DECIDABLE LANGUAGES.

Languages represent computational problems

\text{eg: acceptance of DFA expressible as a language, } A_{\text{DFA}} \\
\text{(i.e. is } w \text{ accepted by DFA?)}

\[A_{\text{DFA}} = \left\{ \langle D, w \rangle \mid D \text{ is a DFA that accepts } w \right\} \]

Showing that a language \((\text{say } A_{\text{DFA}})\) is decidable

\[\iff \text{ showing corresponding computational problem is decidable} \]

Th1: \(A_{\text{DFA}}\) is decidable. \(\text{(i.e. given any string } x = \langle D', w' \rangle \text{ encoding, decide if Answer Yes/No using a TM, whether } D' \text{ (a DFA's encoding) accepts } w' \text{,)}\)

//All problems requiring non-tool answers rephrased as (combination of) problems requiring tool answers

\text{Proof: (construction)}

\[M : \langle B, w \rangle \]

1. Simulate \(B\) on input \(w\)
2. If simulation ends in \text{accept}, then accept, else reject
\[A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts } w \} \]

Theorem 2: \(A_{\text{NFA}} \) is decidable

Proof: On input \(\langle B, w \rangle \):
1. Convert \(B \) into \(C \) (a DFA)
2. Run \(M \) on input \(w \)

 // procedure call

 if \(M \) accepts \(w \) then accept

 else reject

\[A_{\text{REGEX}} = \{ \langle R, w \rangle \mid R \text{ is a regex that generates } w \} \]

Theorem 3: \(A_{\text{REGEX}} \) is decidable

Proof: \(P \) on input \(\langle R, w \rangle \):
1. Convert \(R \) into DFA \(A \)
2. Run \(M \) on \(w \)

 // procedure call

 if \(M \) accepts \(w \), then accept

 else reject
\[
E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \\
\rightarrow \text{i.e., set of encodings of DFAs whose language is } \emptyset
\]

Th 4: \(E_{DFA} \) is decidable

(i.e., given an encoding of a DFA, answer \(Y/N \) whether \(L(\text{DFA given}) \) is \(\emptyset \) by using a TM)

Proof:

[A] generate all strings over \(\Sigma \) of the DFA

Run DFA on each string \(s \)

If any \(s \) is accepted by DFA, then reject DFA

(from membership in \(E_{DFA} \))

Else keep looping

This TM is not a decider

[B] observe: if path from \(q_0 \) to \(q_{accept} \), then \(L(\text{DFA}) \neq \emptyset \); reject

the DFA from membership in \(E_{DFA} \)

T: On input \(\langle A \rangle \)

1) Mark \(q_0 \)

2) Repeat until no new state is marked
 For each unmarked \(q' \in Q \)
 If incoming edge from marked \(q \), then mark

3) If no \(q \in F \) is marked, then accept else reject
\[\mathcal{EQ}_{\text{DFA}} = \{ \langle A, B \rangle \mid L(A) = L(B) \text{ and } A, B \text{ are DFAs} \} \]

Theorem 5: \(\mathcal{EQ}_{\text{DFA}} \) is decidable

Proof: observe \(L(A) = L(B) \) iff \(L(A) - L(B) = \emptyset \) and \(L(B) - L(A) = \emptyset \)

\[
\begin{align*}
\mathcal{L}(A) & \cap \mathcal{L}(B) \\
& = \mathcal{L}(C) = \emptyset
\end{align*}
\]

Using closure of R.L under \(\cup, \cap, \text{comp} \), conclude that \(\mathcal{L}(C) \) is a R.L.

(Construction): On input \(\langle A, B \rangle \),

1) Construct DFA \(C \) such that \(L(C) = \) \(\text{//defined above.} \)

2) invoke \(E_{\text{DFA}} \) proof \(\text{//procedure} \)

3) Decide accordingly.
\[A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \} \]

Th 6: \(A_{CFG} \) is decidable. // Caution: only many derivations

Proof (construction):
1) Convert \(G \) in \(G' \) (Chomsky N.F.)
 // any derivation of \(w \) occurs in \(2|w|-1 \) steps, guaranteed.
2) List all derivations using \(G' \), having \(2|w|-1 \) steps.
3) If any of these derivations yield \(w \), then accept else reject.

\[A_{PDA} = \{ \langle B, w \rangle \mid B \text{ is a PDA that accepts string } w \} \]

Th 7: \(A_{PDA} \) is decidable

\[E_{CFG} = \{ \langle G \rangle \mid L(G) = \emptyset \text{ and } G \text{ is CFG} \} \]

Th 8: \(E_{CFG} \) is decidable. // Caution: only many \(w \)’s

TM R: On input \(\langle G \rangle \):
1) Mark all terminals
2) Repeat until no new variable get marked.
 Mark any var \(A \), where \(A \rightarrow v_1v_2 \ldots \ldots v_k \)
 and each symbol \(v_1 \ldots v_k \) is marked
3) If \(S \) is not marked then accept else reject
\[\text{EQ}_{\text{CFG}} = \{ \langle G, H \rangle \mid L(G) = L(H) \text{ and } G, H \text{ are NPDA}s \} \]

Th 9: \(\text{EQ}_{\text{CFG}} \) is NOT decidable

Th 10 (Corollary of Th. 6):

Every CFL is decidable

NB: R.L. = R.Exp. = R. Grammar = PDA
CFL \(\equiv \) PDA

CFL \(\equiv \) \begin{align*}
\text{CFG} & \equiv \text{PDA} \\
\text{CSL} & \equiv \text{Context-Sensitive G.} = \text{L.B.A. (NEW)} \end{align*}

Restricted G. \(\equiv \) TM

CHOMSKY HIERARCHY [read link on web]
HALTING PROBLEM

\[A_{TM} = \{ \langle M, w \rangle \mid TM M accepts w \} \]

Th: \(A_{TM} \) is recognizable.

Proof: by construction.

U: On input \(\langle M, w \rangle \)

1) Simulate operation \(M \) on \(w \)
2) if \(M \) accepts \(w \), then \(U \) accepts \(\langle M, w \rangle \)
 else if \(M \) rejects \(w \), then \(U \) rejects \(\langle M, w \rangle \)
 (else if) -----

/// Digression: MATH!

which set is larger?

1) \(N \) \((1,2,3,\ldots)\)
2) \(\Sigma^* \) where \(\Sigma = \{0,1\} \)
3) \(\mathbb{E} \) = \{2,4,6,8,\ldots\}
4) \(\mathbb{Q} \) (rational #s)
 \[= \{ \frac{a}{b} \mid a, b \in N \} \]
5) \(\mathbb{R} \) (real #s)
 \[= \{ \text{numbers expressible in decimals} \} \]
Defn: Function: \(f : \mathbb{N} \to B \)

'into' fn: \(\exists b \in B \)

\(\forall n \in \mathbb{N} \) where
\(f(n) = b \).

'onto' fn: \(\forall b \in B, \exists n \in \mathbb{N} \) \(f(n) = b \)

Correspondence: is a 1-1 onto function.

Defn: Set \(B \) is countable if \(B \) is finite or \(B \) had same size as \(\mathbb{N} \)
(ie, \(f : \mathbb{N} \to B \) is a correspondence)

\(\forall N \in \mathbb{N} \) \(\forall b \in E, f(\frac{b}{2}) = b \)

\(\forall N \in \mathbb{N} \)
\(\forall (a, b) \in \mathbb{N} \)

preimage of \(\frac{a}{b} \)?

Hint: \(\sum_{i=1}^{\infty} i + j \)
Theorem: \(\mathbb{R} \) is uncountable.

Proof: by contradiction. (nested, use construction).

Assume \(\mathbb{R} \) is countable.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3145</td>
</tr>
<tr>
<td>2</td>
<td>8212</td>
</tr>
<tr>
<td>3</td>
<td>235</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Now, we generate a real \(x \) such that:

\[f(n) = x, \quad (\text{ie } x \neq f(n) \text{ for any } n) \]

Let \(j \)th fractional position value of \(f(j) \) be \(\neq j \)th fractional position value.

\[x = 354 \cdots \]

Claim: \(x \) not in \(f(n) \) for any \(n \).

(because) \(x \) differs from \(f(n) \) in its \(n \)th decimal position.

END DIGRESSION

Observe:

1) Countably many TMs
2) Uncountably many languages.

\(\Rightarrow \) more languages than TMs \(\Rightarrow \) some languages will not be recognizable.
Th: There are Turing-recognizable languages that are not countable.

Proof: \(\{TM_S\} \) is countable.

1. \(\{TM_S\} \subseteq \Sigma^* \) \(\forall TM \in \Sigma^* \)

\(\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \} \)

Show \(f: N \to \Sigma^* \) is a correspondence.

Hint: \(s \in \Sigma^* \mid |s| = k \) has a pre-image \(n \) in \(N \), where

\[
\sum_{i=0}^{k-1} 2^i
\]

2. \(L = \{ \text{all languages} \} \)

Show \(L \) is uncountable.

Observe: \(\{ \text{all infinite binary sequences} \} \) is uncountable.

(Proof technique:) like "\(R \) is uncountable"

Let \(B = \{ \text{infinite binary sequences} \} \)

\(f: L \to B \) is a correspondence.

\(\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \} \)

Example lang.

\(A = \{ 0, 01, 00, 000, \ldots \} \)

\(x = 01010011 \ldots \)
\(f(A) \Rightarrow X_A \) is a 1-1 onto, i.e., correspondence.
\(X_A \) is an \(\infty \) seq, called the "characteristic seq."

ie, \(f : L \rightarrow B \), is a correspondence.

Here \(f(A) = X_A \), where \(A \in L \) and \(X_A \in B \) (characteristic seq).

As \(B \) is uncountable, \(L \) is also uncountable.

\[\Sigma^* : \text{set of finite strings, but } \infty \text{ members in it,} \]
\[\text{can be listed} \]
\[\text{1-1 correspond with } N \text{ is countable} \]

\(B \) : cannot be listed.
\[\text{set of } \infty \text{ binary strings} \]

\(B \not\subseteq \Sigma^* \)

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \]

Th: \(A_{TM} \) is undecidable.

Proof: (by contradiction):
Assume \(H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } [M \text{ does not accept }] w \end{cases} \)

\[D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases} \]
D: On input \(\langle M \rangle \)

1. Runs \(H(\langle M, \langle M' \rangle \rangle) \)

 i.e., Run \(H \) on input \(\langle M, \langle M' \rangle \rangle \)

 /// \(\langle M \rangle \) i representation/encoding of \(M \) using \(\Sigma \)

2. \(H \) is a decider

 \[\text{if } H \text{ accepts, then } D \text{ rejects } \langle M \rangle \]

 \[\text{else } H \text{ rejects, then } D \text{ accepts } \langle M \rangle \]

\[L(D) = \{ \langle M \rangle \mid M \text{ on input } \langle M \rangle \text{ is not accepted} \} \]

 /// decidable using call to \(H \)

Question: does \(\langle D \rangle \in L(D) \)?

\[D(\langle D \rangle) = \begin{cases}
\text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\
\text{reject} & \text{if } D \text{ accepts } \langle D \rangle
\end{cases} \]

\[\rightarrow \text{ absurdity! } \because H \text{ cannot exist.} \]

| \(\langle M_1 \rangle \) | \(\langle M_2 \rangle \) | \(\langle M_3 \rangle \) | \cdots | \(\langle D \rangle \) |
|---|---|---|---|
| \(M_1 \) | A | rej | A | \cdots |
| \(M_2 \) | A | A | A | \cdots |
| \(M_3 \) | rej | A | rej | \cdots |

Red color: behavior of \(H \).
A_{TM} not decidable. \(L = \{ <M> \} \) is ∞

uncountable

Use REDUCIBILITY to prove languages are not decidable.

What about not Turing-recognizable languages?

NOT Turing-recognizable LANGUAGES

Defn: \(L \) is co-Turing recognizable if \(L \) is the complement of a Turing-recognizable language.

Th: \(L \) is decidable \(\iff \) \(L \) is \(T \)-recognizable and \(L \) is co-\(T \)-recognizable.

\(\Rightarrow \) \(L \) is decidable, \(\therefore \) \(\overline{L} \) is \(T \)-recognizable

\(\iff \) \(\overline{L} \) is \(T \)-recognizable

\(\iff \) \(\overline{L} \) is co-\(T \)-recognizable

\(\iff \) Let \(M_1 \) recognize \(L \)

\(\iff \) Let \(M_2 \) recognize \(\overline{L} \)
M: On input w:
1) Run M_1 on w and M_2 on w alternating steps
2) If M_1 accepts w then accept w;
 If M_2 accepts w then reject w.

Any $w \in L$ or $w \in \overline{L}$

\[\therefore \ M_1 \text{ accepts } w \text{ or } M_2 \text{ accepts } w \]
\[\therefore \ M \text{ is a decider} \]
\[- \text{ accepts } w \in L \]
\[- \text{ rejects } w \notin L \]

\[\therefore \ L \text{ and } \overline{L} \text{ must reside in the set } T\text{-decidable} \]
(Inner circle). \[\square \]

Cor: A^T_TM is not T-recognizable.

Proof: (by contradiction). A^T_TM is not decidable.