CS 301
 Lecture 25 - NP-complete

Polynomial-time reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial-time computable function if some poly-time TM M exists that halts with just $f(w)$ on its tape when run on w
I.e., f is a computable function as defined before and its TM runs in time poly $(|w|)$

Polynomial-time reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial-time computable function if some poly-time TM M exists that halts with just $f(w)$ on its tape when run on w
I.e., f is a computable function as defined before and its TM runs in time poly $(|w|)$
A is polynomial-time reducible to B (written $A \leq_{\mathrm{p}} B$) if a polynomial-time computable function f exists such that $w \in A \Longleftrightarrow f(w) \in B$
I.e., $A \leq_{\mathrm{m}} B$ and the computable mapping is polynomial time

Another "good-news" reduction theorem

Theorem
If $A \leq_{\mathrm{p}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$
Similar proof to all of the others

Another "good-news" reduction theorem

Theorem

If $A \leq_{\mathrm{p}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time $M^{\prime}=$ "On input w,
(1) Compute $f(w)$
(2) Run M on $f(w)$; if M accepts, then accept; otherwise reject"

Another "good-news" reduction theorem

Theorem

If $A \leq_{\mathrm{p}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time $M^{\prime}=$ "On input w,
(1) Compute $f(w)$
(2) Run M on $f(w)$; if M accepts, then accept; otherwise reject"

Computing $f(w)$ takes time poly $(|w|)$ and $|f(w)|=\operatorname{poly}(|w|)$
Running M on $f(w)$ takes time $\operatorname{poly}(|f(w)|)=\operatorname{poly}(\operatorname{poly}(|w|))=\operatorname{poly}(|w|)$
Thus, M^{\prime} decides A in polynomial time so $A \in \mathrm{P}$

Another "good-news" reduction theorem

Theorem

If $A \leq_{\mathrm{p}} B$ and $B \in \mathrm{P}$, then $A \in \mathrm{P}$
Similar proof to all of the others
Proof.
Let f be the poly-time reduction and let M decide B in poly time $M^{\prime}=$ "On input w,
(1) Compute $f(w)$
(2) Run M on $f(w)$; if M accepts, then accept; otherwise reject"

Computing $f(w)$ takes time $\operatorname{poly}(|w|)$ and $|f(w)|=\operatorname{poly}(|w|)$
Running M on $f(w)$ takes time $\operatorname{poly}(|f(w)|)=\operatorname{poly}(\operatorname{poly}(|w|))=\operatorname{poly}(|w|)$
Thus, M^{\prime} decides A in polynomial time so $A \in \mathrm{P}$
Replacing P with NP in the proof and using NTMs rather than TMs shows that $A \leq{ }_{\mathrm{p}} B$ and $B \in \mathrm{NP}$, then $A \in \mathrm{NP}$

CNF-SAT $\leq_{\mathrm{p}} 3-\mathrm{SAT}$

$$
\begin{aligned}
\mathrm{CNF}-\mathrm{SAT} & =\{\langle\phi\rangle \mid \phi \text { is in CNF }\} \\
3-\mathrm{SAT} & =\{\langle\phi\rangle \mid \phi \text { is in 3-CNF }\}
\end{aligned}
$$

Show that CNF-SAT $\leq{ }_{\mathrm{p}} 3$-SAT
To do this, we need to give a poly-time algorithm that converts ϕ in CNF to ϕ^{\prime} in CNF where each clause has exactly 3 literals
$\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$ where each C_{i} is a disjunction (OR) of literals
We just need a procedure to convert a clause $C=\left(u_{1} \vee u_{2} \vee \cdots \vee u_{k}\right)$ to 3-CNF

Converting a clause to 3-CNF

Four cases
(1) $C=u$: Output $u_{1} \vee u_{1} \vee u_{1}$

Converting a clause to 3-CNF

Four cases
(1) $C=u$: Output $u_{1} \vee u_{1} \vee u_{1}$
(2) $C=u_{1} \vee u_{2}$: Output $u_{1} \vee u_{2} \vee u_{2}$

Converting a clause to 3-CNF

Four cases
(1) $C=u$: Output $u_{1} \vee u_{1} \vee u_{1}$
(2) $C=u_{1} \vee u_{2}$: Output $u_{1} \vee u_{2} \vee u_{2}$
(3) $C=u_{1} \vee u_{2} \vee u_{3}$: Output C

Converting a clause to 3-CNF

Four cases

(1) $C=u$: Output $u_{1} \vee u_{1} \vee u_{1}$
(2) $C=u_{1} \vee u_{2}$: Output $u_{1} \vee u_{2} \vee u_{2}$
(3) $C=u_{1} \vee u_{2} \vee u_{3}$: Output C
(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

For example,

$$
(a \vee b \vee c \vee d \vee e) \mapsto\left(a \vee b \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee c \vee z_{3}\right) \wedge\left(\overline{z_{3}} \vee d \vee e\right)
$$

Converting a clause to 3-CNF

Four cases

(1) $C=u$: Output $u_{1} \vee u_{1} \vee u_{1}$
(2) $C=u_{1} \vee u_{2}$: Output $u_{1} \vee u_{2} \vee u_{2}$
(3) $C=u_{1} \vee u_{2} \vee u_{3}$: Output C
(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

For example,

$$
(a \vee b \vee c \vee d \vee e) \mapsto\left(a \vee b \vee z_{2}\right) \wedge\left(\overline{z_{2}} \vee c \vee z_{3}\right) \wedge\left(\overline{z_{3}} \vee d \vee e\right)
$$

Cases 1-3 clearly preserve the property that any assignment that makes C true makes the output true and vice versa

Correctness of case 4

(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\phi^{\prime}=\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

If $C=T$, then there is some true literal, say $u_{i}=T$, then $\phi^{\prime}=T$ by setting

$$
z_{j}= \begin{cases}T & \text { for } j<i \\ F & \text { for } j \geq i\end{cases}
$$

Even if all of the other literals are false, setting z_{j} this way satisfies each clause in ϕ^{\prime}

Correctness of case 4

(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\phi^{\prime}=\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

If $C=T$, then there is some true literal, say $u_{i}=T$, then $\phi^{\prime}=T$ by setting

$$
z_{j}= \begin{cases}T & \text { for } j<i \\ F & \text { for } j \geq i\end{cases}
$$

Even if all of the other literals are false, setting z_{j} this way satisfies each clause in ϕ^{\prime}
If $u_{1}=u_{2}=\cdots=u_{k}=F$, then no matter how we set the z_{j}, at least one of the clauses in ϕ^{\prime} is false:

- For $\left(u_{1} \vee u_{2} \vee z_{2}\right)=T$, we'd need $z_{2}=T$

Correctness of case 4

(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\phi^{\prime}=\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

If $C=T$, then there is some true literal, say $u_{i}=T$, then $\phi^{\prime}=T$ by setting

$$
z_{j}= \begin{cases}T & \text { for } j<i \\ F & \text { for } j \geq i\end{cases}
$$

Even if all of the other literals are false, setting z_{j} this way satisfies each clause in ϕ^{\prime}
If $u_{1}=u_{2}=\cdots=u_{k}=F$, then no matter how we set the z_{j}, at least one of the clauses in ϕ^{\prime} is false:

- For $\left(u_{1} \vee u_{2} \vee z_{2}\right)=T$, we'd need $z_{2}=T$
- For $\left(\overline{z_{2}} \vee u_{3} \vee z_{3}\right)=T$, we'd need $z_{3}=T$ and so on; thus $z_{j}=T$ for all $2 \leq j \leq k-2$

Correctness of case 4

(4) $C=u_{1} \vee u_{2} \vee \cdots \vee u_{k}$: Introduce $k-3$ new variables $z_{2}, z_{3}, \cdots z_{k-2}$ and output

$$
\phi^{\prime}=\left(u_{1} \vee u_{2} \vee z_{2}\right) \wedge\left(\bigwedge_{i=3}^{k-2}\left(\overline{z_{i-1}} \vee u_{i} \vee z_{i}\right)\right) \wedge\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)
$$

If $C=T$, then there is some true literal, say $u_{i}=T$, then $\phi^{\prime}=T$ by setting

$$
z_{j}= \begin{cases}T & \text { for } j<i \\ F & \text { for } j \geq i\end{cases}
$$

Even if all of the other literals are false, setting z_{j} this way satisfies each clause in ϕ^{\prime}
If $u_{1}=u_{2}=\cdots=u_{k}=F$, then no matter how we set the z_{j}, at least one of the clauses in ϕ^{\prime} is false:

- For $\left(u_{1} \vee u_{2} \vee z_{2}\right)=T$, we'd need $z_{2}=T$
- For $\left(\overline{z_{2}} \vee u_{3} \vee z_{3}\right)=T$, we'd need $z_{3}=T$ and so on; thus $z_{j}=T$ for all $2 \leq j \leq k-2$
- But then $\left(\overline{z_{k-2}} \vee u_{k-1} \vee u_{k}\right)=F$

Proof that CNF-SAT $\leq_{p} 3-$ SAT

Proof.
Define TM $T=$ "On input $\langle\phi\rangle$,
(1) For each clause C in ϕ,
(2) Convert C to 3-CNF using the given algorithm
(3) Output the conjunction (AND) of the result for each clause"

Proof that CNF-SAT $\leq_{p} 3-$ SAT

Proof.

Define TM $T=$ "On input $\langle\phi\rangle$,
(1) For each clause C in ϕ,
(2) Convert C to 3-CNF using the given algorithm
(3) Output the conjunction (AND) of the result for each clause"

If $\langle\phi\rangle \in$ CNF-SAT, then there is some assignment of truth values to variables that makes $\phi=T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle\phi\rangle) \in 3$-SAT

Proof that CNF-SAT $\leq_{p} 3-$ SAT

Proof.
Define TM $T=$ "On input $\langle\phi\rangle$,
(1) For each clause C in ϕ,
(2) Convert C to 3-CNF using the given algorithm
(3) Output the conjunction (AND) of the result for each clause"

If $\langle\phi\rangle \in$ CNF-SAT, then there is some assignment of truth values to variables that makes $\phi=T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle\phi\rangle) \in 3$-SAT

If $\langle\phi\rangle \notin$ CNF-SAT, then for any assignment, some clause in ϕ is false and by construction, no matter how the extra variables are set for the corresponding output clauses, one of them is false so $f(\langle\phi\rangle) \notin 3$-SAT

Proof that CNF-SAT $\leq_{p} 3-$ SAT

Proof.

Define TM $T=$ "On input $\langle\phi\rangle$,
(1) For each clause C in ϕ,
(2) Convert C to 3-CNF using the given algorithm
(3) Output the conjunction (AND) of the result for each clause"

If $\langle\phi\rangle \in$ CNF-SAT, then there is some assignment of truth values to variables that makes $\phi=T$. By setting the extra variables from the algorithm appropriately, the output is satisfiable so $f(\langle\phi\rangle) \in 3$-SAT

If $\langle\phi\rangle \notin$ CNF-SAT, then for any assignment, some clause in ϕ is false and by construction, no matter how the extra variables are set for the corresponding output clauses, one of them is false so $f(\langle\phi\rangle) \notin 3$-SAT

If ϕ has n total literals, then the output of T has less than $3 n$ clauses each of which has 3 literals so $|f(\langle\phi\rangle)|=\operatorname{poly}(|\langle\phi\rangle|)$ thus T takes polynomial time

NP-hard and NP-complete

Language B is NP-hard if every language $A \in$ NP is poly-time reducible to B $\left(\forall A \in \mathrm{NP} . A \leq_{\mathrm{p}} B\right)$

NP-hard and NP-complete

Language B is NP-hard if every language $A \in \mathrm{NP}$ is poly-time reducible to B $\left(\forall A \in\right.$ NP. $\left.A \leq_{\mathrm{p}} B\right)$

Language B is NP-complete if $B \in \mathrm{NP}$ and B is NP-hard.
Equivalently, B is NP-complete if
(1) $B \in \mathrm{NP}$
(2) $\forall A \in$ NP. $A \leq_{\mathrm{p}} B$

NP-hard and NP-complete

Language B is NP-hard if every language $A \in \mathrm{NP}$ is poly-time reducible to B $\left(\forall A \in\right.$ NP. $\left.A \leq_{\mathrm{p}} B\right)$

Language B is NP-complete if $B \in \mathrm{NP}$ and B is NP-hard.
Equivalently, B is NP-complete if
(1) $B \in \mathrm{NP}$
(2) $\forall A \in$ NP. $A \leq_{\mathrm{p}} B$

NP-complete problems represent the "hardest" problems in NP to solve
Any efficient solution to an NP-complete problem gives an efficient solution to every problem in NP

P, NP, and NP-complete

Theorem
If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
How would we prove this?

P, NP, and NP-complete

Theorem
If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
How would we prove this?
Proof.
If $A \in \mathrm{NP}$, then $A \leq_{\mathrm{p}} B$ and since $B \in \mathrm{P}, A \in \mathrm{P}$

P, NP, and NP-complete

Theorem
If B is NP-complete and $B \in \mathrm{P}$, then $\mathrm{P}=\mathrm{NP}$
How would we prove this?
Proof.
If $A \in \mathrm{NP}$, then $A \leq_{\mathrm{p}} B$ and since $B \in \mathrm{P}, A \in \mathrm{P}$

This gives us a way to try to prove that $\mathrm{P}=\mathrm{NP}$: Find an NP-complete problem and give a polynomial-time solution

Poly-time reductions between NP-complete problems

Theorem
If B is NP-complete, $C \in \mathrm{NP}$, and $B \leq_{\mathrm{p}} C$, then C is NP-complete

Poly-time reductions between NP-complete problems

Theorem
If B is NP-complete, $C \in \mathrm{NP}$, and $B \leq_{\mathrm{p}} C$, then C is NP-complete
Proof.
Let $A \in$ NP. Because B is NP-complete, $A \leq_{\mathrm{p}} B$
Poly-time reduction is transitive and $B \leq_{\mathrm{p}} C$ so $A \leq_{\mathrm{p}} C$ thus C is NP-hard and because $C \in \mathrm{NP}, C$ is NP-complete

Poly-time reductions between NP-complete problems

```
Theorem
If \(B\) is NP-complete, \(C \in \mathrm{NP}\), and \(B \leq_{\mathrm{p}} C\), then \(C\) is NP-complete
Proof.
Let \(A \in\) NP. Because \(B\) is NP-complete, \(A \leq_{\mathrm{p}} B\)
```

Poly-time reduction is transitive and $B \leq_{\mathrm{p}} C$ so $A \leq_{\mathrm{p}} C$ thus C is NP-hard and
because $C \in \mathrm{NP}, C$ is NP-complete

Once we have one NP-complete problem, this gives us a way to find a bunch more, but we need to find one to start us off

Cook-Levin theorem

Theorem
SAT is NP-complete

Cook-Levin theorem

Theorem
 SAT is NP-complete

Sipser's proof actually shows that CNF-SAT is NP-complete
We showed that SAT \in NP and a boolean formula in CNF is, of course, a boolean formula so $\langle\phi\rangle \mapsto\langle\phi\rangle$ is polynomial-time reduction from CNF-SAT to SAT

3-SAT is NP-complete

Theorem
3-SAT is NP-complete

To prove this, we need to show two things: 3 -SAT \in NP and there is some NP-complete language A that poly-time reduces to 3 -SAT

3-SAT is NP-complete

Theorem

3-SAT is NP-complete
To prove this, we need to show two things: 3 -SAT \in NP and there is some
NP-complete language A that poly-time reduces to 3-SAT
Proof.
We already showed that CNF-SAT $\leq_{p} 3$-SAT so all that remains is to show that 3 -SAT \in NP

But this is true for the same reason SAT \in NP: We can verify an assignment of truth values to variables satisfies a formula in poly time

General technique

If we want to show that some language L is NP-complete, then we need to perform 3 steps
(1) Show that $L \in \mathrm{NP}$
(2) Select some NP-complete language B
(3) Show that $B \leq_{\mathrm{p}} L$

Step 1 is frequently easy: If the language is of the form
$\{w \mid w$ has some property or structure $\}$, then the certificate for the verifier is whatever makes the property true or the structure itself

Steps 2 and 3 can be quite challenging and can require a great deal of cleverness; 3 -SAT is usually a good first choice for the NP-complete language

VertexCover is NP-complete

Recall VertexCover $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $k\} \in$ NP because the vertex cover itself is the certificate

To show that VertexCover is NP-complete, we want to give a poly-time reduction from 3-SAT

VertexCover is NP-complete

Recall VertexCover $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $k\} \in$ NP because the vertex cover itself is the certificate

To show that VertexCover is NP-complete, we want to give a poly-time reduction from 3-SAT

To do this, we want to take a formula ϕ that has m clauses $C_{1}, C_{2}, \ldots, C_{m}$ and n variables $x_{1}, x_{2}, \ldots, x_{n}$ and construct an undirected graph $G=(V, E)$ and a k s.t. G has a vertex cover of size k iff ϕ is satisfiable

That is, we need to produce a mapping $\langle\phi\rangle \mapsto\langle G, k\rangle$ such that
$\langle\phi\rangle \in 3$-SAT $\Longleftrightarrow\langle G, k\rangle \in$ VERTEXCoVER and we have to be able to compute the mapping in some polynomial of m and n

Gadgets

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi=(\underbrace{x_{1} \vee \overline{x_{2}} \vee x_{3}}_{C_{1}}) \wedge(\underbrace{\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}}_{C_{2}})$

Gadgets

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi=(\underbrace{x_{1} \vee \overline{x_{2}} \vee x_{3}}_{C_{1}}) \wedge(\underbrace{\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}}_{C_{2}})$
(1) Assignment. For each variable x_{i} create vertices $x_{i} \quad V_{A}=\bigcup_{i=1}^{n}\left\{x_{i}, \overline{x_{i}}\right\}$
and $\overline{x_{i}}$ and edge $\left(x_{i}, \overline{x_{i}}\right)$

$$
E_{A}=\bigcup_{i=1}^{n}\left\{\left(x_{i}, \overline{x_{i}}\right)\right\}
$$

$x_{1}-\overline{x_{1}}$

$$
x_{2}-\overline{x_{2}}
$$

$$
x_{3}-\overline{x_{3}}
$$

Gadgets

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi=(\underbrace{x_{1} \vee \overline{x_{2}} \vee x_{3}}_{C_{1}}) \wedge(\underbrace{\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}}_{C_{2}})$
(1) Assignment. For each variable x_{i} create vertices x_{i} and $\overline{x_{i}}$ and edge ($x_{i}, \overline{x_{i}}$)

$$
V_{A}=\bigcup_{i=1}^{n}\left\{x_{i}, \overline{x_{i}}\right\}
$$

(2) Satisfiability. For each clause $C_{j}=\left(a_{j} \vee b_{j} \vee c_{j}\right)$, create vertices v_{j}^{1}, v_{j}^{2}, and v_{j}^{3} with edges between them

$$
E_{A}=\bigcup_{i=1}^{n}\left\{\left(x_{i}, \overline{x_{i}}\right)\right\}
$$

$$
V_{S}=\bigcup_{j=1}^{m}\left\{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\right\}
$$

$$
x_{2}-\overline{x_{2}}
$$

$$
x_{3}-\overline{x_{3}}
$$

$$
E_{S}=\bigcup_{j=1}^{m}\left\{\left(v_{j}^{1}, v_{j}^{2}\right),\left(v_{j}^{2}, v_{j}^{3}\right),\left(v_{j}^{3}, v_{j}^{1}\right)\right\}
$$

Gadgets

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi=(\underbrace{x_{1} \vee \overline{x_{2}} \vee x_{3}}_{C_{1}}) \wedge(\underbrace{\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}}_{C_{2}})$
(1) Assignment. For each variable x_{i} create vertices x_{i} and $\overline{x_{i}}$ and edge ($x_{i}, \overline{x_{i}}$)
(2) Satisfiability. For each clause $C_{j}=\left(a_{j} \vee b_{j} \vee c_{j}\right)$, create vertices v_{j}^{1}, v_{j}^{2}, and v_{j}^{3} with edges between them
(3) Communication. For each clause $C_{j}=\left(a_{j} \vee b_{j} \vee c_{j}\right)$,

$$
V_{A}=\bigcup_{i=1}^{n}\left\{x_{i}, \overline{x_{i}}\right\}
$$

$$
E_{A}=\bigcup_{i=1}^{n}\left\{\left(x_{i}, \overline{x_{i}}\right)\right\}
$$ create edges $\left(v_{j}^{1}, a_{j}\right),\left(v_{j}^{2}, b_{j}\right)$, and $\left(v_{j}^{3}, c_{j}\right)$

$$
V_{S}=\bigcup_{j=1}^{m}\left\{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\right\}
$$

$$
\begin{aligned}
& E_{S}=\bigcup_{j=1}^{m}\left\{\left(v_{j}^{1}, v_{j}^{2}\right),\left(v_{j}^{2}, v_{j}^{3}\right),\left(v_{j}^{3}, v_{j}^{1}\right)\right\} \\
& E_{C}=\bigcup_{j=1}^{m}\left\{\left(v_{j}^{1}, a_{j}\right),\left(v_{j}^{2}, b_{j}\right),\left(v_{j}^{3}, c_{j}\right)\right\}
\end{aligned}
$$

Gadgets

For each variable and each clause, we want to construct some portion of a graph Running example: $\phi=(\underbrace{x_{1} \vee \overline{x_{2}} \vee x_{3}}_{C_{1}}) \wedge(\underbrace{\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}}_{C_{2}})$
(1) Assignment. For each variable x_{i} create vertices x_{i} and $\overline{x_{i}}$ and edge ($x_{i}, \overline{x_{i}}$)
(2) Satisfiability. For each clause $C_{j}=\left(a_{j} \vee b_{j} \vee c_{j}\right), \quad E_{A}=\bigcup_{i=1}^{n}\left\{\left(x_{i}, \overline{x_{i}}\right)\right\}$ create vertices v_{j}^{1}, v_{j}^{2}, and v_{j}^{3} with edges between them
(3) Communication. For each clause $C_{j}=\left(a_{j} \vee b_{j} \vee c_{j}\right)$,

$$
\begin{aligned}
V_{A} & =\bigcup_{i=1}^{n}\left\{x_{i}, \overline{x_{i}}\right\} \\
E_{A} & =\bigcup_{i=1}^{n}\left\{\left(x_{i}, \overline{x_{i}}\right)\right\} \\
V_{S} & =\bigcup_{j=1}^{m}\left\{v_{j}^{1}, v_{j}^{2}, v_{j}^{3}\right\}
\end{aligned}
$$ create edges $\left(v_{j}^{1}, a_{j}\right),\left(v_{j}^{2}, b_{j}\right)$, and $\left(v_{j}^{3}, c_{j}\right)$

$$
\begin{aligned}
& E_{S}=\bigcup_{j=1}^{m}\left\{\left(v_{j}^{1}, v_{j}^{2}\right),\left(v_{j}^{2}, v_{j}^{3}\right),\left(v_{j}^{3}, v_{j}^{1}\right)\right\} \\
& E_{C}=\bigcup_{j=1}^{m}\left\{\left(v_{j}^{1}, a_{j}\right),\left(v_{j}^{2}, b_{j}\right),\left(v_{j}^{3}, c_{j}\right)\right\}
\end{aligned}
$$

Output: $G=(V, E), k$ where

$$
\begin{align*}
V & =V_{A} \cup V_{S} \tag{UIC}\\
E & =E_{A} \cup E_{S} \cup E_{C} \\
k & =n+2 m
\end{align*}
$$

If G has a VC of size $n+2 m \ldots$

If G has a vertex cover $V C$ of size $n+2 m$, then to cover the n assignment edges, at least n of the literal vertices must be in $V C$

If G has a VC of size $n+2 m \ldots$

If G has a vertex cover $V C$ of size $n+2 m$, then to cover the n assignment edges, at least n of the literal vertices must be in $V C$

To cover the satisfiability edges, at least 2 vertices in each triangle must be in $V C$

If G has a VC of size $n+2 m .$.

If G has a vertex cover $V C$ of size $n+2 m$, then to cover the n assignment edges, at least n of the literal vertices must be in $V C$

To cover the satisfiability edges, at least 2 vertices in each triangle must be in $V C$
Thus $V C$ contains exactly n of the assignment vertices, either x_{i} or $\overline{x_{i}}$ for each i and exactly 2 of each of the m satisfiability triangles

If G has a VC of size $n+2 m . .$.

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$

If G has a vertex cover $V C$ of size $n+2 m$, then to cover the n assignment edges, at least n of the literal vertices must be in $V C$

To cover the satisfiability edges, at least 2 vertices in each triangle must be in $V C$
Thus $V C$ contains exactly n of the assignment vertices, either x_{i} or $\overline{x_{i}}$ for each i and exactly 2 of each of the m satisfiability triangles

For example, the boxed vertices form a vertex cover of size $n+2 m=7$

If G has a VC of size $n+2 m$, then ϕ is satisfiable

Create a satisfying assignment for ϕ by setting $x_{i}=T$ if node $x_{i} \in V C$

If G has a VC of size $n+2 m$, then ϕ is satisfiable

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$

Create a satisfying assignment for ϕ by setting $x_{i}=T$ if node $x_{i} \in V C$
Consider the triangle corresponding to clause C_{j}, 2 of the vertices are in $V C$ and the third is connected to its literal which must be in $V C$ in order to cover the communication edge

For example, edge $\left(v_{1}^{1}, x_{1}\right)$ is covered by $x_{1} \in V C$ so clause C_{1} is satisfied Similarly for edge ($v_{2}^{3}, \overline{x_{3}}$) and clause C_{2}

If G has a VC of size $n+2 m$, then ϕ is satisfiable

$$
\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right)
$$

Create a satisfying assignment for ϕ by setting $x_{i}=T$ if node $x_{i} \in V C$
Consider the triangle corresponding to clause C_{j}, 2 of the vertices are in $V C$ and the third is connected to its literal which must be in $V C$ in order to cover the communication edge

For example, edge $\left(v_{1}^{1}, x_{1}\right)$ is covered by $x_{1} \in V C$ so clause C_{1} is satisfied Similarly for edge ($v_{2}^{3}, \overline{x_{3}}$) and clause C_{2}

Thus each clause is satisfied so ϕ is satisfied

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$
Now $\left(v_{1}^{1}, x_{1}\right)$ and $\left(v_{1}^{3}, x_{3}\right)$ need to be covered so add v_{1}^{1} and v_{1}^{3} to $V C$

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$
Now $\left(v_{1}^{1}, x_{1}\right)$ and $\left(v_{1}^{3}, x_{3}\right)$ need to be covered so add v_{1}^{1} and v_{1}^{3} to $V C$

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$
Now $\left(v_{1}^{1}, x_{1}\right)$ and $\left(v_{1}^{3}, x_{3}\right)$ need to be covered so add v_{1}^{1} and v_{1}^{3} to $V C$
All of the communication edges for clause C_{2} are covered, so pick any 2 vertices

If ϕ is satisfied by some assignment, then G has a VC of size $n+2 m$

If ϕ is satisfied by some assignment, then we can construct a vertex cover of size $n+2 m$ consisting of each of the true assignment literals and two of the satisfiability vertices of each clause as required to cover the communication edges connected to false literals

For example, $x_{1}=x_{2}=x_{3}=F$ satisfies ϕ so first put $\overline{x_{1}}, \overline{x_{2}}$, and $\overline{x_{3}}$ in $V C$
Now $\left(v_{1}^{1}, x_{1}\right)$ and $\left(v_{1}^{3}, x_{3}\right)$ need to be covered so add v_{1}^{1} and v_{1}^{3} to $V C$
All of the communication edges for clause C_{2} are covered, so pick any 2 vertices

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP
(2) We gave a construction $\langle\phi\rangle \mapsto\langle G, k\rangle$

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP
(2) We gave a construction $\langle\phi\rangle \mapsto\langle G, k\rangle$
(3) We showed that if G has a vertex cover of size k (i.e., $\langle G, k\rangle \in \operatorname{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle\phi\rangle \in 3$-SAT)

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP
(2) We gave a construction $\langle\phi\rangle \mapsto\langle G, k\rangle$
(3) We showed that if G has a vertex cover of size k (i.e., $\langle G, k\rangle \in \operatorname{VertexCover}$), then ϕ is satisfiable (i.e., $\langle\phi\rangle \in 3$-SAT)
(4) We showed that if ϕ is satisfiable, then G has a vertex cover of size k

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP
(2) We gave a construction $\langle\phi\rangle \mapsto\langle G, k\rangle$
(3) We showed that if G has a vertex cover of size k (i.e., $\langle G, k\rangle \in \operatorname{VertexCover}$), then ϕ is satisfiable (i.e., $\langle\phi\rangle \in 3$-SAT)
(4) We showed that if ϕ is satisfiable, then G has a vertex cover of size k
(5) We argued that the construction takes polynomial time

So VertexCover is NP-complete

Lastly, G takes polynomial time to create since it has a polynomial number of vertices and edges

Recap

(1) We showed that VertexCover \in NP
(2) We gave a construction $\langle\phi\rangle \mapsto\langle G, k\rangle$
(3) We showed that if G has a vertex cover of size k (i.e., $\langle G, k\rangle \in \operatorname{VERTEXCOVER}$), then ϕ is satisfiable (i.e., $\langle\phi\rangle \in 3$-SAT)
(4) We showed that if ϕ is satisfiable, then G has a vertex cover of size k
(5) We argued that the construction takes polynomial time

Steps $2-5$ show 3 -SAT \leq_{p} VertexCover and thus VertexCover is NP-complete

Independent set

If $G=(V, E)$ is an undirected graph, an independent set is a set $I \subseteq V$ such that no two vertices in I are adjacent
l.e., $\forall u, v \in I(u, v) \notin E$
E.g., the yellow vertices form an independent set

IndSET

IndSet $=\{\langle G, k\rangle \mid G$ is an undirected graph which has an independent set of size $k\}$ How would we show that IndSet is NP-complete?

IndSET

IndSET $=\{\langle G, k\rangle \mid G$ is an undirected graph which has an independent set of size $k\}$ How would we show that IndSET is NP-complete?

We need to show
(1) IndSET \in NP and
(2) There is some A which is NP-complete and $A \leq_{\mathrm{p}}$ IndSET

$\operatorname{IndSEt} \in \mathrm{NP}$

What is a certificate for IndSET?

IndSet \in NP

What is a certificate for IndSet?
The independent set I of size k.

IndSet \in NP

What is a certificate for IndSET?
The independent set I of size k.
We can build a verifier for IndSet:
$V=$ "On input $\langle G, k, I\rangle$ where $G=(V, E)$,
(1) If $I \nsubseteq V$ or $|I| \neq k$, then reject
(2) For each $(u, v) \in E$,
(3) If $u \in I$ and $v \in I$, then reject
(4) Otherwise accept"

Each step clearly takes polynomial time and the body of the loop happens once per edge so V is a polynomial time verifier

VertexCover \leq_{p} IndSet

We can reduce from VertexCover to IndSet by giving a polynomial time map $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that $\langle G, k\rangle \in \operatorname{VertexCover} \Longleftrightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle \in \operatorname{IndSet}$

VertexCover \leq_{p} IndSet

We can reduce from VertexCover to IndSet by giving a polynomial time map $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that $\langle G, k\rangle \in \operatorname{VertexCover} \Longleftrightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle \in \operatorname{IndSet}$

Grey vertices form a vertex cover, What are some independent sets?

VertexCover \leq_{p} IndSet

We can reduce from VertexCover to IndSet by giving a polynomial time map $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that $\langle G, k\rangle \in$ VertexCover $\Longleftrightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle \in \operatorname{IndSet}$

Grey vertices form a vertex cover, What are some independent sets?

VertexCover \leq_{p} IndSet

We can reduce from VertexCover to IndSet by giving a polynomial time map $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that $\langle G, k\rangle \in \operatorname{VertexCover} \Longleftrightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle \in \operatorname{IndSet}$

Grey vertices form a vertex cover, What are some independent sets?

VertexCover \leq_{p} IndSet

We can reduce from VertexCover to IndSet by giving a polynomial time map $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that $\langle G, k\rangle \in \operatorname{VertexCover} \Longleftrightarrow\left\langle G^{\prime}, k^{\prime}\right\rangle \in \operatorname{IndSet}$

Grey vertices form a vertex cover, What are some independent sets?

Relationship between vertex covers and independent sets

It looks like if $G=(V, E)$ has a vertex cover C, then $I=V \backslash C$ is an independent set, and vice versa
Can we prove that?

Relationship between vertex covers and independent sets

It looks like if $G=(V, E)$ has a vertex cover C, then $I=V \backslash C$ is an independent set, and vice versa
Can we prove that?

Yes!

Relationship between vertex covers and independent sets

It looks like if $G=(V, E)$ has a vertex cover C, then $I=V \backslash C$ is an independent set, and vice versa
Can we prove that?
Yes!

- If $C \subseteq V$ is a vertex cover for G and $I=V \backslash C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I,(u, v) \notin E$ so I is an independent set

Relationship between vertex covers and independent sets

It looks like if $G=(V, E)$ has a vertex cover C, then $I=V \backslash C$ is an independent set, and vice versa
Can we prove that?

Yes!

- If $C \subseteq V$ is a vertex cover for G and $I=V \backslash C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I,(u, v) \notin E$ so I is an independent set
- If $I \subseteq V$ is an independent set and $C=V \backslash I$, then for all $(u, v) \in E$, at least one of u or v is in C [why?] so C is a vertex cover

How does this help us?

Relationship between vertex covers and independent sets

It looks like if $G=(V, E)$ has a vertex cover C, then $I=V \backslash C$ is an independent set, and vice versa
Can we prove that?

Yes!

- If $C \subseteq V$ is a vertex cover for G and $I=V \backslash C$, then for all $(u, v) \in E$, either $u \in C$ or $v \in C$. Therefore, for all $u, v \in I,(u, v) \notin E$ so I is an independent set
- If $I \subseteq V$ is an independent set and $C=V \backslash I$, then for all $(u, v) \in E$, at least one of u or v is in C [why?] so C is a vertex cover

How does this help us?
It means that G has n vertices, then G has a vertex cover of size k iff G has an independent set of size $n-k$

VertexCover \leq_{p} IndSet

Proof.
Our polynomial time mapping is $\langle G, k\rangle \mapsto\langle G, n-k\rangle$ where $G=(V, E)$ and $|V|=n$

VertexCover \leq_{p} IndSet

Proof.
Our polynomial time mapping is $\langle G, k\rangle \mapsto\langle G, n-k\rangle$ where $G=(V, E)$ and $|V|=n$
Since G has a vertex cover of size k iff G has an independent set of size $n-k$,

$$
\langle G, k\rangle \in \operatorname{VertexCover} \Longleftrightarrow\langle G, n-k\rangle \in \operatorname{IndSET}
$$

Since IndSet \in NP, VertexCover \leq_{p} IndSet, and VertexCover is NP-complete, IndSET is NP-complete

Clique is NP-complete

We already proved that Clique $\in \mathrm{NP}$ so all that remains is to give a polynomial time mapping from some NP-complete problem

Let's use IndSet

Clique is NP-complete

We already proved that Clique $\in \mathrm{NP}$ so all that remains is to give a polynomial time mapping from some NP-complete problem

Let's use IndSET
We want a mapping $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k^{\prime}\right\rangle$ such that G has an independent set of size k iff G^{\prime} has a clique of size k^{\prime}

Recall

- Independent set. I is an independent set if there is no edge between any two vertices in I
- Clique. C is a clique if there is an edge between every two vertices in C

Complement of a graph

The complement of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $(u, v) \in E$ iff $(u, v) \notin E^{\prime}$ (assuming $u \neq v$)

Complement of a graph

The complement of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $(u, v) \in E$ iff $(u, v) \notin E^{\prime}$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

Complement of a graph

The complement of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $(u, v) \in E$ iff $(u, v) \notin E^{\prime}$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

Complement of a graph

The complement of a graph $G=(V, E)$ is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $(u, v) \in E$ iff $(u, v) \notin E^{\prime}$ (assuming $u \neq v$)

Grey vertices form a clique, yellow form an independent set

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove
Let $G=(V, E)$ be an undirected graph and $G^{\prime}=\left(V, E^{\prime}\right)$ be its complement

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove
Let $G=(V, E)$ be an undirected graph and $G^{\prime}=\left(V, E^{\prime}\right)$ be its complement

- If $C \subseteq V$ is a clique in G, then for each distinct $u, v \in C,(u, v) \in E$ and thus $(u, v) \notin E^{\prime}$ so C is an independent set in G^{\prime}

Relationship between a clique and an independent set

Again, this suggests a relationship between cliques and independent sets that we can prove
Let $G=(V, E)$ be an undirected graph and $G^{\prime}=\left(V, E^{\prime}\right)$ be its complement

- If $C \subseteq V$ is a clique in G, then for each distinct $u, v \in C,(u, v) \in E$ and thus $(u, v) \notin E^{\prime}$ so C is an independent set in G^{\prime}
- And vice versa

IndSet \leq_{p} CLIQUE

The polynomial time mapping is $\langle G, k\rangle \mapsto\left\langle G^{\prime}, k\right\rangle$ where G^{\prime} is the complement of G
Since Clique \in NP and $\operatorname{IndSet} \leq_{p}$ Clique, Clique is NP-complete

Other NP-complete and related problems

- There are many other NP-complete problems

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- Since then, more NP-complete problems have been found

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- Since then, more NP-complete problems have been found
- There are problems known to be in NP which we don't know to be either in P or NP-complete

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- Since then, more NP-complete problems have been found
- There are problems known to be in NP which we don't know to be either in P or NP-complete
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $\mathrm{P} \neq \mathrm{NP}$, then there are NP-intermediate problems (if $P=\mathrm{NP}$, then there are none)

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- Since then, more NP-complete problems have been found
- There are problems known to be in NP which we don't know to be either in P or NP-complete
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $\mathrm{P} \neq \mathrm{NP}$, then there are NP-intermediate problems (if $P=$ NP, then there are none)
- co-NP is the class of languages whose complements are in NP

Other NP-complete and related problems

- There are many other NP-complete problems
- In 1971, Richard Karp gave a list of 21 combinatorial and graph problems that he showed were NP-complete by reducing from SAT
- In 1979, Michael Garey and David Johnson published a (fantastic) book containing a massive list of NP-complete problems organized with nice reductions from earlier problems
- Since then, more NP-complete problems have been found
- There are problems known to be in NP which we don't know to be either in P or NP-complete
- NP-intermediate is the class of language that are in NP but are neither in P nor are NP-complete. In 1975, Richard Ladner proved that if $\mathrm{P} \neq \mathrm{NP}$, then there are NP-intermediate problems (if $P=\mathrm{NP}$, then there are none)
- co-NP is the class of languages whose complements are in NP
- There are languages in NP and co-NP which aren't known to be in P ($\mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{co}-\mathrm{NP}$)

