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Lecture 24 – Nondeterministic polynomial time
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The classes TIME(t(n)) and P
Let t ∶ N→ R+ be a function. The time complexity class TIME(t(n)) is the set of
languages that are decidable by an O(t(n))-time TM

P is the class of languages that are decidable in polynomial time on a TM,

P =

∞

⋃
k=0

TIME(nk)
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The classes NTIME(t(n)) and NP
Let t ∶ N→ R+ be a function. The nondeterministic time complexity class
NTIME(t(n)) is the set of languages that are decidable by an O(t(n))-time NTM

NP is the class of languages that are decidable in polynomial time on an NTM,

NP =

∞

⋃
k=0

NTIME(nk)

This is not the most convenient definition of NP; we’ll get a better one shortly
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Example: Boolean satisfiability
SAT = {⟨φ⟩ ∣ φ is a satisfiable boolean formula}

Previously, we showed that 2-SAT ∈ P and this relied on the formulae in 2-SAT being
in 2-CNF; there’s no such restriction here

E.g., φ = (x ∧ (y ∨ z)) ∧ (x ∧ y ∧ z)
Is φ satisfiable?

Yes. x = T , y = F , z = F satisfies it. Therefore, ⟨φ⟩ ∈ SAT
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Example: SAT ∈ NP
We need to construct a NTM that decides SAT in polynomial time
N = “On input ⟨φ⟩,

1 For each variable in φ, nondeterministically assign it a truth value
2 Using the assignments, evaluate φ. If φ = T , then accept; otherwise reject”

The essential feature of a NTM is the ability to nondeterministically make a choice
(choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and
rejects w if every branch rejects (this is a decider, remember)

If φ is satisfiable, then some branch of N ’s computation will select a satisfying
assignment so N will accept

If φ is not satisfiable, then every branch will reject so N will reject; thus L(N) = SAT

Both steps take polynomial time so SAT ∈ NP
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P ⊆ NP

Theorem
For every language A ∈ P, A ∈ NP. I.e., P ⊆ NP
How would we prove this?

Proof.
If A ∈ P, then it is decided by a deterministic TM M in polynomial time.

We can construct an NTM N that has identical behavior to M ; i.e., N doesn’t use
nondeterminism.

Thus L(N) = L(M) and N runs in polynomial time
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NP ⊆ EXPTIME

Theorem
For every language A ∈ NP, A ∈ EXPTIME = ⋃∞

k=0 TIME(2n
k

). I.e.,
NP ⊆ EXPTIME
How would we prove this?

Proof.
If A is decided by an NTM N in nondeterministic polynomial time O(nk), then we can
construct a TM M that simulates N in (deterministic) time 2O(nk).
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P ⊆ NP ⊆ EXPTIME
It’s true, although we haven’t proved it, that P ≠ EXPTIME. I.e., there are problems
that we can solve in exponential time that we know can’t be solved in polynomial time

Thus at least one of the subsets in P ⊆ NP ⊆ EXPTIME must be strict

Put another way, one of the following statements is true
• P = NP and NP ≠ EXPTIME;
• P ≠ NP and NP ≠ EXPTIME; or
• P ≠ NP and NP = EXPTIME

Which one is true?

Fun fact: We don’t know which is true!
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Partitioning a multiset

Partition = {⟨S⟩ ∣ S is a multiset of positive integers and
∃A ⊆ S s.t.

∑
x∈A x =

∑
x∈S∖A x}

Consider the multiset S = {1, 1, 2, 3, 5}. Is ⟨S⟩ ∈ Partition?

Yes, A = {1, 2, 3}, S ∖A = {1, 5} both sum to 6
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Show Partition ∈ NP
We need to construct an NTM that decides Partition in polynomial time
N = “On input ⟨S⟩,

1 Set a← 0, b← 0
2 For each x ∈ S
3 Nondeterministically pick c ∈ {0, 1}
4 If c = 0, then set a← a + x; otherwise set b← b + x

5 If a = b, then accept; otherwise reject”

The elements where c = 0 are in A and a is their sum; the elements where c = 1 are in
S ∖A and b is their sum

If ⟨S⟩ ∈ Partition, then some branch of the computation will pick the correct A
such that a = b and N accepts
If ⟨S⟩ ∉ Partition, then every branch will select an A such that a ≠ b so N rejects

Each step takes polynomial time and the loop happens ∣S∣ times so Partition ∈ NP
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Verifiers
A verifier for a language A is a deterministic TM V such that

A = {w ∣ V accepts ⟨w, c⟩ for some string c}

A polynomial time verifier is a verifier that has running time polynomial in the length
of w but not c

c is called a certificate (or proof or witness)

The idea behind verifiers is given an instance of a problem w and some extra
information about the solution of the problem c, V verifies w ∈ A

Verifiers need to be designed such that if w ∉ A, then no certificate exists such that V
accepts ⟨w, c⟩
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Polynomial time verifier for SAT
An instance of SAT is (the representation of) a boolean formula φ
A certificate is an assignment of variables to truth values

E.g., φ = (x ∧ (y ∨ z)) ∧ (x ∧ y ∧ z)
One possible certificate c is the assignment x = T , y = F , and z = F

We can construct a polynomial time verifier for SAT:
V = “On input ⟨φ, c⟩,

1 Using the assignment c, evaluate φ
2 If φ = T , then accept; otherwise reject”

If ⟨φ⟩ ∈ SAT, then φ is satisfiable so there is some assignment c that satisfies φ and V
will accept ⟨φ, c⟩

If ⟨φ⟩ ∉ SAT, then φ is unsatisfiable so no matter what c is, it can’t satisfy φ, so V
will reject ⟨φ, c⟩

V runs in time polynomial in ∣⟨φ⟩∣
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Polytime verifier for Partition
What should the certificate for an instance of Partition be?

The certificate is subset A such that
∑

x∈A
x =

∑
x∈S∖A

x

V = “On input ⟨S,A⟩,
1 If A /⊆ S, then reject
2 Compute a =

∑
x∈A x and b =

∑
x∈S∖A x

3 If a = b, then accept; otherwise reject”

If ⟨S⟩ ∈ Partition, then there is some A ⊆ S that makes the equality hold so V will
accept ⟨S,A⟩

If ⟨S⟩ ∉ Partition, then no A ⊆ S will make the equality hold so V will reject ⟨S,A⟩

Computing the sums takes polynomial time so V is a polytime verifier for Partition
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A better characterization of NP

Theorem
Language A is in NP iff there is a polytime verifier for A.

This gives a better characterization of NP: NP is the class of languages for which a
polynomial time verifier exists

P The class of languages that can be decided in polynomial time
NP The class of languages that can be verified in polynomial time
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Proof
We need to prove to things

1 ⟹ If A ∈ NP, then there is a polytime verifier V for A
2 ⟸ If there is a polytime verifier V for A, then A ∈ NP

Start with ⟹ : If A is in NP, then it is decided by an NTM N in polynomial time

For each w ∈ A, N makes a sequence of nondeterministic choices when it is run on w.
(This sequence is the address tape in our NTM simulator)

Let c be the sequence of choices N makes for one branch of computation
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Proof continued
V = “On input ⟨w, c⟩,

1 Simulate N on w using each symbol of c as the choice to take in each step, if
there aren’t enough symbols in c, then reject

2 If N accepts, then accept; otherwise reject”

Since N takes polytime on each branch, V takes polytime on the branch selected by c

If w ∈ A, then some sequence of choices c will cause N to accept w and thus V will
accept ⟨w, c⟩

If w ∉ A, then no matter what sequence of choices c that N makes, N will reject and
thus V will reject ⟨w, c⟩ for all c
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Proof continued
Now for ⟸ : If V is a polynomial time verifier for A, then we need to construct a
polynomial time TM N such that L(N) = A.

V runs in time t(n) = a ⋅ nk for some a, k ∈ N (because it’s a polytime verifier)

N = “On input w,
1 Nondeterministically select a string c of length at most a ⋅ nk

2 Run V on ⟨w, c⟩. If V accepts, then accept; otherwise reject”

Picking a string of polynomial length takes polynomial time; running a polytime verifier
takes polynomial time so N runs in nondeterministic polynomial time

If w ∈ A, then there is some certificate c of length at most a ⋅ nk [why?] such that V
accepts ⟨w, c⟩. Thus some branch of N ’s computation will pick the correct c such that
V accepts so N will accept

If w ∉ A, then V rejects ⟨w, c⟩ for every c so N will reject. Therefore, L(N) = A
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Example: Hamiltonian path
A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HamPath = {⟨G, s, t⟩ ∣ G has a Hamiltonian path from s to t} ∈ NP

What should we pick for the certificate?

The certificate should be the Hamiltonian
path c = ⟨n1, n2, . . . , nk⟩ itself!

V = “On input ⟨G, s, t, ⟨n1, n2, . . . , nk⟩⟩ where G = (V,E),
1 If V ≠ {n1, n2, . . . , nk}, s ≠ n1, or t ≠ nk, then reject
2 For i = 1 up to k − 1,
3 If (ni, ni+1) ∉ E, then reject
4 Otherwise, accept”

As usual, we need to show that V accepts only when the certificate is a valid
Hamiltonian path and rejects everything else

We also need to show that V runs in time polynomial in ⟨G, s, t⟩

18 / 20



Example: Hamiltonian path
A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HamPath = {⟨G, s, t⟩ ∣ G has a Hamiltonian path from s to t} ∈ NP

What should we pick for the certificate? The certificate should be the Hamiltonian
path c = ⟨n1, n2, . . . , nk⟩ itself!

V = “On input ⟨G, s, t, ⟨n1, n2, . . . , nk⟩⟩ where G = (V,E),
1 If V ≠ {n1, n2, . . . , nk}, s ≠ n1, or t ≠ nk, then reject
2 For i = 1 up to k − 1,
3 If (ni, ni+1) ∉ E, then reject
4 Otherwise, accept”

As usual, we need to show that V accepts only when the certificate is a valid
Hamiltonian path and rejects everything else

We also need to show that V runs in time polynomial in ⟨G, s, t⟩
18 / 20



Vertex cover
A vertex cover for an undirected graph G = (V,E) is a set C ⊆ V such that for all
(a, b) ∈ E, either a ∈ C or b ∈ C

E.g., G:
1 2 3

45
C = {1, 4} is a vertex cover of G of size 2

VertexCover = {⟨G, k⟩ ∣ G has a vertex cover of size k} ∈ NP

What is the certificate?
The certificate is a vertex cover of size k. The verifier checks that the certificate is a
valid vertex cover and has size k
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Clique
A clique in an undirected graph G = (V,E) is a set C ⊆ V such that every pair of
(distinct) vertices in C is connected by an edge

E.g., G:
1 2 3

45
C = {1, 2, 4} is a clique of size 3

Clique = {⟨G, k⟩ ∣ G has a clique of size k} ∈ NP

What is the certificate?
The certificate is a clique of size k. The verifier checks that the certificate is a valid
clique of size k
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