TURING MACHINES

- TM can: 1) read & write on tape
 2) pointer (R/W head) moves L or R
 3) Tape is oo (// in 1 direction)
 4) Accept state, reject state: take effect immediately.

\[B = \{ w \# w \mid w \in \{0,1\}^* \} \]

TM: 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})\)

- Input alphabet, cannot contain blank symbol, \(\#\)
- Tape alphabet \(\Gamma\)
- \(Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\)

Config:
- \(u \# q \# v\)
- \(u \# a \# q_i \# b \# v\)

- \(u \# q \# c \# v\)
 - if \(\delta(q, b) \rightarrow (q', c, L)\)
- \(u \# a \# c \# q_j \# v\)
 - if \(\delta(q, b) \rightarrow (q', c, R)\)

Start Config: \(q_0 \# w\)

Defn: TM accepts \(w\) if \(q_0 \# w \rightarrow c_1 \rightarrow c_2 \rightarrow \ldots \rightarrow c_k \mid c_k\) is a accepting config. (ie accept or reject config)
\[A = \{ 0^2^n \mid n \geq 0 \} \quad // \text{Given, a } w \text{ in unary notation, is it a power of 2?} \]

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5 \& accept

Input: \(w \).

Loop:

1. Go \(L \to R \), crossing out every 'other' 0
2. Case: if only 1 '0' in step 1 then ACCEPT
 Case: if > 1 and odd # of '0's in step 1 then REJECT
3. Go to L end
$L(M) = \{ w \# w | w \in \{0,1\}^* \}$

N.B.: Missing transition → transition to q_{reject}

$E = \{ \# x_1 \# x_2 \# \cdots \# x_l | \text{each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

```
#    ···    #    ···    #    ···    \\
1st  2nd  3rd  4th  5th  6th  7th
```

```
loop $i = 1$ to $k-1$
  loop $j = i+1$ to $k$
    if $x_i \neq x_j$ no-op
    else REJECT
  end loop
end loop
```

- Mark # by # (new member of tape alphabet Γ)
- Allows you to unmark also simulating extra pointers
Defn: \(L(M) = \{ w \mid M \text{ accepts } w \} \)

Defn: \(L \) is **Turing-recognizable** if some TM recognizes \(L \)

Observation: A TM may accept, reject, or loop forever.

Defn: \(L \) is **Turing-decidable** if some TM that decides \(L \)

Defn: TM decides \(L \) if it (is guaranteed to) enter

- \(\text{accept} \) or \(\text{reject} \)
- on each \(w \in L \) and \(w \notin L \)

<table>
<thead>
<tr>
<th>(w \in L_{174})</th>
<th>accept</th>
<th>reject</th>
<th>reject or keep looping</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w \notin L_{174})</td>
<td>accept or keep looping</td>
<td>reject or keep looping</td>
<td></td>
</tr>
</tbody>
</table>
Variants of TMs

→ TM are robust

- N-TM, multi-tape TM, shift L/R by multiple positions,
 k-dim grid, 2-Dim infinite tape, ...

Exception: doing an number of actions in a single step

Oracle

1) Multitape TM.

Theorem: k-tape TM \iff 1-tape TM

$$
\begin{align*}
 \delta : Q \times \Gamma^k &\rightarrow Q \times \Gamma^k \times \{L, R\}^k \\
 \delta(q_0, a_1, a_2, \ldots, a_k) &\rightarrow (q', b_1, b_2, \ldots, b_k, L/R, L/R, \ldots, L/R)
\end{align*}
$$

1. Initialize 1-tape TM:

2. Each transition: 2-passes L/R:
 1. Read the k a_i's
 2. Write the k b_i's, shift L/R each

1-step of k-tape TM \iff 2k steps of 1-tape TM

Result: L is T-recognizable iff some k-tape TM recognizes it.
Theorem: \(\text{Non-DET. TM} \xrightarrow{} (D)-\text{TM} \)

Given a N-TM, simulate by D-TM

\[S_N : Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \]

Accept by N-TM = some branch (of the tree of possible computations allowed by the choice \(S_N \)) leads to Accept state

\[b = |Q| \times |\Gamma| \times |\{L, R\}| \]

D-TM uses 3-tapes

INPUT TAPE

SIMULATION TAPE

ADDRESS TAPE

Key: Use BFS (not DFS) of tree // obj: to search for Accept state

Eg. Choice `2 6 4 7` config resulting after choices \(\# \) ed 2, 6, 4, 7 in first 4 steps.

Use ADDRESS TAPE as a counter - of node-labels- in BFS-traversal of tree
Th: \(L \) is \(\Sigma \)-Recognizable iff some \(\Sigma \)-TM recognizes it

Defn: \(\Sigma \)-TM is a decider iff \(\forall w \in L \), all branches of (for a language \(L \)) \((w \notin L) \land \text{tree halts}\)

Cor: \(L \) is decidable iff some \(\Sigma \)-TM decides it

\[\text{ENUMERATER} = \text{TM} + \text{printer} \]

\[L(E) = \{ w \mid w \text{ printed} \} \]

Theorem: Long \(L \) is \(\Sigma \)-recognizable \(\iff \) some \(E \) enumerated long \(L \)

\(L \) is arbitrary, cannot assume \(L \) is already "enumerated"

\((\iff) \) i.e., show that, given \(E \), build a TM that given any \(w \), if \(w \in L \) accepts \(w \), if \(w \notin L \) rejects \(w \) or loops

M: On input \(w \):

1) Runs \(E \). Each string \(s \) printed, compare \(s \) with \(w \).
 - If \(s = w \), accept \(w \)
 - Else loop

(\(\implies \)) Given TM \(E \), build \(E \) for \(L \)

(\(\iff \)) Given \(w \), ignore it.

1) Loop for \(i = 1, 2, 3, \ldots \)
 - Run TM for \(i \) steps on inputs \(s_1, s_2, s_3, \ldots \)
 - If any input is accepted by TM, print it (i.e., that \(s \))
ALGORITHMS:

CHURCH-TURING THESIS

\[x^2 - 8x + 15 = 0 \]
\[x^2 - 8x + 13 = 0 \]

Given a polynomial \(p \), give an algorithm to tell if \(p \) has integral roots.

1900: Hilbert's 10th problem
1970: This is UNSOLVABLE

\[D_1 = \{ p \mid p \text{ is a polynomial with an integral root} \} \]

\(D_1 \) is recognizable.

\(M_1: \) \(p \) is input

1) Evaluate \(p \) with \(x \) set to 0, -1, +1, -2, +2, ...
 If \(p \) evaluates to 0, accept.

roots of \(p \) over 1 variable \(\in \left[-k \frac{c_{\text{max}}}{c_n}, k \frac{c_{\text{max}}}{c_n} \right] \)

\(k = \# \text{ Terms in } p, \quad c_{\text{max}} = \text{coeff with highest mod value}, \quad c_n = \text{coeff of } x^n \)

\[D = \{ p \mid p \text{ is a polynomial with an integral root} \} \]

\[27x^2y^2z^2 - 11x^4y^4z - \cdots = 0 \]
Build M (like M₁) that recognizes D.

D is T-recognizable (only)
D₁ is T-decidable

Descriptions of TMs

1) formal description (7-tuple) //assembly lang,
2) Implementation level (English prose describing TMs steps)
3) high-lvl (English prose, ignoring implementation model)

• How expressive are Lars (ie # sets of strings) i.e.
 describing problems?

Very. Strings can ENCODE 'anything', eg: polynomial,
graphs, grammar, automata,

\[\langle 0 \rangle = \text{encoding of object } 0 \]

\[A = \{ \langle G \rangle \mid G \text{ is connected undirected graph} \} \]

TM decider of A:

M: Input \(w = \langle G \rangle \):

1) Check for correctness of encoding
2) Mark some node
3) Loop:
 \(\forall x \text{ unmarked}, \text{mark } x \text{ if } x \text{ has edge to marked node} \)

 until: no \(x \text{ gets marked} \)
Implementation-level details

e.g. Step 0) Encodings. \(\langle G \rangle = (1, 2, 3)(1, 3, 2) \)