CS 301
 Lecture 23 - Time complexity

Complexity

Computability What languages are decidable? (Equivalently, what decision problems can we solve with a computer?)

Complexity

Computability What languages are decidable? (Equivalently, what decision problems can we solve with a computer?)
Complexity How long does it take to check if a string is in a decidable language? (Equivalently, how long does it take to answer a decision question about an instance of a problem?)

Running time

The running time of a decider M is a function $t: \mathbb{N} \rightarrow \mathbb{N}$ where $t(n)$ is the maximum number of steps M takes to accept/reject any string of length n

This is the worst-case time: If M can accept/reject every string of length 5 except aabaa in 15 steps, but aabaa takes 4087 steps, then $t(5)=4087$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples
Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples
Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$
Polynomial $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}=O\left(n^{k}\right)$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples

Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$
Polynomial $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}=O\left(n^{k}\right)$
Logarithmic $a \log _{b} n=O(\log n)$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples

Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$
Polynomial $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}=O\left(n^{k}\right)$
Logarithmic $a \log _{b} n=O(\log n)$
Arithmetic $O\left(n^{2}\right)+O\left(n \log ^{2} n \cdot \log \log n\right)=O\left(n^{2}\right)$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples

Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$
Polynomial $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}=O\left(n^{k}\right)$
Logarithmic $a \log _{b} n=O(\log n)$
Arithmetic $O\left(n^{2}\right)+O\left(n \log ^{2} n \cdot \log \log n\right)=O\left(n^{2}\right)$
Polynomial bound $2^{O(\log n)}$ or $n^{O(1)}$

Big-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=O(g(n))$ to mean there exist $N, c>0$ such that for all $n \geq N, f(n) \leq c \cdot g(n)$

Examples

Constant $c=O(1)$ for any $c \in \mathbb{R}^{+}$
Polynomial $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{0}=O\left(n^{k}\right)$
Logarithmic $a \log _{b} n=O(\log n)$
Arithmetic $O\left(n^{2}\right)+O\left(n \log ^{2} n \cdot \log \log n\right)=O\left(n^{2}\right)$
Polynomial bound $2^{O(\log n)}$ or $n^{O(1)}$
Exponential bound $2^{O\left(n^{\delta}\right)}$ for $\delta>0$

Little-O review

If $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$, we say $f(n)=o(g(n))$ to mean

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Equivalently, there exist $N, c>0$ such that for all $n \geq N, f(n)<c \cdot g(n)$

Analyzing running time of deciders

It's too much work to be precise (we don't want to think about states)
For implementation-level descriptions of TMs, we can use big-O to describe the running time

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and 1 s remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and 1 s remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ? Analyze each step

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and 1 s remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?
Analyze each step
(1) Scanning across the tape takes $O(n)$

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ $M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and $1 s$ remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?

Analyze each step

(1) Scanning across the tape takes $O(n)$
(2) Checking if 0 or 1 remain takes $O(n)$

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ $M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and $1 s$ remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?
Analyze each step
(1) Scanning across the tape takes $O(n)$
(2) Checking if 0 or 1 remain takes $O(n)$
(3) Crossing off one 0 and one 1 takes $O(n)$

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ $M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and 1 s remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?
Analyze each step
(1) Scanning across the tape takes $O(n)$
(2) Checking if 0 or 1 remain takes $O(n)$
(3) Crossing off one 0 and one 1 takes $O(n)$
(4) Performing the final check takes $O(n)$

Example

Consider the TM M_{1} which decides $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ $M_{1}=$ "On input w,
(1) Scan across the tape and reject if a 0 is found to the right of a 1
(2) Repeat if both $0 s$ and 1 s remain on the tape
(3) Scan across the tape, crossing off a single 0 and a single 1
(4) If any 0 or 1 remain uncrossed off, then reject; otherwise accept"

How long does M_{1} take to accept/reject a string of length n ?
Analyze each step
(1) Scanning across the tape takes $O(n)$
(2) Checking if 0 or 1 remain takes $O(n)$
(3) Crossing off one 0 and one 1 takes $O(n)$
(4) Performing the final check takes $O(n)$

Each time through the loop takes $O(n)+O(n)=O(n)$ time and the loop happens at most $n / 2$ times

The total running time is $O(n)+(n / 2) O(n)+O(n)=O\left(n^{2}\right)$

Time complexity class

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. The time complexity class $\operatorname{TIME}(t(n))$ is the set of languages that are decidable by an $O(t(n))$-time TM

Example

$A=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$ because we gave a TM M_{1} that decides A in $O\left(n^{2}\right)$ time

Time complexity class

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. The time complexity class $\operatorname{TIME}(t(n))$ is the set of languages that are decidable by an $O(t(n))$-time TM

Example

$A=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$ because we gave a TM M_{1} that decides A in $O\left(n^{2}\right)$ time

Sipser gives a more clever TM M_{2} that decides A in time $O(n \log n)$ by crossing off every other 0 and every other 1 each time through the loop

Thus, $A \in \operatorname{TIME}(n \log n)$ (this is the best we can do on a single-tape TM)

What about a 2-TM?

With a 2-TM, we can decide A in linear $(O(n))$ time $M_{3}=$ "On input w,
(1) Scan right and reject if any 0 follows a 1
(2) Return the beginning of the first tape
(3) Scan right to the first 1 , copying the 0 s to the second tape
(4) Scan right on the first tape and left on the second, crossing off a 0 for each 1 , if there aren't enough 0s, then reject
(5) If more 0s remain, then reject; otherwise accept"

Steps 1 and 2 each take $O(n)$; together, steps 3,4 , and 5 constitute a single pass over the input so $O(n)$

Total running time: $O(n)+O(n)+O(n)=O(n)$

Time complexity of a language depends on our model of computation M_{1} decides A in time $O\left(n^{2}\right)$
M_{2} decides A in time $O(n \log n)$
M_{3} decides A in time $O(n)$ but uses a $2-\mathrm{TM}$

Relationships between models of computation

Recall from computability that the following are equivalent

- Single tape TM
- k-tape TM
- Nondeterministic TM

The situation for complexity is different

Simulating a k-TM

Theorem

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$where $t(n) \geq n$. Every $t(n)$-time k-TM has an equivalent $O\left(t^{2}(n)\right)$-time single-tape TM

Proof

Recall that we simulated a k-TM M with a single-tape TM S by writing the k tapes separated with \# and dots representing the heads; e.g.,

Proof continued

If M runs in time $t(n)$, then it uses at most $t(n)$ tape cells on each tape so S will use at most $k \cdot t(n)+k+1=O(t(n))$ cells

Simulating one step of M required scanning across the tape twice and performing up to k shifts [why?]

Thus, each step of M takes $O(t(n))$ time for S to simulate
Since there are $t(n)$ steps and each takes $O(t(n))$ time, the running time for S is $t(n) \cdot O(t(n))=O\left(t^{2}(n)\right)$

Simulating a k-TM with a $2-\mathrm{TM}$

Just for your own edification:
Theorem
Every k tape TM that runs in time $t(n)$ for $t(n) \geq n$ can be simulated by a 2-tape TM in time $O(t(n) \log t(n))$

Running time for NTMs

Let N be a nondeterministic TM that is a decider. The running time of N is a function $t: \mathbb{N} \rightarrow \mathbb{N}$ where $t(n)$ is the maximum number of steps that N uses on any branch of computation on any input of length n

Deterministic

Nondeterministic

UIC

Simulating an NTM

Theorem
Every $t(n)$-time NTM where $t(n) \geq n$ has an equivalent deterministic $2^{O(t(n))}$-time TM

Simulating an NTM

Theorem
Every $t(n)$-time NTM where $t(n) \geq n$ has an equivalent deterministic $2^{O(t(n))}$-time TM

Proof idea

Our simulation of an NTM used a 3-TM and it performed a breadth first search of the configuration tree

The height of the tree is $t(n)$ and if the maximum number of choices at each step is b, then the tree has $O\left(b^{t(n)}\right)$ total nodes

Simulating an NTM

Theorem
Every $t(n)$-time NTM where $t(n) \geq n$ has an equivalent deterministic $2^{O(t(n))}$-time TM

Proof idea

Our simulation of an NTM used a 3-TM and it performed a breadth first search of the configuration tree

The height of the tree is $t(n)$ and if the maximum number of choices at each step is b, then the tree has $O\left(b^{t(n)}\right)$ total nodes

For each node, we simulate from the root to the node which takes $O(t(n))$ time
The running time of the 3-TM is $O(t(n)) \cdot O\left(b^{t(n)}\right)=2^{O(t(n))}$

Simulating an NTM

Theorem
Every $t(n)$-time NTM where $t(n) \geq n$ has an equivalent deterministic $2^{O(t(n))}$-time TM

Proof idea

Our simulation of an NTM used a 3-TM and it performed a breadth first search of the configuration tree

The height of the tree is $t(n)$ and if the maximum number of choices at each step is b, then the tree has $O\left(b^{t(n)}\right)$ total nodes

For each node, we simulate from the root to the node which takes $O(t(n))$ time
The running time of the 3-TM is $O(t(n)) \cdot O\left(b^{t(n)}\right)=2^{O(t(n))}$
We can simulate the 3-TM with a TM in time $\left(2^{O(t(n))}\right)^{2}=2^{O(t(n))}$

Polynomial time

Note that the time to decide a language with a TM takes only a polynomial (a square) of the time it takes to decide with a k-TM

All reasonable deterministic models of computation are polynomially equivalent; that is, you can simulate any of them with any other with only a polynomial slow down

As we saw, nondeterminism seems fundamentally different
From this point, we're not going to be concerned with polynomial differences in time; e.g., the difference between $O(n \log n)$ and $O\left(n^{105}\right)$ won't matter: Both are $n^{O(1)}$

The class P

P is the class of languages that are decidable in polynomial time on a deterministic TM,

$$
\mathrm{P}=\bigcup_{k=0}^{\infty} \operatorname{TIME}\left(n^{k}\right)
$$

P is a useful class because membership in P doesn't depend on (reasonable) deterministic models of computation

A problem that can be solved in polynomial time on a computer can be solved in polynomial time on a TM (even though the polynomial for one may be much larger than for the other)

The class EXPTIME

EXPTIME is the class of languages that are decidable in exponential time on a deterministic TM

$$
\text { EXPTIME }=\bigcup_{k=0}^{\infty} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Note that EXPTIME is the same for any polynomially-equivalent models of computation

If language A takes time $2^{O\left(n^{k}\right)}$ under one model, then it'll take $\left(2^{O\left(n^{k}\right)}\right)^{c}=2^{c \cdot O\left(n^{k}\right)}=2^{O\left(n^{k}\right)}$ time under a polynomially-equivalent model

Tractable and intractable problems

We say that problems that can be solved in polynomial time are tractable: We can solve them with computers

We say that problems that take exponential time (or longer) are intractable: We can only solve very small instances of them with computers

P = tractable
EXPTIME = intractable

Lots of interesting problems are in P!

Graphs

Recall: A graph G is a pair $G=(V, E)$ where V is the set of vertices and $E \subseteq V \times V$ is the set of edges

- For an undirected graph edge $(a, b)=(b, a)$ (sometimes we write $\{a, b\}$)
- For a directed graph edge (a, b) is different from edge (b, a) (unless $a=b$)

In an algorithms class (e.g., CS 401), we would care about run times of algorithms in terms of $m=|V|$ and $n=|E|$

But since $n \leq m^{2}$ and we don't care about polynomial differences, we'll talk about graph algorithm run times in terms of m alone

That is, we're going to phrase problems involving graphs as languages (of course) and we're going to ask questions like is the language in P ?

PATH $\in P$

Define PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph and there's a path from s to $t\}$. Then PATH $\in \mathrm{P}$

PATH $\in P$

Define PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph and there's a path from s to $t\}$. Then PATH $\in \mathrm{P}$

We can give a TM M to decide PATH $M=$ "On input $\langle G, s, t\rangle$ where $G=(V, E)$ and $s, t \in V$,
(1) Mark s
(2) Repeat until no new nodes are marked,
(3) For each $(x, y) \in E$, if x is marked and y is not, mark y
(4) If t is marked, then accept; otherwise reject"

PATH $\in P$

Define PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph and there's a path from s to $t\}$. Then PATH $\in \mathrm{P}$

We can give a TM M to decide PATH
$M=$ "On input $\langle G, s, t\rangle$ where $G=(V, E)$ and $s, t \in V$,
(1) Mark s
(2) Repeat until no new nodes are marked,
(3) For each $(x, y) \in E$, if x is marked and y is not, mark y
(4) If t is marked, then accept; otherwise reject"

The algorithm marks all nodes reachable from node s and accepts iff t is marked so $L(M)=\mathrm{PATH}$.

PATH $\in P$

Define PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph and there's a path from s to $t\}$. Then PATH $\in \mathrm{P}$

We can give a TM M to decide PATH
$M=$ "On input $\langle G, s, t\rangle$ where $G=(V, E)$ and $s, t \in V$,
(1) Mark s
(2) Repeat until no new nodes are marked,
(3) For each $(x, y) \in E$, if x is marked and y is not, mark y
(4) If t is marked, then accept; otherwise reject"

The algorithm marks all nodes reachable from node s and accepts iff t is marked so $L(M)=$ PATH .

The loop in step 2 happens at most $m=|V|$ times and there are at most $n=|E| \leq m^{2}$ edges to check each time. Therefore, the running time is polynomial in m and thus polynomial in the size of the input

What about on a computer?

Implementing this algorithm on a computer would take $O(m n)$ time since it is looping over each of the n edges at most m times

There's a more clever algorithm that takes time $O(m+n)$ but since both of these are polynomials, we don't need to be any more clever

Boolean formulae

A boolean formula is an expression containing boolean variables and operations (\wedge, \vee, and \neg)

Example: $\phi=(\neg x \wedge y) \vee(x \wedge \neg z)$
As a shorthand, we write \bar{x} for $\neg x$ so $\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})$

Boolean formulae

A boolean formula is an expression containing boolean variables and operations (\wedge, \vee, and \neg)

Example: $\phi=(\neg x \wedge y) \vee(x \wedge \neg z)$
As a shorthand, we write \bar{x} for $\neg x$ so $\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})$
A boolean formula is in conjunctive normal form (CNF) if it consists of conjunctions (ANDs) of disjunctions (ORs)

- $(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{d} \vee e \vee f)$
- $(a \vee b) \wedge c$
- $a \vee b$ [Why is this in CNF?]
- a

Terminology

Literal A variable or its negation: x, \bar{y}, z are all literals

Terminology

Literal A variable or its negation: x, \bar{y}, z are all literals
Clause A disjunction (OR) of literals: $x \vee y \vee \bar{z}$

Terminology

Literal A variable or its negation: x, \bar{y}, z are all literals
Clause A disjunction (OR) of literals: $x \vee y \vee \bar{z}$
k-CNF A formula in CNF where each clause contains exactly k literals Example 2-CNF formula

$$
\phi=\underbrace{(a \vee b)}_{\text {clause }} \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})
$$

Terminology

Literal A variable or its negation: x, \bar{y}, z are all literals
Clause A disjunction (OR) of literals: $x \vee y \vee \bar{z}$
k-CNF A formula in CNF where each clause contains exactly k literals Example 2-CNF formula

$$
\phi=\underbrace{(a \vee b)}_{\text {clause }} \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})
$$

Satisfiable A formula is satisfiable is there is an assignment of truth values (T / F or $1 / 0)$ to the variables that makes the whole formula true ϕ is satisfiable by setting $a=T, b=F$, and $c=T$

Terminology

Literal A variable or its negation: x, \bar{y}, z are all literals
Clause A disjunction (OR) of literals: $x \vee y \vee \bar{z}$
k-CNF A formula in CNF where each clause contains exactly k literals Example 2-CNF formula

$$
\phi=\underbrace{(a \vee b)}_{\text {clause }} \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})
$$

Satisfiable A formula is satisfiable is there is an assignment of truth values (T / F or $1 / 0)$ to the variables that makes the whole formula true ϕ is satisfiable by setting $a=T, b=F$, and $c=T$
Unsatisfiable A formula is unsatisfiable if every assignment of truth values to the variables makes the whole formula false $\psi=(a \vee \bar{b}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee \bar{b}) \wedge(a \vee b)$ is unsatisfiable because every assignment makes one of the four clauses false

2-SAT

Define 2-SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable boolean formula in 2-CNF $\}$

2-SAT

Define 2-SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable boolean formula in 2-CNF $\}$
2-SAT is decidable
$M_{1}=$ "On input $\langle\phi\rangle$,
(1) For each assignment of truth values to variables in ϕ,
(2) If the assignment satisfies ϕ, then accept
(3) Otherwise, reject"

Clearly, M_{1} decides 2-SAT. What is its run time?

2-SAT

Define 2-SAT $=\{\langle\phi\rangle \mid \phi$ is a satisfiable boolean formula in 2-CNF $\}$
2-SAT is decidable
$M_{1}=$ "On input $\langle\phi\rangle$,
(1) For each assignment of truth values to variables in ϕ,
(2) If the assignment satisfies ϕ, then accept
(3) Otherwise, reject"

Clearly, M_{1} decides 2-SAT. What is its run time?
If there are n variables, then there are 2^{n} combinations of assignments to try so 2 -SAT \in EXPTIME. Can we do better?

Implications

Recall that the logical implication $a \rightarrow b$ is equivalent to $\bar{a} \vee b$
Thus $x \vee y$ is equivalent to $\bar{x} \rightarrow y$ and $\bar{y} \rightarrow x$

Implications

Recall that the logical implication $a \rightarrow b$ is equivalent to $\bar{a} \vee b$
Thus $x \vee y$ is equivalent to $\bar{x} \rightarrow y$ and $\bar{y} \rightarrow x$
From a formula in 2-CNF, we can produce a set of implications which are all simultaneously satisfiable if the formula is

$$
\begin{array}{ccc}
\phi=(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c}) & \psi=(a \vee \bar{b}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee \bar{b}) \wedge(a \vee b) \\
\bar{a} \rightarrow b & \bar{b} \rightarrow a & \bar{a} \rightarrow \bar{b} \\
a \rightarrow c & \bar{c} \rightarrow \bar{a} & a \rightarrow b \\
b \rightarrow \bar{c} & c \rightarrow \bar{b} & a \rightarrow \bar{b} \\
& & \bar{b} \rightarrow \bar{a} \\
& & b \rightarrow \bar{a} \\
& & \bar{b} \rightarrow a
\end{array}
$$

Recall that implications are transitive: If $x \rightarrow y$ and $y \rightarrow z$, then $x \rightarrow z$

Satisfiability of implications

If there is a chain of implications $x \rightarrow a \rightarrow \cdots \rightarrow \bar{x}$, then $x=F$
If there is a chain of implications $\bar{x} \rightarrow b \rightarrow \cdots \rightarrow x$, then $x=T$
If both chains of implications exist, then the set of implications is not satisfiable (because a literal cannot be both true and false)

Thus, if we start with a formula in 2-CNF and write out the set of equivalent implications and find $x \rightarrow \bar{x}$ and $\bar{x} \rightarrow x$ for some variable x, then the formula is not satisfiable

Satisfiability of implications

If there is a chain of implications $x \rightarrow a \rightarrow \cdots \rightarrow \bar{x}$, then $x=F$
If there is a chain of implications $\bar{x} \rightarrow b \rightarrow \cdots \rightarrow x$, then $x=T$
If both chains of implications exist, then the set of implications is not satisfiable (because a literal cannot be both true and false)

Thus, if we start with a formula in 2-CNF and write out the set of equivalent implications and find $x \rightarrow \bar{x}$ and $\bar{x} \rightarrow x$ for some variable x, then the formula is not satisfiable

In fact, this condition is necessary, not merely sufficient for a formula to be unsatisfiable (harder to prove (Krom 1967))

That is, a formula is unsatisfiable iff $x \rightarrow \bar{x}$ and $\bar{x} \rightarrow x$ for some variable x

Turning a formula into a directed graph

If the formula has m clauses and n variables, then we can construct the formula's implication graph which has $2 n$ vertices and $2 m$ edges

Let the vertices of the graph be each variable and its negation (i.e., x and \bar{x} are vertices for each variable x)

Let (x, y) be a directed edge in the graph for each implication $x \rightarrow y$
There's a path from x to y in the graph iff there is a chain of implications $x \rightarrow a \rightarrow \cdots \rightarrow y$
$\phi=(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c}):$

$$
\psi=(a \vee \bar{b}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee \bar{b}) \wedge(a \vee b):
$$

$$
a \rightarrow b \rightarrow \bar{a} \quad \bar{a} \rightarrow \bar{b} \rightarrow a
$$

$2-\mathrm{SAT} \in \mathrm{P}$

Now we can use our polynomial-time decider for PATH to decide 2-SAT in polynomial time

Let R decide PATH and construct D to decide 2-SAT
$D=$ "On input $\langle\phi\rangle$,
(1) Construct the implication graph G for ϕ
(2) For each variable x in ϕ,
(3) Run R on $\langle G, x, \bar{x}\rangle$ and $\langle G, \bar{x}, x\rangle$; if R accepts both, then reject
(4) Otherwise accept"

$2-S A T \in P$

Now we can use our polynomial-time decider for PATH to decide 2-SAT in polynomial time

Let R decide PATH and construct D to decide 2-SAT
$D=$ "On input $\langle\phi\rangle$,
(1) Construct the implication graph G for ϕ
(2) For each variable x in ϕ,
(3) Run R on $\langle G, x, \bar{x}\rangle$ and $\langle G, \bar{x}, x\rangle$; if R accepts both, then reject
(4) Otherwise accept"
$\langle\phi\rangle \notin 2$-SAT iff ϕ is unsatisfiable iff there is some variable x such that there is a path from x to \bar{x} and a path from \bar{x} to x in the implication graph iff D rejects

Since PATH $\in \mathrm{P}, R$ runs in time polynomial in its input $\langle G, s, t\rangle$ which has size polynomial in the size of $\langle\phi\rangle$

Constructing G takes polynomial time in the size of $\langle\phi\rangle$ and R is run a polynomial number of times (twice per variable) so D runs in polynomial time. Therefore, $2-S A T \in P$

Why is constructing the graph polynomial time?
Remember, if ϕ has m clauses and n variables, then G has $2 n$ vertices and $2 m$ edges
For example, we could use the adjacency matrix representation which would be a $2 n \times 2 n$ matrix

Recap

PATH $\in \mathrm{P}$ because we were able to give a polynomial time decider for it
By naïvely enumerating all 2^{n} possible truth values, we showed 2-SAT \in EXPTIME
By being more clever and constructing a graph corresponding to formulae in 2-CNF, we showed 2 -SAT $\in \mathrm{P}$

Can we always be more clever?

Sadly, no. P \ddagger EXPTIME

That is, there are problems (equivalently languages) that require exponential time to decide

Here's one: $A=\left\{\left\langle M, w, 1^{k}\right\rangle \mid M\right.$ is a TM that accepts w in at most 2^{k} steps $\}$ $A \in$ EXPTIME: Simulate running M on w for 2^{k} steps takes exponential time $A \notin \mathrm{P}$: Harder to prove, but true

