REDUCIBILITY

Technique to show problems are not solvable.

"relating" the new problem to another problem
that we know is (not) solvable

\[
\begin{array}{c}
A \\
\downarrow \text{reduces to} \quad \downarrow \text{transforms to} \\
\quad \quad B
\end{array}
\]

\[A_{TM} \xrightarrow{\text{reduce}} \text{HALT}_{TM}\]

1. a soln to B can be used as soln to A
 (\[1/1\text{show how}\])
2. solving A cannot be harder than solving B
3. \(\text{if } B \text{ is decidable, } A \text{ is decidable}\)
4. \(\text{if } A \text{ is undecidable, then } B \text{ is also undecidable.}\)
5. \(\text{[contrapositive]}\)

\[
\text{**KEY MAIN BURDEN**: Show how soln to } B \text{ [i.e. } B \text{ [decider of } B]\]
\[
\text{can be used as a soln to } A \text{ [i.e. decider of } A]\]
HALTING PROBLEM. // $A_{TM} = \{ \langle M, w \rangle | M \text{ accepts } w \}$

$HALT_{TM} = \{ \langle M, w \rangle | M \text{ halts on } w \}$

Th: $HALT_{TM}$ is undecidable.

Proof: Reduce A_{TM} to $HALT_{TM}$.

(Contradiction:) If 'R' decided $HALT_{TM}$, then A_{TM} also be decidable.

SHOW how soln (decider) of $HALT_{TM}$ can be used as a soln (decider) to A_{TM}.

[Diagram shown: Decision process involving $HALT_{TM}$ and A_{TM}, with arrows indicating flow and decision logic.]
$E_{TM} = \{<M> | M \text{ is a } TM \text{ and } L(M) = \emptyset \}$

\[\text{Decider } R \text{ for } E_{TM}\]
- Accept $<M>$ if $L(M) = \emptyset$
- Reject $<M>$ if $L(M) \neq \emptyset$

Is E_{TM} decidable? i.e., is it possible to build such a TM as in box above?

Initial attempt:

Show how a decider TM S for A_{TM} can be built using a decider TM R for E_{TM}.

Hint: Modify M to M' such that $L(M') = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \text{ or keeps searching.} \end{cases}$
S: On input $<M, w>$

1) Construct M' using description of M, and w

2) Run R, the decider for E_{TM}, on $<M'>$

3) If R accepts then S rejects
 else R rejects, then S accepts

M' (built using input $<M, w>$): On any input x:

1) If $x \neq w$, then reject \(\text{if } x \notin L(M')\)

2) Else $x = w$, then run M' on w and accept if M' accepts w.

\(\text{if } x = w; \text{ then } x \in L(M')\)

Note: M' need not be a decider

M' is a recognizer of a single-string language $= \{w\}$

M' behaves like M when input x to M' is equal to w
Th: EQ_{TM} is undecidable

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Proof: Reduce E_{TM} to EQ_{TM}

$S = E_{TM}$

\[\langle M \rangle \rightarrow \langle M, M_\phi \rangle \rightarrow R \text{ decides } EQ_{TM} \rightarrow \text{ Accept} \]

If R decides EQ_{TM}, S decides E_{TM}

But as E_{TM} is undecidable, EQ_{TM} is also undecidable.
Mapping Reducability

Apps: showing langs as not T-R, apps in complexity theory

Def: Function \(f: \Sigma^* \rightarrow \Sigma^* \) is a computable function if some TM, on every input \(w \), halts with just \(f(w) \) on tape.

Def: Language \(A \) is mapping reducible to \(B \), i.e., \(A \leq_m B \), if there is a computable fn \(f: \Sigma^* \rightarrow \Sigma^* \), where for every \(w \),

\(\omega \in A \iff f(\omega) \in B \)

\[\omega \in A \iff f(\omega) \in B \]

\[A \leq_m B \iff \overline{A} \leq_m \overline{B} \]

Th: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable

Th: \(T-R \)

Cor: and \(A \) is undecidable, then \(B \) is undecidable

Cor: not \(T-R \)

Exercise: show mapping reducibility \(A_{TM} \leq_m HALT_{TM} \)

\(E_{TM} \leq_m EQ_{TM} \)
Th: $\overline{EQ^{TM}}$ is not T-R nor co-T-R.

1. $\overline{A^{TM}} \leq_m EQ^{TM} = A^{TM} \leq_m \overline{EQ^{TM}}$

2. $\overline{A^{TM}} \leq_m EQ^{TM}$

$\overline{A^{TM}} \leq_m EQ^{TM}$

$A^{TM} \leq_m \overline{EQ^{TM}}$