CS 301

Lecture 24 - Nondeterministic polynomial time

The classes TIME(t(n)) and P

Let $t : \mathbb{N} \to \mathbb{R}^+$ be a function. The time complexity class TIME(t(n)) is the set of languages that are decidable by an O(t(n))-time TM

 ${\rm P}$ is the class of languages that are decidable in polynomial time on a TM,

$$\mathbf{P} = \bigcup_{k=0}^{\infty} \mathrm{TIME}(n^k)$$

The classes NTIME(t(n)) and NP

Let $t : \mathbb{N} \to \mathbb{R}^+$ be a function. The nondeterministic time complexity class $\operatorname{NTIME}(t(n))$ is the set of languages that are decidable by an O(t(n))-time NTM

 NP is the class of languages that are decidable in polynomial time on an NTM,

$$NP = \bigcup_{k=0}^{\infty} NTIME(n^k)$$

This is not the most convenient definition of NP ; we'll get a better one shortly

Example: Boolean satisfiability

SAT = { $\langle \phi \rangle \mid \phi$ is a satisfiable boolean formula}

Previously, we showed that $2\text{-SAT} \in P$ and this relied on the formulae in 2-SAT being in 2-CNF; there's no such restriction here

E.g., $\phi = (x \land (y \lor \overline{z})) \land \overline{(x \land y \land \overline{z})}$ Is ϕ satisfiable?

Example: Boolean satisfiability

SAT = { $\langle \phi \rangle$ | ϕ is a satisfiable boolean formula}

Previously, we showed that $2\text{-SAT} \in P$ and this relied on the formulae in 2-SAT being in 2-CNF; there's no such restriction here

E.g., $\phi = (x \land (y \lor \overline{z})) \land \overline{(x \land y \land \overline{z})}$ Is ϕ satisfiable?

Yes. x = T, y = F, z = F satisfies it. Therefore, $\langle \phi \rangle \in SAT$

Example: SAT \in NP

We need to construct a NTM that decides SAT in polynomial time N = "On input $\langle \phi \rangle$,

- **()** For each variable in ϕ , nondeterministically assign it a truth value
- **2** Using the assignments, evaluate ϕ . If $\phi = T$, then *accept*; otherwise *reject*"

Example: SAT \in NP

We need to construct a NTM that decides SAT in polynomial time N = "On input $\langle \phi \rangle \text{,}$

- **()** For each variable in ϕ , nondeterministically assign it a truth value
- **2** Using the assignments, evaluate ϕ . If $\phi = T$, then *accept*; otherwise *reject*"

The essential feature of a NTM is the ability to nondeterministically make a choice (choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and rejects w if every branch rejects (this is a decider, remember)

Example: SAT \in NP

We need to construct a NTM that decides SAT in polynomial time N = "On input $\langle \phi \rangle \text{,}$

- () For each variable in ϕ , nondeterministically assign it a truth value
- **2** Using the assignments, evaluate ϕ . If $\phi = T$, then *accept*; otherwise *reject*"

The essential feature of a NTM is the ability to nondeterministically make a choice (choose a path through its tree of computation)

Remember that an NTM accepts w if some branch of its computation accepts and rejects w if every branch rejects (this is a decider, remember)

If ϕ is satisfiable, then some branch of N 's computation will select a satisfying assignment so N will accept

If ϕ is not satisfiable, then every branch will reject so N will reject; thus L(N) = SAT

Both steps take polynomial time so $SAT \in NP$

UIC

$\mathbf{P}\subseteq\mathbf{NP}$

Theorem For every language $A \in P$, $A \in NP$. I.e., $P \subseteq NP$ How would we prove this?

$\mathbf{P}\subseteq\mathbf{NP}$

Theorem For every language $A \in P$, $A \in NP$. *I.e.*, $P \subseteq NP$

How would we prove this?

Proof.

If $A \in \mathbf{P}$, then it is decided by a deterministic TM M in polynomial time.

We can construct an NTM N that has identical behavior to M; i.e., N doesn't use nondeterminism.

Thus L(N) = L(M) and N runs in polynomial time

$\mathrm{NP} \subseteq \mathrm{EXPTIME}$

Theorem

For every language $A \in NP$, $A \in EXPTIME = \bigcup_{k=0}^{\infty} TIME(2^{n^k})$. I.e., $NP \subseteq EXPTIME$

How would we prove this?

$\mathrm{NP} \subseteq \mathrm{EXPTIME}$

Theorem

For every language $A \in NP$, $A \in EXPTIME = \bigcup_{k=0}^{\infty} TIME(2^{n^k})$. I.e., $NP \subseteq EXPTIME$

How would we prove this?

Proof.

If A is decided by an NTM N in nondeterministic polynomial time $O(n^k)$, then we can construct a TM M that simulates N in (deterministic) time $2^{O(n^k)}$.

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXPTIME}$

It's true, although we haven't proved it, that $P \neq EXPTIME$. I.e., there are problems that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in $\mathrm{P}\subseteq\mathrm{NP}\subseteq\mathrm{EXPTIME}$ must be strict

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXPTIME}$

It's true, although we haven't proved it, that $P \neq EXPTIME$. I.e., there are problems that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in $\mathrm{P}\subseteq\mathrm{NP}\subseteq\mathrm{EXPTIME}$ must be strict

Put another way, one of the following statements is true

- P = NP and $NP \neq EXPTIME$;
- $P \neq NP$ and $NP \neq EXPTIME$; or
- $P \neq NP$ and NP = EXPTIME

Which one is true?

$\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXPTIME}$

It's true, although we haven't proved it, that $P \neq EXPTIME$. I.e., there are problems that we can solve in exponential time that we know can't be solved in polynomial time

Thus at least one of the subsets in $\mathrm{P}\subseteq\mathrm{NP}\subseteq\mathrm{EXPTIME}$ must be strict

Put another way, one of the following statements is true

- P = NP and $NP \neq EXPTIME$;
- $P \neq NP$ and $NP \neq EXPTIME$; or
- $P \neq NP$ and NP = EXPTIME

Which one is true?

Fun fact: We don't know which is true!

Partitioning a multiset

 $\begin{array}{l} \text{PARTITION} = \left\{ \langle S \rangle \mid S \text{ is a multiset of positive integers and} \\ \exists A \subseteq S \text{ s.t. } \sum_{x \in A} x = \sum_{x \in S \smallsetminus A} x \right\} \end{array}$

Consider the multiset $S = \{1, 1, 2, 3, 5\}$. Is $\langle S \rangle \in \text{PARTITION}$?

Partitioning a multiset

 $\begin{array}{l} \text{PARTITION} = \left\{ \langle S \rangle \mid S \text{ is a multiset of positive integers and} \\ \exists A \subseteq S \text{ s.t. } \sum_{x \in A} x = \sum_{x \in S \smallsetminus A} x \right\} \end{array}$

Consider the multiset $S = \{1, 1, 2, 3, 5\}$. Is $\langle S \rangle \in \text{PARTITION}$?

Yes, A = {1,2,3}, $S\smallsetminus A$ = {1,5} both sum to 6

Show PARTITION \in NP

We need to construct an NTM that decides PARTITION in polynomial time N = "On input $\langle S \rangle$,

- **1** Set $a \leftarrow 0$, $b \leftarrow 0$
- **2** For each $x \in S$
- **3** Nondeterministically pick $c \in \{0, 1\}$
- 4 If c = 0, then set $a \leftarrow a + x$; otherwise set $b \leftarrow b + x$
- **5** If *a* = *b*, then *accept*; otherwise *reject*"

The elements where c = 0 are in A and a is their sum; the elements where c = 1 are in $S \setminus A$ and b is their sum

Show PARTITION \in NP

We need to construct an NTM that decides PARTITION in polynomial time N = "On input $\langle S \rangle$,

- **1** Set $a \leftarrow 0, b \leftarrow 0$
- **2** For each $x \in S$
- **3** Nondeterministically pick $c \in \{0, 1\}$
- 4 If c = 0, then set $a \leftarrow a + x$; otherwise set $b \leftarrow b + x$
- **5** If *a* = *b*, then *accept*; otherwise *reject*"

The elements where c = 0 are in A and a is their sum; the elements where c = 1 are in $S \smallsetminus A$ and b is their sum

If $\langle S \rangle \in \text{PARTITION}$, then some branch of the computation will pick the correct A such that a = b and N accepts If $\langle S \rangle \notin \text{PARTITION}$, then every branch will select an A such that $a \neq b$ so N rejects

Each step takes polynomial time and the loop happens |S| times so PARTITION \in NP

UIC

Verifiers

A verifier for a language A is a deterministic TM V such that

 $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}$

A polynomial time verifier is a verifier that has running time polynomial in the length of \boldsymbol{w} but not \boldsymbol{c}

c is called a certificate (or proof or witness)

Verifiers

A verifier for a language A is a deterministic TM V such that

 $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}$

A polynomial time verifier is a verifier that has running time polynomial in the length of \boldsymbol{w} but not \boldsymbol{c}

c is called a certificate (or proof or witness)

The idea behind verifiers is given an instance of a problem w and some extra information about the solution of the problem c, V verifies $w \in A$

Verifiers need to be designed such that if $w \notin A$, then *no* certificate exists such that V accepts $\langle w, c \rangle$

Polynomial time verifier for SAT

An instance of $\rm SAT$ is (the representation of) a boolean formula ϕ A certificate is an assignment of variables to truth values

E.g., $\phi = (x \land (y \lor \overline{z})) \land \overline{(x \land y \land \overline{z})}$

One possible certificate c is the assignment x = T, y = F, and z = F

Polynomial time verifier for SAT

An instance of $\rm SAT$ is (the representation of) a boolean formula ϕ A certificate is an assignment of variables to truth values

E.g., $\phi = (x \land (y \lor \overline{z})) \land \overline{(x \land y \land \overline{z})}$

One possible certificate c is the assignment x = T, y = F, and z = F

We can construct a polynomial time verifier for SAT: $V = "On input \langle \phi, c \rangle$,

- 1 Using the assignment c, evaluate ϕ
- **2** If $\phi = T$, then *accept*; otherwise *reject*"

Polynomial time verifier for SAT

An instance of $\rm SAT$ is (the representation of) a boolean formula ϕ A certificate is an assignment of variables to truth values

E.g., $\phi = (x \land (y \lor \overline{z})) \land \overline{(x \land y \land \overline{z})}$

One possible certificate c is the assignment x = T, y = F, and z = F

We can construct a polynomial time verifier for SAT:

- V ="On input $\langle \phi, c \rangle$,
 - (1) Using the assignment $c_{\rm r}$ evaluate ϕ
 - **2** If $\phi = T$, then *accept*; otherwise *reject*"

If $\langle \phi \rangle \in SAT$, then ϕ is satisfiable so there is some assignment c that satisfies ϕ and V will accept $\langle \phi, c \rangle$

If $\langle \phi \rangle \notin SAT$, then ϕ is unsatisfiable so no matter what c is, it can't satisfy ϕ , so V will reject $\langle \phi, c \rangle$

V runs in time polynomial in $|\langle \phi \rangle|$

Polytime verifier for $\operatorname{Partition}$

What should the certificate for an instance of PARTITION be?

Polytime verifier for PARTITION

What should the certificate for an instance of PARTITION be? The certificate is subset A such that $\sum_{x \in A} x = \sum_{x \in S \smallsetminus A} x$

V ="On input $\langle S, A \rangle$,

1 If $A \notin S$, then *reject*

- **2** Compute $a = \sum_{x \in A} x$ and $b = \sum_{x \in S \smallsetminus A} x$
- **3** If *a* = *b*, then *accept*; otherwise *reject*"

Polytime verifier for **PARTITION**

What should the certificate for an instance of PARTITION be? The certificate is subset A such that $\sum_{x \in A} x = \sum_{x \in S \smallsetminus A} x$

V ="On input $\langle S, A \rangle$,

1 If $A \notin S$, then *reject*

- **2** Compute $a = \sum_{x \in A} x$ and $b = \sum_{x \in S \smallsetminus A} x$
- 3 If *a* = *b*, then *accept*; otherwise *reject*"

If $\langle S \rangle \in \text{PARTITION}$, then there is some $A \subseteq S$ that makes the equality hold so V will accept $\langle S, A \rangle$

If $\langle S \rangle \notin \text{PARTITION}$, then no $A \subseteq S$ will make the equality hold so V will reject $\langle S, A \rangle$

Computing the sums takes polynomial time so V is a polytime verifier for PARTITION

A better characterization of NP

Theorem

Language A is in NP iff there is a polytime verifier for A.

This gives a better characterization of $\rm NP:\ NP$ is the class of languages for which a polynomial time verifier exists

P The class of languages that can be decided in polynomial time NP The class of languages that can be verified in polynomial time

Proof

We need to prove to things

- $\textbf{1} \implies \text{If } A \in \text{NP, then there is a polytime verifier } V \text{ for } A$
- **2** \leftarrow If there is a polytime verifier V for A, then $A \in NP$

Start with \implies : If A is in NP, then it is decided by an NTM N in polynomial time

For each $w \in A$, N makes a sequence of nondeterministic choices when it is run on w. (This sequence is the address tape in our NTM simulator)

Let \boldsymbol{c} be the sequence of choices N makes for one branch of computation

Proof continued

- V ="On input $\langle w, c \rangle$,
 - **()** Simulate N on w using each symbol of c as the choice to take in each step, if there aren't enough symbols in c, then *reject*
 - **2** If N accepts, then *accept*; otherwise *reject*"

Since N takes polytime on each branch, V takes polytime on the branch selected by \boldsymbol{c}

If $w\in A,$ then some sequence of choices c will cause N to accept w and thus V will accept $\langle w,c\rangle$

If $w\notin A$, then no matter what sequence of choices c that N makes, N will reject and thus V will reject $\langle w,c\rangle$ for all c

Proof continued

Now for \Leftarrow : If V is a polynomial time verifier for A, then we need to construct a polynomial time TM N such that L(N) = A.

V runs in time $t(n) = a \cdot n^k$ for some $a, k \in \mathbb{N}$ (because it's a polytime verifier)

- N = "On input w,
 - **()** Nondeterministically select a string c of length at most $a \cdot n^k$
 - **2** Run V on $\langle w, c \rangle$. If V accepts, then *accept*; otherwise *reject*"

Picking a string of polynomial length takes polynomial time; running a polytime verifier takes polynomial time so N runs in nondeterministic polynomial time

If $w \in A$, then there is some certificate c of length at most $a \cdot n^k$ [why?] such that V accepts $\langle w, c \rangle$. Thus some branch of N's computation will pick the correct c such that V accepts so N will accept

If $w \notin A$, then V rejects $\langle w, c \rangle$ for every c so N will reject. Therefore, L(N) = A

Example: Hamiltonian path

A Hamiltonian path in a directed graph ${\cal G}$ is a directed path that goes through every vertex exactly once

HAMPATH = { $\langle G, s, t \rangle \mid G$ has a Hamiltonian path from s to t} $\in NP$

What should we pick for the certificate?

Example: Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path that goes through every vertex exactly once

HAMPATH = { $\langle G, s, t \rangle \mid G$ has a Hamiltonian path from s to t} $\in \mathbb{NP}$

What should we pick for the certificate? The certificate should be the Hamiltonian path $c = \langle n_1, n_2, \dots, n_k \rangle$ itself!

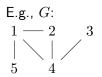
$$V = "On input \langle G, s, t, \langle n_1, n_2, \dots, n_k \rangle \rangle \text{ where } G = (V, E),$$
1 If $V \neq \{n_1, n_2, \dots, n_k\}$, $s \neq n_1$, or $t \neq n_k$, then reject
2 For $i = 1$ up to $k - 1$,
3 If $(n_i, n_{i+1}) \notin E$, then reject
4 Otherwise, accept"

As usual, we need to show that V accepts only when the certificate is a valid Hamiltonian path and rejects everything else

We also need to show that V runs in time polynomial in $\langle G,s,t\rangle$

Vertex cover

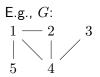
A vertex cover for an undirected graph G = (V, E) is a set $C \subseteq V$ such that for all $(a, b) \in E$, either $a \in C$ or $b \in C$



C = $\{1,4\}$ is a vertex cover of G of size 2

Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set $C \subseteq V$ such that for all $(a, b) \in E$, either $a \in C$ or $b \in C$



C = $\{1,4\}$ is a vertex cover of G of size 2

VERTEXCOVER = { $\langle G, k \rangle \mid G$ has a vertex cover of size k} $\in NP$

What is the certificate?

Vertex cover

A vertex cover for an undirected graph G = (V, E) is a set $C \subseteq V$ such that for all $(a, b) \in E$, either $a \in C$ or $b \in C$

C = $\{1,4\}$ is a vertex cover of G of size 2

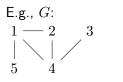
VERTEXCOVER = { $\langle G, k \rangle \mid G$ has a vertex cover of size k} $\in NP$

What is the certificate?

The certificate is a vertex cover of size k. The verifier checks that the certificate is a valid vertex cover and has size k

Clique

A clique in an undirected graph G = (V, E) is a set $C \subseteq V$ such that every pair of (distinct) vertices in C is connected by an edge



C = $\{1,2,4\}$ is a clique of size 3

Clique

A clique in an undirected graph G = (V, E) is a set $C \subseteq V$ such that every pair of (distinct) vertices in C is connected by an edge

E.g.,
$$G$$
:
 $1 - 2 - 3$
 $1 - 2 - 3$
 $5 - 4$

C = $\{1,2,4\}$ is a clique of size 3

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \} \in NP$

What is the certificate?

Clique

A clique in an undirected graph G = (V, E) is a set $C \subseteq V$ such that every pair of (distinct) vertices in C is connected by an edge

E.g.,
$$G$$
:
 $1 - 2 - 3$
 $1 - 2 - 3$
 $5 - 4$

C = $\{1,2,4\}$ is a clique of size 3

 $CLIQUE = \{ \langle G, k \rangle \ | \ G \text{ has a clique of size } k \} \in \mathrm{NP}$

What is the certificate?

The certificate is a clique of size k. The verifier checks that the certificate is a valid clique of size k

