
CS 301
Lecture 25 – NP-complete

1 / 30



Polynomial-time reducibility
A function f ∶ Σ∗ → Σ∗ is a polynomial-time computable function if some poly-time
TM M exists that halts with just f(w) on its tape when run on w

I.e., f is a computable function as defined before and its TM runs in time poly(∣w∣)

A is polynomial-time reducible to B (written A ≤p B) if a polynomial-time
computable function f exists such that w ∈ A ⟺ f(w) ∈ B

I.e., A ≤m B and the computable mapping is polynomial time

2 / 30



Polynomial-time reducibility
A function f ∶ Σ∗ → Σ∗ is a polynomial-time computable function if some poly-time
TM M exists that halts with just f(w) on its tape when run on w

I.e., f is a computable function as defined before and its TM runs in time poly(∣w∣)

A is polynomial-time reducible to B (written A ≤p B) if a polynomial-time
computable function f exists such that w ∈ A ⟺ f(w) ∈ B

I.e., A ≤m B and the computable mapping is polynomial time

2 / 30



Another “good-news” reduction theorem

Theorem
If A ≤p B and B ∈ P, then A ∈ P
Similar proof to all of the others

Proof.
Let f be the poly-time reduction and let M decide B in poly time
M

′
= “On input w,

1 Compute f(w)
2 Run M on f(w); if M accepts, then accept; otherwise reject”

Computing f(w) takes time poly(∣w∣) and ∣f(w)∣ = poly(∣w∣)

Running M on f(w) takes time poly(∣f(w)∣) = poly(poly(∣w∣)) = poly(∣w∣)

Thus, M ′ decides A in polynomial time so A ∈ P

Replacing P with NP in the proof and using NTMs rather than TMs shows that
A ≤p B and B ∈ NP, then A ∈ NP

3 / 30



Another “good-news” reduction theorem

Theorem
If A ≤p B and B ∈ P, then A ∈ P
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time
M

′
= “On input w,

1 Compute f(w)
2 Run M on f(w); if M accepts, then accept; otherwise reject”

Computing f(w) takes time poly(∣w∣) and ∣f(w)∣ = poly(∣w∣)

Running M on f(w) takes time poly(∣f(w)∣) = poly(poly(∣w∣)) = poly(∣w∣)

Thus, M ′ decides A in polynomial time so A ∈ P

Replacing P with NP in the proof and using NTMs rather than TMs shows that
A ≤p B and B ∈ NP, then A ∈ NP

3 / 30



Another “good-news” reduction theorem

Theorem
If A ≤p B and B ∈ P, then A ∈ P
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time
M

′
= “On input w,

1 Compute f(w)
2 Run M on f(w); if M accepts, then accept; otherwise reject”

Computing f(w) takes time poly(∣w∣) and ∣f(w)∣ = poly(∣w∣)

Running M on f(w) takes time poly(∣f(w)∣) = poly(poly(∣w∣)) = poly(∣w∣)

Thus, M ′ decides A in polynomial time so A ∈ P

Replacing P with NP in the proof and using NTMs rather than TMs shows that
A ≤p B and B ∈ NP, then A ∈ NP

3 / 30



Another “good-news” reduction theorem

Theorem
If A ≤p B and B ∈ P, then A ∈ P
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time
M

′
= “On input w,

1 Compute f(w)
2 Run M on f(w); if M accepts, then accept; otherwise reject”

Computing f(w) takes time poly(∣w∣) and ∣f(w)∣ = poly(∣w∣)

Running M on f(w) takes time poly(∣f(w)∣) = poly(poly(∣w∣)) = poly(∣w∣)

Thus, M ′ decides A in polynomial time so A ∈ P

Replacing P with NP in the proof and using NTMs rather than TMs shows that
A ≤p B and B ∈ NP, then A ∈ NP

3 / 30



CNF-SAT ≤p 3-SAT

CNF-SAT = {⟨φ⟩ ∣ φ is in CNF}
3-SAT = {⟨φ⟩ ∣ φ is in 3-CNF}

Show that CNF-SAT ≤p 3-SAT

To do this, we need to give a poly-time algorithm that converts φ in CNF to φ′ in CNF
where each clause has exactly 3 literals

φ = C1 ∧ C2 ∧⋯∧ Cn where each Ci is a disjunction (OR) of literals

We just need a procedure to convert a clause C = (u1 ∨ u2 ∨⋯∨ uk) to 3-CNF

4 / 30



Converting a clause to 3-CNF
Four cases

1 C = u: Output u1 ∨ u1 ∨ u1

2 C = u1 ∨ u2: Output u1 ∨ u2 ∨ u2

3 C = u1 ∨ u2 ∨ u3: Output C
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

(u1 ∨ u2 ∨ z2) ∧ (
k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

For example,

(a ∨ b ∨ c ∨ d ∨ e)↦ (a ∨ b ∨ z2) ∧ (z2 ∨ c ∨ z3) ∧ (z3 ∨ d ∨ e)

Cases 1–3 clearly preserve the property that any assignment that makes C true makes
the output true and vice versa

5 / 30



Converting a clause to 3-CNF
Four cases

1 C = u: Output u1 ∨ u1 ∨ u1

2 C = u1 ∨ u2: Output u1 ∨ u2 ∨ u2

3 C = u1 ∨ u2 ∨ u3: Output C
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

(u1 ∨ u2 ∨ z2) ∧ (
k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

For example,

(a ∨ b ∨ c ∨ d ∨ e)↦ (a ∨ b ∨ z2) ∧ (z2 ∨ c ∨ z3) ∧ (z3 ∨ d ∨ e)

Cases 1–3 clearly preserve the property that any assignment that makes C true makes
the output true and vice versa

5 / 30



Converting a clause to 3-CNF
Four cases

1 C = u: Output u1 ∨ u1 ∨ u1

2 C = u1 ∨ u2: Output u1 ∨ u2 ∨ u2

3 C = u1 ∨ u2 ∨ u3: Output C

4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

(u1 ∨ u2 ∨ z2) ∧ (
k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

For example,

(a ∨ b ∨ c ∨ d ∨ e)↦ (a ∨ b ∨ z2) ∧ (z2 ∨ c ∨ z3) ∧ (z3 ∨ d ∨ e)

Cases 1–3 clearly preserve the property that any assignment that makes C true makes
the output true and vice versa

5 / 30



Converting a clause to 3-CNF
Four cases

1 C = u: Output u1 ∨ u1 ∨ u1

2 C = u1 ∨ u2: Output u1 ∨ u2 ∨ u2

3 C = u1 ∨ u2 ∨ u3: Output C
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

(u1 ∨ u2 ∨ z2) ∧ (
k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

For example,

(a ∨ b ∨ c ∨ d ∨ e)↦ (a ∨ b ∨ z2) ∧ (z2 ∨ c ∨ z3) ∧ (z3 ∨ d ∨ e)

Cases 1–3 clearly preserve the property that any assignment that makes C true makes
the output true and vice versa

5 / 30



Converting a clause to 3-CNF
Four cases

1 C = u: Output u1 ∨ u1 ∨ u1

2 C = u1 ∨ u2: Output u1 ∨ u2 ∨ u2

3 C = u1 ∨ u2 ∨ u3: Output C
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

(u1 ∨ u2 ∨ z2) ∧ (
k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

For example,

(a ∨ b ∨ c ∨ d ∨ e)↦ (a ∨ b ∨ z2) ∧ (z2 ∨ c ∨ z3) ∧ (z3 ∨ d ∨ e)

Cases 1–3 clearly preserve the property that any assignment that makes C true makes
the output true and vice versa

5 / 30



Correctness of case 4
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

φ
′
= (u1 ∨ u2 ∨ z2) ∧ (

k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

If C = T , then there is some true literal, say ui = T , then φ
′
= T by setting

zj = {T for j < i
F for j ≥ i

Even if all of the other literals are false, setting zj this way satisfies each clause in φ′

If u1 = u2 =⋯ = uk = F , then no matter how we set the zj , at least one of the
clauses in φ′ is false:

• For (u1 ∨ u2 ∨ z2) = T , we’d need z2 = T
• For (z2 ∨ u3 ∨ z3) = T , we’d need z3 = T and so on; thus zj = T for all

2 ≤ j ≤ k − 2
• But then (zk−2 ∨ uk−1 ∨ uk) = F

6 / 30



Correctness of case 4
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

φ
′
= (u1 ∨ u2 ∨ z2) ∧ (

k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

If C = T , then there is some true literal, say ui = T , then φ
′
= T by setting

zj = {T for j < i
F for j ≥ i

Even if all of the other literals are false, setting zj this way satisfies each clause in φ′

If u1 = u2 =⋯ = uk = F , then no matter how we set the zj , at least one of the
clauses in φ′ is false:
• For (u1 ∨ u2 ∨ z2) = T , we’d need z2 = T

• For (z2 ∨ u3 ∨ z3) = T , we’d need z3 = T and so on; thus zj = T for all
2 ≤ j ≤ k − 2

• But then (zk−2 ∨ uk−1 ∨ uk) = F

6 / 30



Correctness of case 4
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

φ
′
= (u1 ∨ u2 ∨ z2) ∧ (

k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

If C = T , then there is some true literal, say ui = T , then φ
′
= T by setting

zj = {T for j < i
F for j ≥ i

Even if all of the other literals are false, setting zj this way satisfies each clause in φ′

If u1 = u2 =⋯ = uk = F , then no matter how we set the zj , at least one of the
clauses in φ′ is false:
• For (u1 ∨ u2 ∨ z2) = T , we’d need z2 = T
• For (z2 ∨ u3 ∨ z3) = T , we’d need z3 = T and so on; thus zj = T for all

2 ≤ j ≤ k − 2

• But then (zk−2 ∨ uk−1 ∨ uk) = F

6 / 30



Correctness of case 4
4 C = u1 ∨ u2 ∨⋯∨ uk: Introduce k − 3 new variables z2, z3,⋯zk−2 and output

φ
′
= (u1 ∨ u2 ∨ z2) ∧ (

k−2
⋀
i=3

(zi−1 ∨ ui ∨ zi)) ∧ (zk−2 ∨ uk−1 ∨ uk)

If C = T , then there is some true literal, say ui = T , then φ
′
= T by setting

zj = {T for j < i
F for j ≥ i

Even if all of the other literals are false, setting zj this way satisfies each clause in φ′

If u1 = u2 =⋯ = uk = F , then no matter how we set the zj , at least one of the
clauses in φ′ is false:
• For (u1 ∨ u2 ∨ z2) = T , we’d need z2 = T
• For (z2 ∨ u3 ∨ z3) = T , we’d need z3 = T and so on; thus zj = T for all

2 ≤ j ≤ k − 2
• But then (zk−2 ∨ uk−1 ∨ uk) = F

6 / 30



Proof that CNF-SAT ≤p 3-SAT

Proof.
Define TM T = “On input ⟨φ⟩,

1 For each clause C in φ,
2 Convert C to 3-CNF using the given algorithm
3 Output the conjunction (AND) of the result for each clause”

If ⟨φ⟩ ∈ CNF-SAT, then there is some assignment of truth values to variables that
makes φ = T . By setting the extra variables from the algorithm appropriately, the
output is satisfiable so f(⟨φ⟩) ∈ 3-SAT

If ⟨φ⟩ ∉ CNF-SAT, then for any assignment, some clause in φ is false and by
construction, no matter how the extra variables are set for the corresponding output
clauses, one of them is false so f(⟨φ⟩) ∉ 3-SAT

If φ has n total literals, then the output of T has less than 3n clauses each of which
has 3 literals so ∣f(⟨φ⟩)∣ = poly(∣⟨φ⟩∣) thus T takes polynomial time

7 / 30



Proof that CNF-SAT ≤p 3-SAT

Proof.
Define TM T = “On input ⟨φ⟩,

1 For each clause C in φ,
2 Convert C to 3-CNF using the given algorithm
3 Output the conjunction (AND) of the result for each clause”

If ⟨φ⟩ ∈ CNF-SAT, then there is some assignment of truth values to variables that
makes φ = T . By setting the extra variables from the algorithm appropriately, the
output is satisfiable so f(⟨φ⟩) ∈ 3-SAT

If ⟨φ⟩ ∉ CNF-SAT, then for any assignment, some clause in φ is false and by
construction, no matter how the extra variables are set for the corresponding output
clauses, one of them is false so f(⟨φ⟩) ∉ 3-SAT

If φ has n total literals, then the output of T has less than 3n clauses each of which
has 3 literals so ∣f(⟨φ⟩)∣ = poly(∣⟨φ⟩∣) thus T takes polynomial time

7 / 30



Proof that CNF-SAT ≤p 3-SAT

Proof.
Define TM T = “On input ⟨φ⟩,

1 For each clause C in φ,
2 Convert C to 3-CNF using the given algorithm
3 Output the conjunction (AND) of the result for each clause”

If ⟨φ⟩ ∈ CNF-SAT, then there is some assignment of truth values to variables that
makes φ = T . By setting the extra variables from the algorithm appropriately, the
output is satisfiable so f(⟨φ⟩) ∈ 3-SAT

If ⟨φ⟩ ∉ CNF-SAT, then for any assignment, some clause in φ is false and by
construction, no matter how the extra variables are set for the corresponding output
clauses, one of them is false so f(⟨φ⟩) ∉ 3-SAT

If φ has n total literals, then the output of T has less than 3n clauses each of which
has 3 literals so ∣f(⟨φ⟩)∣ = poly(∣⟨φ⟩∣) thus T takes polynomial time

7 / 30



Proof that CNF-SAT ≤p 3-SAT

Proof.
Define TM T = “On input ⟨φ⟩,

1 For each clause C in φ,
2 Convert C to 3-CNF using the given algorithm
3 Output the conjunction (AND) of the result for each clause”

If ⟨φ⟩ ∈ CNF-SAT, then there is some assignment of truth values to variables that
makes φ = T . By setting the extra variables from the algorithm appropriately, the
output is satisfiable so f(⟨φ⟩) ∈ 3-SAT

If ⟨φ⟩ ∉ CNF-SAT, then for any assignment, some clause in φ is false and by
construction, no matter how the extra variables are set for the corresponding output
clauses, one of them is false so f(⟨φ⟩) ∉ 3-SAT

If φ has n total literals, then the output of T has less than 3n clauses each of which
has 3 literals so ∣f(⟨φ⟩)∣ = poly(∣⟨φ⟩∣) thus T takes polynomial time

7 / 30



NP-hard and NP-complete
Language B is NP-hard if every language A ∈ NP is poly-time reducible to B
(∀A ∈ NP. A ≤p B)

Language B is NP-complete if B ∈ NP and B is NP-hard.

Equivalently, B is NP-complete if
1 B ∈ NP
2 ∀A ∈ NP. A ≤p B

NP-complete problems represent the “hardest” problems in NP to solve

Any efficient solution to an NP-complete problem gives an efficient solution to every
problem in NP

8 / 30



NP-hard and NP-complete
Language B is NP-hard if every language A ∈ NP is poly-time reducible to B
(∀A ∈ NP. A ≤p B)

Language B is NP-complete if B ∈ NP and B is NP-hard.

Equivalently, B is NP-complete if
1 B ∈ NP
2 ∀A ∈ NP. A ≤p B

NP-complete problems represent the “hardest” problems in NP to solve

Any efficient solution to an NP-complete problem gives an efficient solution to every
problem in NP

8 / 30



NP-hard and NP-complete
Language B is NP-hard if every language A ∈ NP is poly-time reducible to B
(∀A ∈ NP. A ≤p B)

Language B is NP-complete if B ∈ NP and B is NP-hard.

Equivalently, B is NP-complete if
1 B ∈ NP
2 ∀A ∈ NP. A ≤p B

NP-complete problems represent the “hardest” problems in NP to solve

Any efficient solution to an NP-complete problem gives an efficient solution to every
problem in NP

8 / 30



P, NP, and NP-complete

Theorem
If B is NP-complete and B ∈ P, then P = NP
How would we prove this?

Proof.
If A ∈ NP, then A ≤p B and since B ∈ P, A ∈ P

This gives us a way to try to prove that P = NP: Find an NP-complete problem and
give a polynomial-time solution

9 / 30



P, NP, and NP-complete

Theorem
If B is NP-complete and B ∈ P, then P = NP
How would we prove this?

Proof.
If A ∈ NP, then A ≤p B and since B ∈ P, A ∈ P

This gives us a way to try to prove that P = NP: Find an NP-complete problem and
give a polynomial-time solution

9 / 30



P, NP, and NP-complete

Theorem
If B is NP-complete and B ∈ P, then P = NP
How would we prove this?

Proof.
If A ∈ NP, then A ≤p B and since B ∈ P, A ∈ P

This gives us a way to try to prove that P = NP: Find an NP-complete problem and
give a polynomial-time solution

9 / 30



Poly-time reductions between NP-complete problems

Theorem
If B is NP-complete, C ∈ NP, and B ≤p C, then C is NP-complete

Proof.
Let A ∈ NP. Because B is NP-complete, A ≤p B

Poly-time reduction is transitive and B ≤p C so A ≤p C thus C is NP-hard and
because C ∈ NP, C is NP-complete

Once we have one NP-complete problem, this gives us a way to find a bunch more, but
we need to find one to start us off

10 / 30



Poly-time reductions between NP-complete problems

Theorem
If B is NP-complete, C ∈ NP, and B ≤p C, then C is NP-complete

Proof.
Let A ∈ NP. Because B is NP-complete, A ≤p B

Poly-time reduction is transitive and B ≤p C so A ≤p C thus C is NP-hard and
because C ∈ NP, C is NP-complete

Once we have one NP-complete problem, this gives us a way to find a bunch more, but
we need to find one to start us off

10 / 30



Poly-time reductions between NP-complete problems

Theorem
If B is NP-complete, C ∈ NP, and B ≤p C, then C is NP-complete

Proof.
Let A ∈ NP. Because B is NP-complete, A ≤p B

Poly-time reduction is transitive and B ≤p C so A ≤p C thus C is NP-hard and
because C ∈ NP, C is NP-complete

Once we have one NP-complete problem, this gives us a way to find a bunch more, but
we need to find one to start us off

10 / 30



Cook–Levin theorem

Theorem
SAT is NP-complete

Sipser’s proof actually shows that CNF-SAT is NP-complete

We showed that SAT ∈ NP and a boolean formula in CNF is, of course, a boolean
formula so ⟨φ⟩↦ ⟨φ⟩ is polynomial-time reduction from CNF-SAT to SAT

11 / 30



Cook–Levin theorem

Theorem
SAT is NP-complete
Sipser’s proof actually shows that CNF-SAT is NP-complete

We showed that SAT ∈ NP and a boolean formula in CNF is, of course, a boolean
formula so ⟨φ⟩↦ ⟨φ⟩ is polynomial-time reduction from CNF-SAT to SAT

11 / 30



3-SAT is NP-complete

Theorem
3-SAT is NP-complete
To prove this, we need to show two things: 3-SAT ∈ NP and there is some
NP-complete language A that poly-time reduces to 3-SAT

Proof.
We already showed that CNF-SAT ≤p 3-SAT so all that remains is to show that
3-SAT ∈ NP

But this is true for the same reason SAT ∈ NP: We can verify an assignment of truth
values to variables satisfies a formula in poly time

12 / 30



3-SAT is NP-complete

Theorem
3-SAT is NP-complete
To prove this, we need to show two things: 3-SAT ∈ NP and there is some
NP-complete language A that poly-time reduces to 3-SAT

Proof.
We already showed that CNF-SAT ≤p 3-SAT so all that remains is to show that
3-SAT ∈ NP

But this is true for the same reason SAT ∈ NP: We can verify an assignment of truth
values to variables satisfies a formula in poly time

12 / 30



General technique
If we want to show that some language L is NP-complete, then we need to perform 3
steps

1 Show that L ∈ NP
2 Select some NP-complete language B
3 Show that B ≤p L

Step 1 is frequently easy: If the language is of the form
{w ∣ w has some property or structure}, then the certificate for the verifier is whatever
makes the property true or the structure itself

Steps 2 and 3 can be quite challenging and can require a great deal of cleverness;
3-SAT is usually a good first choice for the NP-complete language

13 / 30



VertexCover is NP-complete
Recall VertexCover = {⟨G, k⟩ ∣ G has a vertex cover of size k} ∈ NP because the
vertex cover itself is the certificate

To show that VertexCover is NP-complete, we want to give a poly-time reduction
from 3-SAT

To do this, we want to take a formula φ that has m clauses C1, C2, . . . , Cm and n
variables x1, x2, . . . , xn and construct an undirected graph G = (V,E) and a k s.t. G
has a vertex cover of size k iff φ is satisfiable

That is, we need to produce a mapping ⟨φ⟩↦ ⟨G, k⟩ such that
⟨φ⟩ ∈ 3-SAT ⟺ ⟨G, k⟩ ∈ VertexCover and we have to be able to compute the
mapping in some polynomial of m and n

14 / 30



VertexCover is NP-complete
Recall VertexCover = {⟨G, k⟩ ∣ G has a vertex cover of size k} ∈ NP because the
vertex cover itself is the certificate

To show that VertexCover is NP-complete, we want to give a poly-time reduction
from 3-SAT

To do this, we want to take a formula φ that has m clauses C1, C2, . . . , Cm and n
variables x1, x2, . . . , xn and construct an undirected graph G = (V,E) and a k s.t. G
has a vertex cover of size k iff φ is satisfiable

That is, we need to produce a mapping ⟨φ⟩↦ ⟨G, k⟩ such that
⟨φ⟩ ∈ 3-SAT ⟺ ⟨G, k⟩ ∈ VertexCover and we have to be able to compute the
mapping in some polynomial of m and n

14 / 30



Gadgets
For each variable and each clause, we want to construct some portion of a graph
Running example: φ = (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

C1

) ∧ (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
C2

)

1 Assignment. For each variable xi create vertices xi

and xi and edge (xi, xi)
2 Satisfiability. For each clause Cj = (aj ∨ bj ∨ cj),

create vertices v1
j , v

2
j , and v

3
j with edges between them

3 Communication. For each clause Cj = (aj ∨ bj ∨ cj),
create edges (v1

j , aj), (v2
j , bj), and (v3

j , cj)

VA =

n

⋃
i=1

{xi, xi}

EA =

n

⋃
i=1

{(xi, xi)}

VS =

m

⋃
j=1

{v
1
j , v

2
j , v

3
j }

ES =

m

⋃
j=1

{(v1
j , v

2
j ), (v2

j , v
3
j ), (v3

j , v
1
j )}

EC =

m

⋃
j=1

{(v1
j , aj), (v2

j , bj), (v3
j , cj)}

Output: G = (V, E), k where
V = VA ∪ VS

E = EA ∪ES ∪EC

k = n + 2m

15 / 30



Gadgets
For each variable and each clause, we want to construct some portion of a graph
Running example: φ = (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

C1

) ∧ (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
C2

)

1 Assignment. For each variable xi create vertices xi

and xi and edge (xi, xi)

2 Satisfiability. For each clause Cj = (aj ∨ bj ∨ cj),
create vertices v1

j , v
2
j , and v

3
j with edges between them

3 Communication. For each clause Cj = (aj ∨ bj ∨ cj),
create edges (v1

j , aj), (v2
j , bj), and (v3

j , cj)

x1 x1 x2 x2 x3 x3

VA =

n

⋃
i=1

{xi, xi}

EA =

n

⋃
i=1

{(xi, xi)}

VS =

m

⋃
j=1

{v
1
j , v

2
j , v

3
j }

ES =

m

⋃
j=1

{(v1
j , v

2
j ), (v2

j , v
3
j ), (v3

j , v
1
j )}

EC =

m

⋃
j=1

{(v1
j , aj), (v2

j , bj), (v3
j , cj)}

Output: G = (V, E), k where
V = VA ∪ VS

E = EA ∪ES ∪EC

k = n + 2m

15 / 30



Gadgets
For each variable and each clause, we want to construct some portion of a graph
Running example: φ = (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

C1

) ∧ (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
C2

)

1 Assignment. For each variable xi create vertices xi

and xi and edge (xi, xi)
2 Satisfiability. For each clause Cj = (aj ∨ bj ∨ cj),

create vertices v1
j , v

2
j , and v

3
j with edges between them

3 Communication. For each clause Cj = (aj ∨ bj ∨ cj),
create edges (v1

j , aj), (v2
j , bj), and (v3

j , cj)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

VA =

n

⋃
i=1

{xi, xi}

EA =

n

⋃
i=1

{(xi, xi)}

VS =

m

⋃
j=1

{v
1
j , v

2
j , v

3
j }

ES =

m

⋃
j=1

{(v1
j , v

2
j ), (v2

j , v
3
j ), (v3

j , v
1
j )}

EC =

m

⋃
j=1

{(v1
j , aj), (v2

j , bj), (v3
j , cj)}

Output: G = (V, E), k where
V = VA ∪ VS

E = EA ∪ES ∪EC

k = n + 2m

15 / 30



Gadgets
For each variable and each clause, we want to construct some portion of a graph
Running example: φ = (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

C1

) ∧ (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
C2

)

1 Assignment. For each variable xi create vertices xi

and xi and edge (xi, xi)
2 Satisfiability. For each clause Cj = (aj ∨ bj ∨ cj),

create vertices v1
j , v

2
j , and v

3
j with edges between them

3 Communication. For each clause Cj = (aj ∨ bj ∨ cj),
create edges (v1

j , aj), (v2
j , bj), and (v3

j , cj)
x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

VA =

n

⋃
i=1

{xi, xi}

EA =

n

⋃
i=1

{(xi, xi)}

VS =

m

⋃
j=1

{v
1
j , v

2
j , v

3
j }

ES =

m

⋃
j=1

{(v1
j , v

2
j ), (v2

j , v
3
j ), (v3

j , v
1
j )}

EC =

m

⋃
j=1

{(v1
j , aj), (v2

j , bj), (v3
j , cj)}

Output: G = (V, E), k where
V = VA ∪ VS

E = EA ∪ES ∪EC

k = n + 2m

15 / 30



Gadgets
For each variable and each clause, we want to construct some portion of a graph
Running example: φ = (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

C1

) ∧ (x1 ∨ x2 ∨ x3Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
C2

)

1 Assignment. For each variable xi create vertices xi

and xi and edge (xi, xi)
2 Satisfiability. For each clause Cj = (aj ∨ bj ∨ cj),

create vertices v1
j , v

2
j , and v

3
j with edges between them

3 Communication. For each clause Cj = (aj ∨ bj ∨ cj),
create edges (v1

j , aj), (v2
j , bj), and (v3

j , cj)
x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

VA =

n

⋃
i=1

{xi, xi}

EA =

n

⋃
i=1

{(xi, xi)}

VS =

m

⋃
j=1

{v
1
j , v

2
j , v

3
j }

ES =

m

⋃
j=1

{(v1
j , v

2
j ), (v2

j , v
3
j ), (v3

j , v
1
j )}

EC =

m

⋃
j=1

{(v1
j , aj), (v2

j , bj), (v3
j , cj)}

Output: G = (V, E), k where
V = VA ∪ VS

E = EA ∪ES ∪EC

k = n + 2m 15 / 30



If G has a VC of size n + 2m. . .
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at
least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either xi or xi for each i and
exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size n + 2m = 7

16 / 30



If G has a VC of size n + 2m. . .
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at
least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either xi or xi for each i and
exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size n + 2m = 7

16 / 30



If G has a VC of size n + 2m. . .
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at
least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either xi or xi for each i and
exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size n + 2m = 7

16 / 30



If G has a VC of size n + 2m. . .
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If G has a vertex cover VC of size n + 2m, then to cover the n assignment edges, at
least n of the literal vertices must be in VC

To cover the satisfiability edges, at least 2 vertices in each triangle must be in VC

Thus VC contains exactly n of the assignment vertices, either xi or xi for each i and
exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size n + 2m = 7

16 / 30



If G has a VC of size n + 2m, then φ is satisfiable
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

Create a satisfying assignment for φ by setting xi = T if node xi ∈ VC

Consider the triangle corresponding to clause Cj , 2 of the vertices are in VC and the
third is connected to its literal which must be in VC in order to cover the
communication edge

For example, edge (v1
1, x1) is covered by x1 ∈ VC so clause C1 is satisfied

Similarly for edge (v3
2, x3) and clause C2

Thus each clause is satisfied so φ is satisfied

17 / 30



If G has a VC of size n + 2m, then φ is satisfiable
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

Create a satisfying assignment for φ by setting xi = T if node xi ∈ VC

Consider the triangle corresponding to clause Cj , 2 of the vertices are in VC and the
third is connected to its literal which must be in VC in order to cover the
communication edge

For example, edge (v1
1, x1) is covered by x1 ∈ VC so clause C1 is satisfied

Similarly for edge (v3
2, x3) and clause C2

Thus each clause is satisfied so φ is satisfied

17 / 30



If G has a VC of size n + 2m, then φ is satisfiable
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

Create a satisfying assignment for φ by setting xi = T if node xi ∈ VC

Consider the triangle corresponding to clause Cj , 2 of the vertices are in VC and the
third is connected to its literal which must be in VC in order to cover the
communication edge

For example, edge (v1
1, x1) is covered by x1 ∈ VC so clause C1 is satisfied

Similarly for edge (v3
2, x3) and clause C2

Thus each clause is satisfied so φ is satisfied
17 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices

18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices

18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices

18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices

18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices

18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices
18 / 30



If φ is satisfied by some assignment, then G has a VC of size n + 2m
φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

x1 x1 x2 x2 x3 x3

v
1
1

v
2
1

v
3
1 v

1
2

v
2
2

v
3
2

If φ is satisfied by some assignment, then we can construct a vertex cover of size
n + 2m consisting of each of the true assignment literals and two of the satisfiability
vertices of each clause as required to cover the communication edges connected to
false literals

For example, x1 = x2 = x3 = F satisfies φ so first put x1, x2, and x3 in VC

Now (v1
1, x1) and (v3

1, x3) need to be covered so add v1
1 and v3

1 to VC

All of the communication edges for clause C2 are covered, so pick any 2 vertices
18 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap

1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)
4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP

2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)
4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩

3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),
then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)

4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)

4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)
4 We showed that if φ is satisfiable, then G has a vertex cover of size k

5 We argued that the construction takes polynomial time
Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)
4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



So VertexCover is NP-complete
Lastly, G takes polynomial time to create since it has a polynomial number of vertices
and edges

Recap
1 We showed that VertexCover ∈ NP
2 We gave a construction ⟨φ⟩↦ ⟨G, k⟩
3 We showed that if G has a vertex cover of size k (i.e., ⟨G, k⟩ ∈ VertexCover),

then φ is satisfiable (i.e., ⟨φ⟩ ∈ 3-SAT)
4 We showed that if φ is satisfiable, then G has a vertex cover of size k
5 We argued that the construction takes polynomial time

Steps 2–5 show 3-SAT ≤p VertexCover and thus VertexCover is NP-complete

19 / 30



Independent set
If G = (V,E) is an undirected graph, an independent set is a set I ⊆ V such that no
two vertices in I are adjacent
I.e., ∀u, v ∈ I (u, v) ∉ E

E.g., the yellow vertices form an independent set

1

2

34

5

1

2

3

4

a

b

c

20 / 30



IndSet
IndSet = {⟨G, k⟩ ∣ G is an undirected graph which has an independent set of size k}
How would we show that IndSet is NP-complete?

We need to show
1 IndSet ∈ NP and
2 There is some A which is NP-complete and A ≤p IndSet

21 / 30



IndSet
IndSet = {⟨G, k⟩ ∣ G is an undirected graph which has an independent set of size k}
How would we show that IndSet is NP-complete?

We need to show
1 IndSet ∈ NP and
2 There is some A which is NP-complete and A ≤p IndSet

21 / 30



IndSet ∈ NP
What is a certificate for IndSet?

The independent set I of size k.

We can build a verifier for IndSet:
V = “On input ⟨G, k, I⟩ where G = (V,E),

1 If I /⊆ V or ∣I∣ ≠ k, then reject
2 For each (u, v) ∈ E,
3 If u ∈ I and v ∈ I, then reject
4 Otherwise accept”

Each step clearly takes polynomial time and the body of the loop happens once per
edge so V is a polynomial time verifier

22 / 30



IndSet ∈ NP
What is a certificate for IndSet?
The independent set I of size k.

We can build a verifier for IndSet:
V = “On input ⟨G, k, I⟩ where G = (V,E),

1 If I /⊆ V or ∣I∣ ≠ k, then reject
2 For each (u, v) ∈ E,
3 If u ∈ I and v ∈ I, then reject
4 Otherwise accept”

Each step clearly takes polynomial time and the body of the loop happens once per
edge so V is a polynomial time verifier

22 / 30



IndSet ∈ NP
What is a certificate for IndSet?
The independent set I of size k.

We can build a verifier for IndSet:
V = “On input ⟨G, k, I⟩ where G = (V,E),

1 If I /⊆ V or ∣I∣ ≠ k, then reject
2 For each (u, v) ∈ E,
3 If u ∈ I and v ∈ I, then reject
4 Otherwise accept”

Each step clearly takes polynomial time and the body of the loop happens once per
edge so V is a polynomial time verifier

22 / 30



VertexCover ≤p IndSet
We can reduce from VertexCover to IndSet by giving a polynomial time map
⟨G, k⟩↦ ⟨G′, k′⟩ such that
⟨G, k⟩ ∈ VertexCover ⟺ ⟨G′, k′⟩ ∈ IndSet

Grey vertices form a vertex cover, What are some independent sets?

1

2

34

5

1

2

3

4

a

b

c

23 / 30



VertexCover ≤p IndSet
We can reduce from VertexCover to IndSet by giving a polynomial time map
⟨G, k⟩↦ ⟨G′, k′⟩ such that
⟨G, k⟩ ∈ VertexCover ⟺ ⟨G′, k′⟩ ∈ IndSet

Grey vertices form a vertex cover, What are some independent sets?

1

2

34

5

1

2

3

4

a

b

c

23 / 30



VertexCover ≤p IndSet
We can reduce from VertexCover to IndSet by giving a polynomial time map
⟨G, k⟩↦ ⟨G′, k′⟩ such that
⟨G, k⟩ ∈ VertexCover ⟺ ⟨G′, k′⟩ ∈ IndSet

Grey vertices form a vertex cover, What are some independent sets?

1

2

34

5

1

2

3

4

a

b

c

23 / 30



VertexCover ≤p IndSet
We can reduce from VertexCover to IndSet by giving a polynomial time map
⟨G, k⟩↦ ⟨G′, k′⟩ such that
⟨G, k⟩ ∈ VertexCover ⟺ ⟨G′, k′⟩ ∈ IndSet

Grey vertices form a vertex cover, What are some independent sets?

1

2

34

5

1

2

3

4

a

b

c

23 / 30



VertexCover ≤p IndSet
We can reduce from VertexCover to IndSet by giving a polynomial time map
⟨G, k⟩↦ ⟨G′, k′⟩ such that
⟨G, k⟩ ∈ VertexCover ⟺ ⟨G′, k′⟩ ∈ IndSet

Grey vertices form a vertex cover, What are some independent sets?

1

2

34

5

1

2

3

4

a

b

c

23 / 30



Relationship between vertex covers and independent sets
It looks like if G = (V,E) has a vertex cover C, then I = V ∖C is an independent set,
and vice versa
Can we prove that?

Yes!

• If C ⊆ V is a vertex cover for G and I = V ∖ C, then for all (u, v) ∈ E, either
u ∈ C or v ∈ C. Therefore, for all u, v ∈ I, (u, v) ∉ E so I is an independent set

• If I ⊆ V is an independent set and C = V ∖ I, then for all (u, v) ∈ E, at least
one of u or v is in C [why?] so C is a vertex cover

How does this help us?
It means that G has n vertices, then G has a vertex cover of size k iff G has an
independent set of size n − k

24 / 30



Relationship between vertex covers and independent sets
It looks like if G = (V,E) has a vertex cover C, then I = V ∖C is an independent set,
and vice versa
Can we prove that?

Yes!

• If C ⊆ V is a vertex cover for G and I = V ∖ C, then for all (u, v) ∈ E, either
u ∈ C or v ∈ C. Therefore, for all u, v ∈ I, (u, v) ∉ E so I is an independent set

• If I ⊆ V is an independent set and C = V ∖ I, then for all (u, v) ∈ E, at least
one of u or v is in C [why?] so C is a vertex cover

How does this help us?
It means that G has n vertices, then G has a vertex cover of size k iff G has an
independent set of size n − k

24 / 30



Relationship between vertex covers and independent sets
It looks like if G = (V,E) has a vertex cover C, then I = V ∖C is an independent set,
and vice versa
Can we prove that?

Yes!
• If C ⊆ V is a vertex cover for G and I = V ∖ C, then for all (u, v) ∈ E, either
u ∈ C or v ∈ C. Therefore, for all u, v ∈ I, (u, v) ∉ E so I is an independent set

• If I ⊆ V is an independent set and C = V ∖ I, then for all (u, v) ∈ E, at least
one of u or v is in C [why?] so C is a vertex cover

How does this help us?
It means that G has n vertices, then G has a vertex cover of size k iff G has an
independent set of size n − k

24 / 30



Relationship between vertex covers and independent sets
It looks like if G = (V,E) has a vertex cover C, then I = V ∖C is an independent set,
and vice versa
Can we prove that?

Yes!
• If C ⊆ V is a vertex cover for G and I = V ∖ C, then for all (u, v) ∈ E, either
u ∈ C or v ∈ C. Therefore, for all u, v ∈ I, (u, v) ∉ E so I is an independent set

• If I ⊆ V is an independent set and C = V ∖ I, then for all (u, v) ∈ E, at least
one of u or v is in C [why?] so C is a vertex cover

How does this help us?

It means that G has n vertices, then G has a vertex cover of size k iff G has an
independent set of size n − k

24 / 30



Relationship between vertex covers and independent sets
It looks like if G = (V,E) has a vertex cover C, then I = V ∖C is an independent set,
and vice versa
Can we prove that?

Yes!
• If C ⊆ V is a vertex cover for G and I = V ∖ C, then for all (u, v) ∈ E, either
u ∈ C or v ∈ C. Therefore, for all u, v ∈ I, (u, v) ∉ E so I is an independent set

• If I ⊆ V is an independent set and C = V ∖ I, then for all (u, v) ∈ E, at least
one of u or v is in C [why?] so C is a vertex cover

How does this help us?
It means that G has n vertices, then G has a vertex cover of size k iff G has an
independent set of size n − k

24 / 30



VertexCover ≤p IndSet

Proof.
Our polynomial time mapping is ⟨G, k⟩↦ ⟨G,n − k⟩ where G = (V,E) and ∣V ∣ = n

Since G has a vertex cover of size k iff G has an independent set of size n − k,

⟨G, k⟩ ∈ VertexCover ⟺ ⟨G,n − k⟩ ∈ IndSet

Since IndSet ∈ NP, VertexCover ≤p IndSet, and VertexCover is
NP-complete, IndSet is NP-complete

25 / 30



VertexCover ≤p IndSet

Proof.
Our polynomial time mapping is ⟨G, k⟩↦ ⟨G,n − k⟩ where G = (V,E) and ∣V ∣ = n

Since G has a vertex cover of size k iff G has an independent set of size n − k,

⟨G, k⟩ ∈ VertexCover ⟺ ⟨G,n − k⟩ ∈ IndSet

Since IndSet ∈ NP, VertexCover ≤p IndSet, and VertexCover is
NP-complete, IndSet is NP-complete

25 / 30



Clique is NP-complete
We already proved that Clique ∈ NP so all that remains is to give a polynomial time
mapping from some NP-complete problem

Let’s use IndSet

We want a mapping ⟨G, k⟩↦ ⟨G′, k′⟩ such that G has an independent set of size k iff
G
′ has a clique of size k′

Recall
• Independent set. I is an independent set if there is no edge between any two

vertices in I
• Clique. C is a clique if there is an edge between every two vertices in C

26 / 30



Clique is NP-complete
We already proved that Clique ∈ NP so all that remains is to give a polynomial time
mapping from some NP-complete problem

Let’s use IndSet

We want a mapping ⟨G, k⟩↦ ⟨G′, k′⟩ such that G has an independent set of size k iff
G
′ has a clique of size k′

Recall
• Independent set. I is an independent set if there is no edge between any two

vertices in I
• Clique. C is a clique if there is an edge between every two vertices in C

26 / 30



Complement of a graph
The complement of a graph G = (V,E) is a graph G′ = (V,E ′) where (u, v) ∈ E iff
(u, v) ∉ E ′ (assuming u ≠ v)

Grey vertices form a clique, yellow form an independent set

1

2

34

5

1

2

34

5

27 / 30



Complement of a graph
The complement of a graph G = (V,E) is a graph G′ = (V,E ′) where (u, v) ∈ E iff
(u, v) ∉ E ′ (assuming u ≠ v)

Grey vertices form a clique, yellow form an independent set

1

2

34

5

1

2

34

5

27 / 30



Complement of a graph
The complement of a graph G = (V,E) is a graph G′ = (V,E ′) where (u, v) ∈ E iff
(u, v) ∉ E ′ (assuming u ≠ v)

Grey vertices form a clique, yellow form an independent set

1

2

34

5

1

2

34

5

27 / 30



Complement of a graph
The complement of a graph G = (V,E) is a graph G′ = (V,E ′) where (u, v) ∈ E iff
(u, v) ∉ E ′ (assuming u ≠ v)

Grey vertices form a clique, yellow form an independent set

1

2

34

5

1

2

34

5

27 / 30



Relationship between a clique and an independent set
Again, this suggests a relationship between cliques and independent sets that we can
prove
Let G = (V,E) be an undirected graph and G′ = (V,E ′) be its complement

• If C ⊆ V is a clique in G, then for each distinct u, v ∈ C, (u, v) ∈ E and thus
(u, v) ∉ E ′ so C is an independent set in G′

• And vice versa

28 / 30



Relationship between a clique and an independent set
Again, this suggests a relationship between cliques and independent sets that we can
prove
Let G = (V,E) be an undirected graph and G′ = (V,E ′) be its complement
• If C ⊆ V is a clique in G, then for each distinct u, v ∈ C, (u, v) ∈ E and thus

(u, v) ∉ E ′ so C is an independent set in G′

• And vice versa

28 / 30



Relationship between a clique and an independent set
Again, this suggests a relationship between cliques and independent sets that we can
prove
Let G = (V,E) be an undirected graph and G′ = (V,E ′) be its complement
• If C ⊆ V is a clique in G, then for each distinct u, v ∈ C, (u, v) ∈ E and thus

(u, v) ∉ E ′ so C is an independent set in G′

• And vice versa

28 / 30



IndSet ≤p Clique
The polynomial time mapping is ⟨G, k⟩↦ ⟨G′, k⟩ where G′ is the complement of G

Since Clique ∈ NP and IndSet ≤p Clique, Clique is NP-complete

29 / 30



Other NP-complete and related problems

• There are many other NP-complete problems

• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he
showed were NP-complete by reducing from SAT

• In 1979, Michael Garey and David Johnson published a (fantastic) book
containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT

• In 1979, Michael Garey and David Johnson published a (fantastic) book
containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found

• There are problems known to be in NP which we don’t know to be either in P or
NP-complete

• NP-intermediate is the class of language that are in NP but are neither in P nor
are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete

• NP-intermediate is the class of language that are in NP but are neither in P nor
are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP

• There are languages in NP and co-NP which aren’t known to be in P
(P ⊆ NP ∩ co-NP)

30 / 30



Other NP-complete and related problems

• There are many other NP-complete problems
• In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he

showed were NP-complete by reducing from SAT
• In 1979, Michael Garey and David Johnson published a (fantastic) book

containing a massive list of NP-complete problems organized with nice reductions
from earlier problems

• Since then, more NP-complete problems have been found
• There are problems known to be in NP which we don’t know to be either in P or

NP-complete
• NP-intermediate is the class of language that are in NP but are neither in P nor

are NP-complete. In 1975, Richard Ladner proved that if P ≠ NP, then there are
NP-intermediate problems (if P = NP, then there are none)

• co-NP is the class of languages whose complements are in NP
• There are languages in NP and co-NP which aren’t known to be in P

(P ⊆ NP ∩ co-NP)

30 / 30


	Polynomial-time reducibility
	NP-complete
	NP-complete problems

