gou)z,c& C&-ﬂno"\‘”l“e IE—JZOLA'\AZ onN %e (‘J\)e/lg

2.2 Undecidable problems | TILING PROBLEM,
| HALTIN G PRopLEM

e

To say that a problem is ‘undecidable’ means that there is no
way, even given unlimited resources and an infinite amount of
time, tha-t the problem can be decided by algorithmic means.

Some of these undecidable problems seem at first sight to be
harmless variations-on problems that whilst they may have an
unreasonable time demand are certainly decidable]t €S

There are many well-known.-exaﬁples of undecidable problems: |
we will look at just two: tiling problems, and the canonical
example of an undecidable problem, the halting problem.

105

Example 1: tiling problems

Consider the set of three tiles below:

I

(1) (@)

Could these be used to tile an arbitrary nxn area’? The rules that
have to be obeyed are:

e Only these three tile types can be used, but each can be
used arbitrarily often.

e The edges of the tiles have to match up when they are used
to cover an area.

+ The tiles can't be rotated.

It’s clear that they can when n=2:

Also, in this simple case, one can see that the solution above
extends easily to any nxn area.

106

Now suppose that the bottom colours of tiles (2) and (3) are

exchanged:

o e (3>

The new set of tiles can still cover a 2x2 area as below

but this particular solution can't be extended: *

""'4} 4 ;

...um{p (. |
ﬂlllllﬂb '“lllll\ll he | =

K 24

“!!'iil

b (%

Moreover, there are no others which will work; this set can't tile
any area of size greater than 2x2.

107

The most common forms of the ‘tiling problem’ are a generalisation
of the problem above, with a supplied set T of tile types (which
can't be added to or modified).

Bounded tiling problem:

Given a set T of tiles, can these be used to cover a specified
nxn area?

“signiticantly better than just checking through all possible
arrangements of the tiles, something that takes an exponential
amount of time.

Unbounded tiling problem:

Given a set T of tiles, can these be used to éb\éer__z n}<n
area? (Or equivalently, can they be used to tile the entlre

integer grid?)

This problem is much worse than bounded tiling; it is in fact
undecidable, as the display of no finite tiled area can prove —in

- general, we aren't just talking about especially easy tile sets such
as the one first considered above =that any area can'be’ tiléd.

However it would be wrong to assume that the essence of the
difficulty was that the number of things that might need to be
checked (all possible_nxn areas) was infinite. It might have been
that there was some rule that could look at a set of tiles and say
“Yes, these have Property X, and so they can tile any area”.

108

undecidable

intractable

tractable

22t

TRi

unbounded
recurring
tiling
problem

unbounded
tiling
problem

bounded
tiling
problem

‘bounded

fixed-width
tiling

- problem

120

Example 2: the halting probiem
Consider the program

while X =1

{
X:i=x=2
}

For odd x (let's suppose for simplicity that the program’s ‘inputs are -
positive integers) this decrements by 2 until 1 is reached, when the
program terminates. However, when X is even, decrementing by 2
each time ‘misses’ 1, and the program continues to decrease the
original value forever.

Now consider
while x #1

if even(x) then
X :=x/2
else
x:=2x+1

} | | o

Again, there is no problem seeing for which inputs this terminates -
(this time, only for x's that are powers of 2), and for which it runs
forever.

For the variation below, however
while x 21 -

if even(x) then
X = x/2
else
X :=3x+1
}

~ the situation is very different. Although in practice it does seem
that this program terminates for all positive integers x — although
sometimes reaching very high and unpredictable values before it
does so — no-one knows why. Consequently it's impossible to say
with certainty before this program is run on a new input whether it
will terminate or not (and if it appeared for some input not to, how
would we know whether it simply hadn’t been given enough time?).

110

The examples below take random integers from {0,...,100} and run
the three programs above for 50 steps, showing at each step the

value reached.
while x #1 *
{ . .
X=X -2 -
} .
(terminates for -
odd x) i

BEEET EEEEEE:
~meps

while x #1 -
{ 450
if even(x) then o
X = x/2 -
else =
X:=2x+1 2
}) 150

- ‘(terminates when

x is a power of 2)

- while x #1

{
if even(x) then
X :=Xx/2
else ,
x:=3x+1
}

(terminates when 777?)

1600 A
L1400 A
20

800 4

600 o

400 -4 F

200 A

a

‘0 5 10 15 20 25 30 35 &£ 45 50
_sieps ’

111

(Note that all three of the programs have an infinite number of
possible inputs (all positive integers), but for the first two cases we
can say when the program will terminate without checking through
all possible cases (in the first case ‘Property X' is ‘being an odd
number’, in the second it's ‘being a power of 2'). So this is more
evidence that the presence of an unbounded, potentially infinite
input set, with a seeming necessity to check all cases, is not the
fundamental factor that determines decidability.)

The halting problem is defined to be the problem, for any
 program R run on a legal input X (for example in the cases
above that would mean X had to be a positive integer), of

deciding if R halts (terminates) on X.

Note that this is about any program, and not just some specific one
(in the same way that the tiling problem was about any set of tiles
T, not just some specific, and possibly easy to decide, set), but
that the halting problem is not, once R has been chosen, asking
whether R terminates on all inputs, just a given one, X.

The halting problem is the best known example of a problem that
is not algorithmically decidable. Morever it has a special status
because it's possible to prove its undecidability without reference
to another undecidable problem — it plays the same role with
respect to undecidability that PSAT plays with respect to NP
completeness. ' :

Fortunately, it's a lot easier to explain why the halting probiem is
undecidablethat it is to explain why PSAT is in NPC.

112

