Al D does is construct a new TM
and then run a decider on its representation

If we L(M), then L(M') = {0,1}" which is regular so R and D accept. If @
w ¢ L(M), then L(M') is not regular so R and D reject. Thus L(D) = Atm O

11/17



ALLcgg is undecidable

Theorem
ALLcre = {{G) | G is a CFG and L(G) = X"} is undecidable.

Proof idea.
We want to reduce from Atm

Given a TM M and a string w, we want to construct a CFG G such that if
w € L(M), then G fails to generate some string and if w ¢ L(M), then L(G) = X*

The string that G should fail to generate is an accepting computation of M on w
Recall, a configuration C' of a TM is a string C' = uquv where u € T'™ is the tape to the

left of the tape head, ¢ € Q is the current state, and v € I'* is the nonblank portion of
the tape below and to the right of the tape head

g

12 /17



Proof idea continued

An accepting computation is a sequence of configurations C;,Cs, ..., C,, such that
® C = qow is the initial configuration (where w is the input)

® C; follows from C;_1 according to the TM's transition; i.e., C; is the same as
C;_1 except for the symbols right around the states

*
© C), = UQacceptv for some u,v €T

We want to create a CFG G that generates all strings except for the string
h = #Cl#C’;z#m#Cn# where C1,Cs, ..., (), is an accepting computation of M on w

For technical reasons, we need every other C; to be reversed

h=# — # « # — # < ## — #
| SRS S NS S VS S — [—
C41 C;z C13 CZS Cn

If w ¢ L(M), then no such accepting computation exists and L(G) = ©*

g

13 /17

If we L(M), then L(G) = ¥* \ {h}



Proof idea continued

Rather than construct a CFG directly, we can construct a PDA P and then convert it
toa CFG G

P should nondeterministically (i.e., using e-transitions) check that one of the three
conditions does not hold:

@ If Cy is not the initial configuration (which is hard coded into P), accept;
otherwise reject

® If (5 does not follow from C;_1, accept; otherwise reject

© If C,, is not an accepting configuration, accept; otherwise reject

Condition 1 is easy to check: this branch of the PDA just checks that the input does
not start with #qgow#

Condition 3 is likewise easy: this branch of the PDA just checks that the state that
appears before the final # is not g,ccept

g

14 /17



Proof idea continued

Condition 2 is the hard one. P will nondeterministically pick a configuration C; to
check if it follows from C;_;

P will push C;_; onto its stack (or C’Zil, depending on i being odd or even)
Then P will match C; (or CZR) by popping the stack. The symbols around the states
and the states themselves need to change according to M's transition function (this is

the slightly tricky part)

This branch rejects if C; properly follows from C;_; and accepts otherwise

15 /17



Proof

Proof.
Assume ALLcgg is decided by TM R and construct TM D to decide Atp:
D = "On input (M, w),

® Construct PDA P based on M and w

® Convert P to an equivalent CFG G

© Run R on (G) and if R rejects, accept; otherwise reject”

None of constructing the PDA, converting to a CFG, and running a decider loop so D
is a decider

If we L(M), then P rejects the string corresponding to the accepting computation so
L(G) # ©*. Therefore, R rejects and D accepts

If w ¢ L(M), then P accepts every string so L(G) = ©* and R accepts and D rejects

Since Aty is undecidable and D decides it, our assumption must be wrong and @
ALLcgg is undecidable

16 /17



EQcr¢ is undecidable

Homework: Prove that EQcgg is undecidable

Reduce from ALLcpg

17 /17



