CS 301

Lecture $25 - \mathrm{NP}$ -complete

Polynomial-time reducibility

A function $f: \Sigma^* \to \Sigma^*$ is a polynomial-time computable function if some poly-time TM M exists that halts with just f(w) on its tape when run on w

I.e., f is a computable function as defined before and its TM runs in time poly(|w|)

Polynomial-time reducibility

A function $f: \Sigma^* \to \Sigma^*$ is a polynomial-time computable function if some poly-time TM M exists that halts with just f(w) on its tape when run on w

I.e., f is a computable function as defined before and its TM runs in time poly(|w|)

A is polynomial-time reducible to B (written $A \leq_p B$) if a polynomial-time computable function f exists such that $w \in A \iff f(w) \in B$

I.e., $A \leq_{\mathrm{m}} B$ and the computable mapping is polynomial time

Theorem If $A \leq_{p} B$ and $B \in P$, then $A \in P$ Similar proof to all of the others

Theorem If $A \leq_{p} B$ and $B \in P$, then $A \in P$ Similar proof to all of the others

Proof.

Let f be the poly-time reduction and let M decide B in poly time M^{\prime} = "On input w,

1 Compute f(w)

2 Run M on f(w); if M accepts, then *accept*; otherwise *reject*"

Theorem If $A \leq_p B$ and $B \in P$, then $A \in P$ Similar proof to all of the others Proof. Let f be the poly-time reduction and let M decide B in poly time M' = "On input w, ① Compute f(w)② Due M on f(w) if M access to the poly-time relation

2 Run *M* on f(w); if *M* accepts, then *accept*; otherwise *reject*" Computing f(w) takes time poly(|w|) and |f(w)| = poly(|w|)

Running M on f(w) takes time poly(|f(w)|) = poly(poly(|w|)) = poly(|w|)

Thus, M' decides A in polynomial time so $A \in \mathbf{P}$

Theorem If $A \leq_p B$ and $B \in P$, then $A \in P$ Similar proof to all of the others Proof. Let f be the poly-time reduction and let M decide B in poly time M' = "On input w, ① Compute f(w)② Run M on f(w); if M accepts, then *accept*; otherwise *reject*" Computing f(w) takes time poly(|w|) and |f(w)| = poly(|w|)

Running M on f(w) takes time poly(|f(w)|) = poly(poly(|w|)) = poly(|w|)

Thus, M' decides A in polynomial time so $A \in \mathbf{P}$

Replacing P with NP in the proof and using NTMs rather than TMs shows that $A \leq_p B$ and $B \in NP$, then $A \in NP$

$\text{CNF-SAT} \leq_p 3\text{-SAT}$

$$\begin{split} \text{CNF-SAT} &= \{ \left< \phi \right> \mid \phi \text{ is in CNF} \} \\ \text{3-SAT} &= \{ \left< \phi \right> \mid \phi \text{ is in 3-CNF} \} \end{split}$$

Show that CNF-SAT $\leq_p 3$ -SAT

To do this, we need to give a poly-time algorithm that converts ϕ in CNF to ϕ' in CNF where each clause has exactly 3 literals

 $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$ where each C_i is a disjunction (OR) of literals

We just need a procedure to convert a clause $C = (u_1 \lor u_2 \lor \cdots \lor u_k)$ to 3-CNF

Four cases

1 C = u: Output $u_1 \lor u_1 \lor u_1$

Four cases

- **1** C = u: Output $u_1 \lor u_1 \lor u_1$
- **2** $C = u_1 \lor u_2$: Output $u_1 \lor u_2 \lor u_2$

Four cases

- **1** C = u: Output $u_1 \lor u_1 \lor u_1$
- **2** $C = u_1 \lor u_2$: Output $u_1 \lor u_2 \lor u_2$
- **3** $C = u_1 \lor u_2 \lor u_3$: Output C

Four cases

C = u: Output $u_1 \lor u_1 \lor u_1$ $C = u_1 \lor u_2$: Output $u_1 \lor u_2 \lor u_2$ $C = u_1 \lor u_2 \lor u_3$: Output C $C = u_1 \lor u_2 \lor \cdots \lor u_k$: Introduce k - 3 new variables $z_2, z_3, \cdots z_{k-2}$ and output

$$(u_1 \vee u_2 \vee z_2) \land \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \vee u_i \vee z_i)\right) \land (\overline{z_{k-2}} \vee u_{k-1} \vee u_k)$$

For example,

 $(a \lor b \lor c \lor d \lor e) \mapsto (a \lor b \lor z_2) \land (\overline{z_2} \lor c \lor z_3) \land (\overline{z_3} \lor d \lor e)$

Four cases

1
$$C = u$$
: Output $u_1 \lor u_1 \lor u_1$
2 $C = u_1 \lor u_2$: Output $u_1 \lor u_2 \lor u_2$
3 $C = u_1 \lor u_2 \lor u_3$: Output C
4 $C = u_1 \lor u_2 \lor \cdots \lor u_k$: Introduce $k - 3$ new variables $z_2, z_3, \cdots z_{k-2}$ and output

$$(u_1 \vee u_2 \vee z_2) \land \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \vee u_i \vee z_i)\right) \land (\overline{z_{k-2}} \vee u_{k-1} \vee u_k)$$

For example,

$$(a \lor b \lor c \lor d \lor e) \mapsto (a \lor b \lor z_2) \land (\overline{z_2} \lor c \lor z_3) \land (\overline{z_3} \lor d \lor e)$$

Cases 1–3 clearly preserve the property that any assignment that makes ${\cal C}$ true makes the output true and vice versa

UIC

 $\mathbf{Q} \quad C = u_1 \lor u_2 \lor \cdots \lor u_k: \text{ Introduce } k - 3 \text{ new variables } z_2, z_3, \cdots z_{k-2} \text{ and output}$ $\phi' = (u_1 \lor u_2 \lor z_2) \land \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \lor u_i \lor z_i) \right) \land (\overline{z_{k-2}} \lor u_{k-1} \lor u_k)$

If C = T, then there is some true literal, say $u_i = T$, then $\phi' = T$ by setting

$$z_j = \begin{cases} T & \text{for } j < i \\ F & \text{for } j \ge i \end{cases}$$

Even if all of the other literals are false, setting z_i this way satisfies each clause in ϕ'

 $C = u_1 \vee u_2 \vee \cdots \vee u_k: \text{ Introduce } k - 3 \text{ new variables } z_2, z_3, \cdots z_{k-2} \text{ and output}$ $\phi' = (u_1 \vee u_2 \vee z_2) \wedge \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \vee u_i \vee z_i) \right) \wedge (\overline{z_{k-2}} \vee u_{k-1} \vee u_k)$

If C = T, then there is some true literal, say $u_i = T$, then $\phi' = T$ by setting

$$z_j = \begin{cases} T & \text{for } j < i \\ F & \text{for } j \ge i \end{cases}$$

Even if all of the other literals are false, setting z_i this way satisfies each clause in ϕ'

If $u_1 = u_2 = \cdots = u_k = F$, then no matter how we set the z_j , at least one of the clauses in ϕ' is false:

• For
$$(u_1 \lor u_2 \lor z_2) = T$$
, we'd need $z_2 = T$

 $C = u_1 \vee u_2 \vee \cdots \vee u_k: \text{ Introduce } k - 3 \text{ new variables } z_2, z_3, \cdots z_{k-2} \text{ and output}$ $\phi' = (u_1 \vee u_2 \vee z_2) \wedge \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \vee u_i \vee z_i) \right) \wedge (\overline{z_{k-2}} \vee u_{k-1} \vee u_k)$

If C = T, then there is some true literal, say $u_i = T$, then $\phi' = T$ by setting

$$z_j = \begin{cases} T & \text{for } j < i \\ F & \text{for } j \ge i \end{cases}$$

Even if all of the other literals are false, setting z_i this way satisfies each clause in ϕ'

If $u_1 = u_2 = \cdots = u_k = F$, then no matter how we set the z_j , at least one of the clauses in ϕ' is false:

• For
$$(u_1 \lor u_2 \lor z_2) = T$$
, we'd need $z_2 = T$

• For $(\overline{z_2} \lor u_3 \lor z_3) = T$, we'd need $z_3 = T$ and so on; thus $z_j = T$ for all $2 \le j \le k-2$

 $C = u_1 \vee u_2 \vee \cdots \vee u_k: \text{ Introduce } k - 3 \text{ new variables } z_2, z_3, \cdots z_{k-2} \text{ and output}$ $\phi' = (u_1 \vee u_2 \vee z_2) \wedge \left(\bigwedge_{i=3}^{k-2} (\overline{z_{i-1}} \vee u_i \vee z_i) \right) \wedge (\overline{z_{k-2}} \vee u_{k-1} \vee u_k)$

If C = T, then there is some true literal, say $u_i = T$, then $\phi' = T$ by setting

$$z_j = \begin{cases} T & \text{for } j < i \\ F & \text{for } j \ge i \end{cases}$$

Even if all of the other literals are false, setting z_j this way satisfies each clause in ϕ'

If $u_1 = u_2 = \cdots = u_k = F$, then no matter how we set the z_j , at least one of the clauses in ϕ' is false:

- For $(u_1 \lor u_2 \lor z_2) = T$, we'd need $z_2 = T$
- For $(\overline{z_2} \lor u_3 \lor z_3) = T$, we'd need $z_3 = T$ and so on; thus $z_j = T$ for all $2 \le j \le k-2$

• But then
$$(\overline{z_{k-2}} \lor u_{k-1} \lor u_k) = F$$

Proof.

- Define TM T = "On input $\langle \phi \rangle$,
 - **1** For each clause C in ϕ ,
 - **2** Convert C to 3-CNF using the given algorithm
 - **③** Output the conjunction (AND) of the result for each clause"

Proof.

Define TM T = "On input $\langle \phi \rangle$,

- **1** For each clause C in ϕ ,
- **2** Convert C to 3-CNF using the given algorithm
- 3 Output the conjunction (AND) of the result for each clause"

If $\langle \phi \rangle \in \text{CNF-SAT}$, then there is some assignment of truth values to variables that makes $\phi = T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle \phi \rangle) \in 3\text{-SAT}$

Proof.

Define TM T = "On input $\langle \phi \rangle$,

- **1** For each clause C in ϕ ,
- **2** Convert C to 3-CNF using the given algorithm
- 3 Output the conjunction (AND) of the result for each clause"

If $\langle \phi \rangle \in \text{CNF-SAT}$, then there is some assignment of truth values to variables that makes $\phi = T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle \phi \rangle) \in 3\text{-SAT}$

If $\langle \phi \rangle \notin \text{CNF-SAT}$, then for any assignment, some clause in ϕ is false and by construction, no matter how the extra variables are set for the corresponding output clauses, one of them is false so $f(\langle \phi \rangle) \notin 3\text{-SAT}$

Proof.

Define TM T = "On input $\langle \phi \rangle$,

- **1** For each clause C in ϕ ,
- **2** Convert C to 3-CNF using the given algorithm
- 3 Output the conjunction (AND) of the result for each clause"

If $\langle \phi \rangle \in \text{CNF-SAT}$, then there is some assignment of truth values to variables that makes $\phi = T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle \phi \rangle) \in 3\text{-SAT}$

If $\langle \phi \rangle \notin \text{CNF-SAT}$, then for any assignment, some clause in ϕ is false and by construction, no matter how the extra variables are set for the corresponding output clauses, one of them is false so $f(\langle \phi \rangle) \notin 3\text{-SAT}$

If ϕ has n total literals, then the output of T has less than 3n clauses each of which has 3 literals so $|f(\langle \phi \rangle)| = poly(|\langle \phi \rangle|)$ thus T takes polynomial time

$\operatorname{NP-hard}$ and $\operatorname{NP-complete}$

Language B is NP-hard if every language $A \in NP$ is poly-time reducible to B $(\forall A \in NP. A \leq_p B)$

$\operatorname{NP-hard}$ and $\operatorname{NP-complete}$

Language B is NP-hard if every language $A \in NP$ is poly-time reducible to B $(\forall A \in NP. A \leq_p B)$

Language B is NP-complete if $B \in NP$ and B is NP-hard.

Equivalently, \boldsymbol{B} is NP-complete if

- $\textbf{1} B \in \mathrm{NP}$
- ② $\forall A \in \text{NP.} A \leq_p B$

$\operatorname{NP-hard}$ and $\operatorname{NP-complete}$

Language B is NP-hard if every language $A \in NP$ is poly-time reducible to B $(\forall A \in NP. A \leq_p B)$

Language B is NP-complete if $B \in NP$ and B is NP-hard.

Equivalently, B is NP-complete if

- $\bullet B \in \mathrm{NP}$
- **2** $\forall A \in \text{NP.} A \leq_p B$

 $NP\mbox{-}complete \mbox{ problems represent the "hardest" problems in <math display="inline">NP$ to solve

Any efficient solution to an $NP\mbox{-}complete$ problem gives an efficient solution to every problem in NP

$P,\ NP,\ \text{and}\ NP\text{-complete}$

Theorem If B is NP-complete and $B \in P$, then P = NP

How would we prove this?

$P,\ NP,\ \text{and}\ NP\text{-complete}$

Theorem If *B* is NP-complete and $B \in P$, then P = NP

How would we prove this?

Proof.

If $A \in NP$, then $A \leq_p B$ and since $B \in P$, $A \in P$

 \square

$P,\ NP,\ \text{and}\ NP\text{-complete}$

Theorem If B is NP-complete and $B \in P$, then P = NPHow would we prove this? Proof.

```
If A \in NP, then A \leq_p B and since B \in P, A \in P
```

This gives us a way to try to prove that P = NP : Find an $\mathrm{NP}\text{-complete}$ problem and give a polynomial-time solution

 \square

Poly-time reductions between NP -complete problems

Theorem

If B is NP-complete, $C \in NP$, and $B \leq_p C$, then C is NP-complete

Poly-time reductions between $\operatorname{NP}\text{-}\operatorname{complete}$ problems

Theorem

If B is NP-complete, $C \in NP$, and $B \leq_p C$, then C is NP-complete

Proof.

Let $A \in NP$. Because B is NP-complete, $A \leq_p B$

Poly-time reduction is transitive and $B \leq_p C$ so $A \leq_p C$ thus C is NP-hard and because $C \in$ NP, C is NP-complete

Poly-time reductions between $\operatorname{NP}\text{-}\operatorname{complete}$ problems

Theorem If B is NP-complete, $C \in NP$, and $B \leq_p C$, then C is NP-complete

Proof. Let $A \in NP$. Because B is NP-complete, $A \leq_p B$

Poly-time reduction is transitive and $B \leq_p C$ so $A \leq_p C$ thus C is NP-hard and because $C \in NP$, C is NP-complete

Once we have one NP -complete problem, this gives us a way to find a bunch more, but we need to find one to start us off

Cook-Levin theorem

Theorem *SAT is* NP*-complete*

Cook-Levin theorem

Theorem SAT is NP-complete Sipser's proof actually shows that CNF-SAT is NP-complete

We showed that SAT \in NP and a boolean formula in CNF is, of course, a boolean formula so $\langle \phi \rangle \mapsto \langle \phi \rangle$ is polynomial-time reduction from CNF-SAT to SAT

3-SAT is NP-complete

Theorem

3-SAT is NP-complete

To prove this, we need to show two things: $3\text{-SAT} \in NP$ and there is some NP-complete language A that poly-time reduces to 3-SAT

$\operatorname{3-SAT}$ is NP-complete

Theorem

3-SAT is NP-complete

To prove this, we need to show two things: $3\text{-SAT} \in NP$ and there is some NP-complete language A that poly-time reduces to 3-SAT

Proof.

We already showed that $\mathrm{CNF}\text{-}\mathrm{SAT} \leq_\mathrm{p} 3\text{-}\mathrm{SAT}$ so all that remains is to show that $3\text{-}\mathrm{SAT} \in \mathrm{NP}$

But this is true for the same reason $SAT \in NP$: We can verify an assignment of truth values to variables satisfies a formula in poly time

General technique

If we want to show that some language L is $\operatorname{NP-complete}$, then we need to perform 3 steps

- **1** Show that $L \in NP$
- **2** Select some NP-complete language B
- **3** Show that $B \leq_{p} L$

Step 1 is frequently easy: If the language is of the form $\{w \mid w \text{ has some property or structure}\}$, then the certificate for the verifier is whatever makes the property true or the structure itself

Steps 2 and 3 can be quite challenging and can require a great deal of cleverness; $3\text{-}\mathrm{SAT}$ is usually a good first choice for the NP-complete language

$\operatorname{VertexCover}$ is NP-complete

Recall VERTEXCOVER = { $\langle G, k \rangle | G$ has a vertex cover of size k} $\in NP$ because the vertex cover itself is the certificate

To show that $\mathrm{VertexCover}$ is $\mathrm{NP}\text{-complete},$ we want to give a poly-time reduction from $3\text{-}\mathrm{SAT}$

$\operatorname{VertexCover}$ is $\operatorname{NP-complete}$

Recall VERTEXCOVER = { $\langle G, k \rangle | G$ has a vertex cover of size k} $\in NP$ because the vertex cover itself is the certificate

To show that $\mathrm{VertexCover}$ is $\mathrm{NP}\text{-complete},$ we want to give a poly-time reduction from $3\text{-}\mathrm{SAT}$

To do this, we want to take a formula ϕ that has m clauses C_1, C_2, \ldots, C_m and n variables x_1, x_2, \ldots, x_n and construct an undirected graph G = (V, E) and a k s.t. G has a vertex cover of size k iff ϕ is satisfiable

That is, we need to produce a mapping $\langle \phi \rangle \mapsto \langle G, k \rangle$ such that $\langle \phi \rangle \in 3\text{-SAT} \iff \langle G, k \rangle \in \text{VERTEXCOVER}$ and we have to be able to compute the mapping in some polynomial of m and n

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi = (\underbrace{x_1 \lor \overline{x_2} \lor x_3}_{C_1}) \land (\underbrace{\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}}_{C_2})$

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi = (\underbrace{x_1 \lor \overline{x_2} \lor x_3}_{C_1}) \land (\underbrace{\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}}_{C_2})$

1 Assignment. For each variable x_i create vertices x_i and $\overline{x_i}$ and edge $(x_i, \overline{x_i})$

$$V_A = \bigcup_{i=1}^n \{x_i, \overline{x_i}\}$$
$$E_A = \bigcup_{i=1}^n \{(x_i, \overline{x_i})\}$$

 $x_1 - \overline{x_1}$ $x_2 - \overline{x_2}$ $x_3 - \overline{x_3}$

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi = (\underbrace{x_1 \lor \overline{x_2} \lor x_3}_{C_2}) \land (\underbrace{\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}}_{C_2})$

- **1** Assignment. For each variable x_i create vertices x_i and $\overline{x_i}$ and edge $(x_i, \overline{x_i})$
- **2** Satisfiability. For each clause $C_j = (a_j \lor b_j \lor c_j)$, create vertices v_j^1 , v_j^2 , and v_j^3 with edges between them

 $x_1 - \overline{x_1}$ $x_2 - \overline{x_2}$ $x_3 - \overline{x_3}$

$$\begin{split} & V_{A} = \bigcup_{i=1}^{n} \{x_{i}, \overline{x_{i}}\} \\ & E_{A} = \bigcup_{i=1}^{n} \{(x_{i}, \overline{x_{i}})\} \\ & V_{S} = \bigcup_{j=1}^{m} \{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\} \\ & E_{S} = \bigcup_{j=1}^{m} \{(v_{j}^{1}, v_{j}^{2}), (v_{j}^{2}, v_{j}^{3}), (v_{j}^{3}, v_{j}^{1})\} \end{split}$$

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi = (\underbrace{x_1 \lor \overline{x_2} \lor x_3}_{C_1}) \land (\underbrace{\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}}_{C_2})$

Assignment. For each variable
$$x_i$$
 create vertices x_i and $\overline{x_i}$ and edge $(x_i, \overline{x_i})$

② Satisfiability. For each clause C_j = (a_j ∨ b_j ∨ c_j), create vertices v¹_j, v²_j, and v³_j with edges between them

3 Communication. For each clause $C_j = (a_j \lor b_j \lor c_j)$, create edges (v_j^1, a_j) , (v_j^2, b_j) , and (v_j^3, c_j)

$$\begin{split} V_{A} &= \bigcup_{i=1}^{n} \{x_{i}, \overline{x_{i}}\} \\ E_{A} &= \bigcup_{i=1}^{n} \{(x_{i}, \overline{x_{i}})\} \\ V_{S} &= \bigcup_{j=1}^{m} \{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\} \\ E_{S} &= \bigcup_{j=1}^{m} \{(v_{j}^{1}, v_{j}^{2}), (v_{j}^{2}, v_{j}^{3}), (v_{j}^{3}, v_{j}^{1})\} \\ E_{C} &= \bigcup_{j=1}^{m} \{(v_{j}^{1}, a_{j}), (v_{j}^{2}, b_{j}), (v_{j}^{3}, c_{j})\} \end{split}$$

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi = (\underbrace{x_1 \lor \overline{x_2} \lor x_3}_{C_1}) \land (\underbrace{\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}}_{C_2})$

Assignment. For each variable
$$x_i$$
 create vertices x_i
and $\overline{x_i}$ and edge $(x_i, \overline{x_i})$

2 Satisfiability. For each clause $C_j = (a_j \lor b_j \lor c_j)$, create vertices v_j^1 , v_j^2 , and v_j^3 with edges between them

3 Communication. For each clause $C_j = (a_j \lor b_j \lor c_j)$, create edges (v_j^1, a_j) , (v_j^2, b_j) , and (v_j^3, c_j)

$$\begin{split} V_{A} &= \bigcup_{i=1}^{n} \{x_{i}, \overline{x_{i}}\} \\ E_{A} &= \bigcup_{i=1}^{n} \{(x_{i}, \overline{x_{i}})\} \\ V_{S} &= \bigcup_{j=1}^{m} \{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\} \\ E_{S} &= \bigcup_{j=1}^{m} \{(v_{j}^{1}, v_{j}^{2}), (v_{j}^{2}, v_{j}^{3}), (v_{j}^{3}, v_{j}^{1})\} \\ E_{C} &= \bigcup_{j=1}^{m} \{(v_{j}^{1}, a_{j}), (v_{j}^{2}, b_{j}), (v_{j}^{3}, c_{j})\} \end{split}$$

Output: G = (V, E), k where $V = V_A \cup V_S$ $E = E_A \cup E_S \cup E_C$ k = n + 2m

15 / 30

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at least n of the literal vertices must be in VC

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either x_i or $\overline{x_i}$ for each i and exactly 2 of each of the m satisfiability triangles

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either x_i or $\overline{x_i}$ for each i and exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size n + 2m = 7

If G has a VC of size n + 2m, then ϕ is satisfiable

Create a satisfying assignment for ϕ by setting $x_i = T$ if node $x_i \in VC$

If G has a VC of size n+2m, then ϕ is satisfiable

Create a satisfying assignment for ϕ by setting $x_i = T$ if node $x_i \in VC$

Consider the triangle corresponding to clause C_j , 2 of the vertices are in VC and the third is connected to its literal which must be in VC in order to cover the communication edge

For example, edge (v_1^1, x_1) is covered by $x_1 \in VC$ so clause C_1 is satisfied Similarly for edge $(v_2^3, \overline{x_3})$ and clause C_2

If G has a VC of size n+2m, then ϕ is satisfiable

Create a satisfying assignment for ϕ by setting $x_i = T$ if node $x_i \in VC$

Consider the triangle corresponding to clause C_j , 2 of the vertices are in VC and the third is connected to its literal which must be in VC in order to cover the communication edge

For example, edge (v_1^1, x_1) is covered by $x_1 \in VC$ so clause C_1 is satisfied Similarly for edge $(v_2^3, \overline{x_3})$ and clause C_2

Thus each clause is satisfied so ϕ is satisfied

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

Now (v_1^1, x_1) and (v_1^3, x_3) need to be covered so add v_1^1 and v_1^3 to VC

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

Now (v_1^1, x_1) and (v_1^3, x_3) need to be covered so add v_1^1 and v_1^3 to VC

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

Now (v_1^1, x_1) and (v_1^3, x_3) need to be covered so add v_1^1 and v_1^3 to VC

All of the communication edges for clause C_2 are covered, so pick any 2 vertices

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size n + 2m consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_1 = x_2 = x_3 = F$ satisfies ϕ so first put $\overline{x_1}$, $\overline{x_2}$, and $\overline{x_3}$ in VC

Now (v_1^1, x_1) and (v_1^3, x_3) need to be covered so add v_1^1 and v_1^3 to VC

All of the communication edges for clause C_2 are covered, so pick any 2 vertices

So $\operatorname{VertexCover}$ is $\operatorname{NP-complete}$

Lastly, ${\boldsymbol{G}}$ takes polynomial time to create since it has a polynomial number of vertices and edges

Lastly, ${\boldsymbol{G}}$ takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

1 We showed that $VERTEXCOVER \in NP$

So $\operatorname{VertexCover}$ is $\operatorname{NP-complete}$

Lastly, ${\boldsymbol{G}}$ takes polynomial time to create since it has a polynomial number of vertices and edges

- **1** We showed that $VERTEXCOVER \in NP$
- **2** We gave a construction $\langle \phi \rangle \mapsto \langle G, k \rangle$

Lastly, ${\boldsymbol{G}}$ takes polynomial time to create since it has a polynomial number of vertices and edges

- **1** We showed that $VERTEXCOVER \in NP$
- **2** We gave a construction $\langle \phi \rangle \mapsto \langle G, k \rangle$
- **3** We showed that if G has a vertex cover of size k (i.e., $\langle G, k \rangle \in \text{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle \phi \rangle \in 3\text{-SAT}$)

Lastly, ${\cal G}$ takes polynomial time to create since it has a polynomial number of vertices and edges

- **1** We showed that $VERTEXCOVER \in NP$
- 2 We gave a construction $\langle \phi \rangle \mapsto \langle G, k \rangle$
- **3** We showed that if G has a vertex cover of size k (i.e., $\langle G, k \rangle \in \text{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle \phi \rangle \in 3\text{-SAT}$)
- ${\bf 4}$ We showed that if ϕ is satisfiable, then G has a vertex cover of size k

Lastly, ${\cal G}$ takes polynomial time to create since it has a polynomial number of vertices and edges

- **1** We showed that $VERTEXCOVER \in NP$
- 2 We gave a construction $\langle \phi \rangle \mapsto \langle G, k \rangle$
- **3** We showed that if G has a vertex cover of size k (i.e., $\langle G, k \rangle \in \text{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle \phi \rangle \in 3\text{-SAT}$)
- ${\bf 4}$ We showed that if ϕ is satisfiable, then G has a vertex cover of size k
- **5** We argued that the construction takes polynomial time

Lastly, ${\cal G}$ takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

- **1** We showed that $VERTEXCOVER \in NP$
- 2 We gave a construction $\langle \phi \rangle \mapsto \langle G, k \rangle$
- **3** We showed that if G has a vertex cover of size k (i.e., $\langle G, k \rangle \in \text{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle \phi \rangle \in 3\text{-SAT}$)
- **④** We showed that if ϕ is satisfiable, then G has a vertex cover of size k
- **5** We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT \leq_{p} VERTEXCOVER and thus VERTEXCOVER is NP-complete

Independent set

If G = (V, E) is an undirected graph, an independent set is a set $I \subseteq V$ such that no two vertices in I are adjacent I.e., $\forall u, v \in I \ (u, v) \notin E$

E.g., the yellow vertices form an independent set

INDSET

INDSET = { $\langle G, k \rangle \mid G$ is an undirected graph which has an independent set of size k} How would we show that INDSET is NP-complete?

INDSET

INDSET = { $\langle G, k \rangle$ | G is an undirected graph which has an independent set of size k} How would we show that INDSET is NP-complete?

We need to show

- **1** INDSET \in NP and
- **2** There is some A which is NP-complete and $A \leq_{p} INDSET$

$\mathrm{INDSet} \in \mathrm{NP}$

What is a certificate for $\ensuremath{\operatorname{INDSET}}\xspace?$

$\mathrm{INDSet} \in \mathrm{NP}$

What is a certificate for INDSET? The independent set I of size k.

$\mathsf{INDSET} \in \mathsf{NP}$

What is a certificate for INDSET? The independent set I of size k.

We can build a verifier for INDSET: $V = \text{``On input } \langle G, k, I \rangle$ where G = (V, E), 1 If $I \notin V$ or $|I| \neq k$, then *reject* 2 For each $(u, v) \in E$, 3 If $u \in I$ and $v \in I$, then *reject*

Otherwise accept"

Each step clearly takes polynomial time and the body of the loop happens once per edge so V is a polynomial time verifier

VertexCover \leq_{p} INDSet

We can reduce from VERTEXCOVER to INDSET by giving a polynomial time map $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that

 $\langle G, k \rangle \in \text{VertexCover} \iff \langle G', k' \rangle \in \text{IndSet}$

$VERTEXCOVER \leq_p INDSET$

We can reduce from VERTEXCOVER to INDSET by giving a polynomial time map $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that $\langle G, k \rangle \in \text{VERTEXCOVER} \iff \langle G', k' \rangle \in \text{INDSET}$

Grey vertices form a vertex cover, What are some independent sets?

$VERTEXCOVER \leq_p INDSET$

We can reduce from VERTEXCOVER to INDSET by giving a polynomial time map $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that $\langle G, k \rangle \in \text{VERTEXCOVER} \iff \langle G', k' \rangle \in \text{INDSET}$

Grey vertices form a vertex cover, What are some independent sets?

$VERTEXCOVER \leq_p INDSET$

We can reduce from VERTEXCOVER to INDSET by giving a polynomial time map $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that $\langle G, k \rangle \in \text{VERTEXCOVER} \iff \langle G', k' \rangle \in \text{INDSET}$

Grey vertices form a vertex cover, What are some independent sets?

$VERTEXCOVER \leq_p INDSET$

We can reduce from VERTEXCOVER to INDSET by giving a polynomial time map $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that $\langle G, k \rangle \in \text{VERTEXCOVER} \iff \langle G', k' \rangle \in \text{INDSET}$

Grey vertices form a vertex cover, What are some independent sets?

It *looks* like if G = (V, E) has a vertex cover C, then $I = V \setminus C$ is an independent set, and vice versa Can we prove that?

It *looks* like if G = (V, E) has a vertex cover C, then $I = V \setminus C$ is an independent set, and vice versa Can we prove that?

Yes!

It *looks* like if G = (V, E) has a vertex cover C, then $I = V \setminus C$ is an independent set, and vice versa Can we prove that?

Yes!

• If $C \subseteq V$ is a vertex cover for G and $I = V \setminus C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I$, $(u, v) \notin E$ so I is an independent set

It *looks* like if G = (V, E) has a vertex cover C, then $I = V \setminus C$ is an independent set, and vice versa Can we prove that?

Yes!

- If $C \subseteq V$ is a vertex cover for G and $I = V \setminus C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I$, $(u, v) \notin E$ so I is an independent set
- If $I \subseteq V$ is an independent set and $C = V \setminus I$, then for all $(u, v) \in E$, at least one of u or v is in C [why?] so C is a vertex cover

How does this help us?

It *looks* like if G = (V, E) has a vertex cover C, then $I = V \setminus C$ is an independent set, and vice versa Can we prove that?

Yes!

- If $C \subseteq V$ is a vertex cover for G and $I = V \setminus C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I$, $(u, v) \notin E$ so I is an independent set
- If $I \subseteq V$ is an independent set and $C = V \setminus I$, then for all $(u, v) \in E$, at least one of u or v is in C [why?] so C is a vertex cover

How does this help us?

It means that G has n vertices, then G has a vertex cover of size k iff G has an independent set of size n-k

$\mathrm{VertexCover} \leq_{\mathrm{p}} \mathrm{IndSet}$

Proof.

Our polynomial time mapping is $\langle G, k \rangle \mapsto \langle G, n - k \rangle$ where G = (V, E) and |V| = n

$VertexCover \leq_p IndSet$

Proof.

Our polynomial time mapping is $\langle G, k \rangle \mapsto \langle G, n - k \rangle$ where G = (V, E) and |V| = n

Since G has a vertex cover of size k iff G has an independent set of size n - k,

 $\langle G, k \rangle \in \text{VertexCover} \iff \langle G, n - k \rangle \in \text{IndSet}$

Since INDSET \in NP, VERTEXCOVER \leq_p INDSET, and VERTEXCOVER is NP-complete, INDSET is NP-complete

CLIQUE is $\operatorname{NP-complete}$

We already proved that $CLIQUE \in NP$ so all that remains is to give a polynomial time mapping from some NP-complete problem

Let's use INDSet

CLIQUE is $\operatorname{NP-complete}$

We already proved that $CLIQUE \in NP$ so all that remains is to give a polynomial time mapping from some NP-complete problem

Let's use INDSET

We want a mapping $\langle G, k \rangle \mapsto \langle G', k' \rangle$ such that G has an independent set of size k iff G' has a clique of size k'

Recall

- Independent set. I is an independent set if there is no edge between any two vertices in I
- Clique. C is a clique if there is an edge between every two vertices in C

The complement of a graph G = (V, E) is a graph G' = (V, E') where $(u, v) \in E$ iff $(u, v) \notin E'$ (assuming $u \neq v$)

The complement of a graph G = (V, E) is a graph G' = (V, E') where $(u, v) \in E$ iff $(u, v) \notin E'$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

The complement of a graph G = (V, E) is a graph G' = (V, E') where $(u, v) \in E$ iff $(u, v) \notin E'$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

The complement of a graph G = (V, E) is a graph G' = (V, E') where $(u, v) \in E$ iff $(u, v) \notin E'$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove

Let G = (V, E) be an undirected graph and G' = (V, E') be its complement

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove

Let G = (V, E) be an undirected graph and G' = (V, E') be its complement

If C ⊆ V is a clique in G, then for each distinct u, v ∈ C, (u, v) ∈ E and thus (u, v) ∉ E' so C is an independent set in G'

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove

Let G = (V, E) be an undirected graph and G' = (V, E') be its complement

- If C ⊆ V is a clique in G, then for each distinct u, v ∈ C, (u, v) ∈ E and thus (u, v) ∉ E' so C is an independent set in G'
- And vice versa

INDSET \leq_{p} CLIQUE

The polynomial time mapping is $\langle G, k \rangle \mapsto \langle G', k \rangle$ where G' is the complement of G

Since $CLIQUE \in NP$ and $INDSET \leq_p CLIQUE$, CLIQUE is NP-complete

• There are *many* other NP-complete problems

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- $\bullet\,$ Since then, more $NP\mbox{-}complete$ problems have been found

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- $\bullet\,$ Since then, more $NP\mbox{-}complete$ problems have been found
- There are problems known to be in NP which we don't know to be either in P or $NP\mbox{-}complete$

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- $\bullet\,$ Since then, more $NP\mbox{-}complete$ problems have been found
- There are problems known to be in NP which we don't know to be either in P or $\operatorname{NP-complete}$
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $P \neq NP$, then there are NP-intermediate problems (if P = NP, then there are none)

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- $\bullet\,$ Since then, more $NP\mbox{-}complete$ problems have been found
- There are problems known to be in NP which we don't know to be either in P or $\operatorname{NP-complete}$
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $P \neq NP$, then there are NP-intermediate problems (if P = NP, then there are none)
- co-NP is the class of languages whose complements are in NP

- There are *many* other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were $\rm NP$ -complete by reducing from $\rm SAT$
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- $\bullet\,$ Since then, more $NP\mbox{-}complete$ problems have been found
- There are problems known to be in NP which we don't know to be either in P or $\operatorname{NP-complete}$
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $P \neq NP$, then there are NP-intermediate problems (if P = NP, then there are none)
- co- NP is the class of languages whose complements are in NP
- There are languages in NP and co-NP which aren't known to be in P $(P \subseteq NP \cap co-NP)$

