CS 301

Lecture 24 — Nondeterministic polynomial time

/20

The classes TIME(¢(n)) and P

Let t : N —» R" be a function. The time complexity class TIME(¢(n)) is the set of
languages that are decidable by an O(¢(n))-time TM

P is the class of languages that are decidable in polynomial time on a TM,

o0
P = | | TIME(n")
k=0

20

The classes NTIME(#(n)) and NP

Let t : N - R" be a function. The nondeterministic time complexity class
NTIME(#(n)) is the set of languages that are decidable by an O(¢(n))-time NTM

NP is the class of languages that are decidable in polynomial time on an NTM,

o0
NP = | | NTIME(n")
k=0

This is not the most convenient definition of NP; we’ll get a better one shortly

Example: Boolean satisfiability
SAT = {(¢) | ¢ is a satisfiable boolean formula}

Previously, we showed that 2-SAT € P and this relied on the formulae in 2-SAT being
in 2-CNF; there's no such restriction here

Eg,o=(xxA(yVvZ)A(zAyAZ)
Is ¢ satisfiable?

20

Example: Boolean satisfiability
SAT = {(¢) | ¢ is a satisfiable boolean formula}

Previously, we showed that 2-SAT € P and this relied on the formulae in 2-SAT being
in 2-CNF; there's no such restriction here

Eg,o=(xxA(yVvZ)A(zAyAZ)
Is ¢ satisfiable?

Yes. x =T, y = F, z = I satisfies it. Therefore, (¢) € SAT

20

Example: SAT € NP
We need to construct a NTM that decides SAT in polynomial time
N ="“On input (¢),
@ For each variable in ¢, nondeterministically assign it a truth value

® Using the assignments, evaluate ¢. If ¢ = T, then accept; otherwise reject”

Example: SAT € NP

We need to construct a NTM that decides SAT in polynomial time
N ="“On input (¢),
@ For each variable in ¢, nondeterministically assign it a truth value

® Using the assignments, evaluate ¢. If ¢ = T, then accept; otherwise reject”

The essential feature of a NTM is the ability to nondeterministically make a choice
(choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and
rejects w if every branch rejects (this is a decider, remember)

Example: SAT € NP

We need to construct a NTM that decides SAT in polynomial time
N ="“On input (¢),

@ For each variable in ¢, nondeterministically assign it a truth value

® Using the assignments, evaluate ¢. If ¢ = T, then accept; otherwise reject”

The essential feature of a NTM is the ability to nondeterministically make a choice
(choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and
rejects w if every branch rejects (this is a decider, remember)

If ¢ is satisfiable, then some branch of N's computation will select a satisfying
assignment so N will accept

If ¢ is not satisfiable, then every branch will reject so N will reject; thus L(IN) = SAT

Both steps take polynomial time so SAT € NP

o

P € NP

Theorem
For every language A € P, A € NP. le., P S NP

How would we prove this?

P € NP

Theorem
For every language A € P, A€ NP. le., P € NP

How would we prove this?

Proof.
If A € P, then it is decided by a deterministic TM M in polynomial time.

We can construct an NTM N that has identical behavior to M; i.e., N doesn’'t use
nondeterminism.

Thus L(N) = L(M) and N runs in polynomial time

NP ¢ EXPTIME

Theorem

k
For every language A € NP, A € EXPTIME = U;:):o TIME(2"). le,
NP ¢ EXPTIME

How would we prove this?

NP ¢ EXPTIME

Theorem X
For every language A € NP, A € EXPTIME = U;:):o TIME(2"). le,
NP ¢ EXPTIME

How would we prove this?

Proof.
If Ais decided by an NTM N in nondeterministic polynomial time O(nk) then we can

k
construct a TM M that simulates N in (deterministic) time 20t O

P ¢ NP ¢ EXPTIME

It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict

P ¢ NP ¢ EXPTIME

It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict

Put another way, one of the following statements is true
e P = NP and NP # EXPTIME;
e P+ NP and NP # EXPTIME; or
e P+ NP and NP = EXPTIME

Which one is true?

P ¢ NP ¢ EXPTIME

It's true, although we haven't proved it, that P # EXPTIME. l.e., there are problems
that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in P € NP € EXPTIME must be strict

Put another way, one of the following statements is true
e P = NP and NP # EXPTIME;
e P+ NP and NP # EXPTIME; or
e P+ NP and NP = EXPTIME

Which one is true?

Fun fact: We don't know which is true!

Partitioning a multiset

PARTITION = {(S) | S is a multiset of positive integers and
JAC S st Ypent = Lpesaat)

Consider the multiset S = {1,1,2,3,5}. Is (S) € PARTITION?

Partitioning a multiset

PARTITION = {(S) | S is a multiset of positive integers and
JAC S st Ypent = Lpesaat)

Consider the multiset S = {1,1,2,3,5}. Is (S) € PARTITION?

Yes, A ={1,2,3}, S\ A={1,5} both sum to 6

Show PARTITION € NP
We need to construct an NTM that decides PARTITION in polynomial time
N ="“On input (S),
@®Seta—0,b«0
@® Foreachx € S
©® Nondeterministically pick ¢ € {0,1}
® Ifc=0, thenseta« a+ x; otherwiseset b < b+

@ If a = b, then accept; otherwise reject”

The elements where ¢ = 0 are in A and a is their sum; the elements where ¢ = 1 are in
S\ A and b is their sum

10/20

Show PARTITION € NP
We need to construct an NTM that decides PARTITION in polynomial time
N ="“On input (S),
@®Seta—0,b«0
@® Foreachx € S
©® Nondeterministically pick ¢ € {0,1}
® Ifc=0, thenseta« a+ x; otherwiseset b < b+

@ If a = b, then accept; otherwise reject”

The elements where ¢ = 0 are in A and a is their sum; the elements where ¢ = 1 are in
S\ A and b is their sum

If (S) € PARTITION, then some branch of the computation will pick the correct A
such that @ = b and N accepts
If (S) ¢ PARTITION, then every branch will select an A such that a # b so N rejects

Each step takes polynomial time and the loop happens | S| times so PARTITION € NP @

10/20

Verifiers

A verifier for a language A is a deterministic TM V such that
A ={w | V accepts {(w, c) for some string c}

A polynomial time verifier is a verifier that has running time polynomial in the length
of w but not ¢

c is called a certificate (or proof or witness)

11/20

Verifiers

A verifier for a language A is a deterministic TM V such that
A ={w | V accepts {(w, c) for some string c}

A polynomial time verifier is a verifier that has running time polynomial in the length
of w but not ¢

c is called a certificate (or proof or witness)

The idea behind verifiers is given an instance of a problem w and some extra
information about the solution of the problem ¢, V' verifies w € A

Verifiers need to be designed such that if w ¢ A, then no certificate exists such that V'
accepts (w, ¢)

g

11/20

Polynomial time verifier for SAT

An instance of SAT is (the representation of) a boolean formula ¢
A certificate is an assignment of variables to truth values

Eg,o=(xA(yvz)A(zAyAZ)
One possible certificate c is the assignment xt =T, y = F, and z = F

12/20

Polynomial time verifier for SAT

An instance of SAT is (the representation of) a boolean formula ¢
A certificate is an assignment of variables to truth values

Eg,o=(xA(yvz)A(zAyAZ)
One possible certificate c is the assignment xt =T, y = F, and z = F

We can construct a polynomial time verifier for SAT:
V = "On input (¢, c),

@ Using the assignment ¢, evaluate ¢

® If ¢ =T, then accept; otherwise reject”

12/20

Polynomial time verifier for SAT

An instance of SAT is (the representation of) a boolean formula ¢
A certificate is an assignment of variables to truth values

Eg,o=(xA(yvz)A(zAyAZ)
One possible certificate c is the assignment xt =T, y = F, and z = F

We can construct a polynomial time verifier for SAT:
V = "On input (¢, c),

@ Using the assignment ¢, evaluate ¢

® If ¢ =T, then accept; otherwise reject”

If (¢) € SAT, then ¢ is satisfiable so there is some assignment ¢ that satisfies ¢ and V'
will accept (¢, ¢)

If (¢) ¢ SAT, then ¢ is unsatisfiable so no matter what c is, it can't satisfy ¢, so V

will reject (¢, c) @

V runs in time polynomial in [{(¢)]
12 /20

Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?

13/20

Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?

The certificate is subset A such that > z=) =z
€A TESNA

V = "On input (S, A),
@ If A¢ S, then reject

® Computea=) c zxandb=> o4
© If a = b, then accept; otherwise reject”

13/20

Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be?

The certificate is subset A such that > z=) =z
€A TESNA

V = "On input (S, A),
@ If A¢ S, then reject

® Computea=) c zxandb=> o4
© If a = b, then accept; otherwise reject”

If (S) € PARTITION, then there is some A € S that makes the equality hold so V" will
accept (S, A)

If (S) ¢ PARTITION, then no A € S will make the equality hold so V" will reject (S, A)

Computing the sums takes polynomial time so V' is a polytime verifier for PARTITION

g

13/20

A better characterization of NP

Theorem
Language A is in NP iff there is a polytime verifier for A.

This gives a better characterization of NP: NP is the class of languages for which a
polynomial time verifier exists

P The class of languages that can be decided in polynomial time

NP The class of languages that can be verified in polynomial time

14 /20

Proof

We need to prove to things
@ — If A e NP, then there is a polytime verifier V for A
® << If there is a polytime verifier V for A, then A € NP
Start with = : If Ais in NP, then it is decided by an NTM N in polynomial time

For each w € A, N makes a sequence of nondeterministic choices when it is run on w.
(This sequence is the address tape in our NTM simulator)

Let ¢ be the sequence of choices N makes for one branch of computation

15/20

Proof continued

V ="On input (w,c),

@ Simulate N on w using each symbol of ¢ as the choice to take in each step, if
there aren't enough symbols in ¢, then reject

® If N accepts, then accept; otherwise reject”

Since N takes polytime on each branch, V takes polytime on the branch selected by ¢

If w € A, then some sequence of choices ¢ will cause N to accept w and thus V will
accept (w, ¢)

If w ¢ A, then no matter what sequence of choices ¢ that N makes, N will reject and
thus V will reject (w, ¢) for all ¢

Proof continued
Now for <= : If V is a polynomial time verifier for A, then we need to construct a
polynomial time TM N such that L(N) = A.

V runs in time t(n) = a - n" for some a,k € N (because it's a polytime verifier)

N ="On input w,
@ Nondeterministically select a string ¢ of length at most a - n”

® Run V on (w,c). If V accepts, then accept; otherwise reject”

Picking a string of polynomial length takes polynomial time; running a polytime verifier
takes polynomial time so IV runs in nondeterministic polynomial time

If w € A, then there is some certificate ¢ of length at most a - n" [why?] such that V'
accepts (w, ¢). Thus some branch of N's computation will pick the correct ¢ such that

V' accepts so N will accept

If w ¢ A, then V rejects (w, c) for every ¢ so N will reject. Therefore, L(N)=A [

Example: Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HAMPATH = {(G, s,t) | G has a Hamiltonian path from s to t} € NP

What should we pick for the certificate?

18 /20

Example: Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path that goes through every
vertex exactly once

HAMPATH = {(G, s,t) | G has a Hamiltonian path from s to t} € NP

What should we pick for the certificate? The certificate should be the Hamiltonian
path ¢ = (ny,na,...,ny) itself!

V ="“On input (G, s,t,{(ny,na,...,n;)) where G = (V, E),
O IfV #{nyny,...,n}t s# nq, ort#ny, then reject
@®Fori=1uptok—1,
©® |If(n;,n;e1) ¢ FE, then reject
® Otherwise, accept”

As usual, we need to show that V' accepts only when the certificate is a valid
Hamiltonian path and rejects everything else @

We also need to show that V' runs in time polynomial in (G, s, t)
18 /20

Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set C € V such that for all
(a,b) € E, eithera€ Corbe C

E.g., G:
1—2

\\\/

C= {1, 4} is a vertex cover of G of size 2

19/20

Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set C' € V such that for all
(a,b) € E, eithera€ Corbe C

E.g., G:
1—2

\\\/

C= {1, 4} is a vertex cover of G of size 2
VERTEXCOVER = {(G, k) | G has a vertex cover of size k} € NP

What is the certificate?

19/20

Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set C' € V such that for all
(a,b) € E, eithera€ Corbe C

E.g., G:
1—2

\\\/

C= {1, 4} is a vertex cover of G of size 2
VERTEXCOVER = {(G, k) | G has a vertex cover of size k} € NP
What is the certificate?

The certificate is a vertex cover of size k. The verifier checks that the certificate is a
valid vertex cover and has size k

g

19/20

Clique

A clique in an undirected graph G = (V, E) is a set C' € V such that every pair of
(distinct) vertices in C' is connected by an edge

E.g., G:
1—2

\\\/

C= {1, 2,4} is a clique of size 3

20/20

Clique

A clique in an undirected graph G = (V, E) is a set C' € V such that every pair of
(distinct) vertices in C' is connected by an edge

E.g., G:
1—2

\\\/

C= {1, 2,4} is a clique of size 3
CLIQUE = {(G, k) | G has a clique of size k} € NP

What is the certificate?

20/20

Clique

A clique in an undirected graph G = (V, E) is a set C' € V such that every pair of
(distinct) vertices in C' is connected by an edge

E.g., G:
1—2

\\\/

C= {1, 2,4} is a clique of size 3
CLIQUE = {(G, k) | G has a clique of size k} € NP
What is the certificate?

The certificate is a clique of size k. The verifier checks that the certificate is a valid
clique of size k

g

20/20

