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Chapter 6
Distributed Shared Memory

(© Ajay Kshemkalyani, 2004. Use in CS 566 at UIC, Spring 2006.

6.1 Abstraction and Advantages

Distributed shared memory (DSM) is an abstraction provided to the programmer of a dis-
tributed system. It gives the impression of a single monolithic memory, as in a traditional
von Neumann architecture. The programmer accesses the data across the network using
only read and write primitives, as he would in a uniprocessor system. The programmer does
not have to deal with send and receive communication primitives and the ensuing problems
of dealing with synchronization and consistency. The DSM abstraction is illustrated in Fig-
ure 1. A part of each computer’s memory is earmarked for shared space, and the remainder is
private memory. To provide the programmers the illusion of a single shared address space, a
memory mapping management layer is required to manage the shared virtual memory space.
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Shared Virtual Memory

Figure 1: Abstract view of DSM
The following are the advantages of DSM.

1. Communication across the network is achieved by the read/write abstraction that
simplifies the task of the programmer.

2. A single address space is provided, thereby providing the possibility of avoiding data
movement across multiple address spaces by using passing-by-reference, instead of
passing-by-value.
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Figure 2: Detailed abstraction of DSM and interaction with application processes.

3. If a block of data needs to be moved, the system can exploit locality of reference to
reduce the communication overhead.

4. DSM is often cheaper than using dedicated multiprocessor systems, because it uses
simpler software interfaces and off-the-shelf hardware.

5. There is no bottleneck presented by a single memory access bus.
6. DSM effectively provides a large (virtual) main memory.

7. DSM provides portability of programs written using DSM. This portability arises due
to a common DSM programming interface, that is independent of the operating system
and other low-level system characteristics.

Although a familiar (i.e., read/write) interface is provided to the programmer, there is
a catch to it. Under the covers, there is inherently a distributed system and a network,
and the data needs to be shared in some fashion. There is no silver bullet. Moreover, with
the possibility of data replication and/or the concurrent access to data, concurrency control
needs to be enforced. Specifically, when multiple processors wish to access the same data
object, a decision about how to handle concurrent accesses needs to be made. As in tradi-
tional databases, if a locking mechanism based on read and write locks for objects is used,
concurrency is severely restrained, defeating one of the purposes of having the distributed
system. On the other hand, if concurrent access is permitted by different processors to dif-
ferent replicas, the problem of replica consistency (which is a generalization of the problem
of cache consistency in computer architecture studies) needs to be addressed. The main
point of allowing concurrent access (by different processors) to the same data object is to
increase throughput. But in the face of concurrent access, the semantics of what value a read
operation returns to the program needs to be specified. The programmer ultimately needs
to understand this semantics, which may differ from the Von Neumann semantics, because
the program logic depends greatly on this semantics. This compromises the assumption that
the DSM is transparent to the programmer.

Before examining the challenges in implementing replica coherency in DSM systems, we
look at the disadvantages.
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1.

The programmer is not shielded from having to know about various replica consistency
models and coding his distributed application according to the semantics of these
models.

. As DSM is implemented under the covers using asynchronous message-passing, the

overheads incurred are at least as high as those of a message-passing implementation.
As such, DSM implementations cannot be more efficient than asynchronous message-
passing implementations. The generality of the DSM software may make it less efficient.

By yielding control to the DSM memory management layer, the programmer loses the
ability to use his own message-passing solutions for accessing shared objects. It is
likely that the standard vanilla implementations of DSM have a higher overhead than
a programmer-written implementation tailored for a specific application and system.

The main issues in designing a DSM system are the following.

Determining what semantics to allow for concurrent access to shared objects. The
semantics needs to be clearly specified so that the programmer can code his program
using an appropriate logic.

Determining the best way to implement the semantics of concurrent access to shared
data. One possibility is to use replication. One decision to be made is the degree of
replication — partial replication at some sites, or full replication at all the sites. A
further decision then is to decide on whether to use read-replication (replication for
the read operations) or write-replication (replication for the write operations) or both.

Selecting the locations for replication (if full replication is not used), to optimize effi-
ciency from the system’s viewpoint.

Determining the location of remote data that the application needs to access, if full
replication is not used.

Reducing communication delays and the number of messages that are involved under
the covers while implementing the semantics of concurrent access to shared data.

There is a wide range of choices on how these issues can be addressed. In part, the
solution depends on the system architecture. Recall from Chapter 1 that DSM systems can
range from tightly-coupled (hardware and software) multicomputers to wide-area distributed
systems with heterogenous hardware and software. There are four broad dimensions alng
which DSM systems can be classified and implemented.

Whether data is replicated or cached
Whether remote access is by hardware or by software
Whether the caching/replication is controlled by hardware or software

Whether the DSM is controlled by the distributed memory managers, by the operating
system, or by the language runtime system.

The various options for each of these four dimensions, and their comparison, are shown in
Figure 1.
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Type of DSM Examples Management Caching Remote access
single-bus multiprocessor | Firefly, Sequent | by MMU hardware control | by hardware
switched multiprocessor | Alewife, Dash by MMU hardware control | by hardware

NUMA system Butterfly, CM* | by OS software control | by hardware

Page-based DSM Ivy, Mirage by OS software control | by software

Shared variable DSM Midway, Munin | by language software control | by software
runtime system

Shared object DSM Linda, Orca by language software control | by software
runtime system

Table 1: Comparison of DSM systems

opl op2 op3 opk
process
invocation | invocation invocation imvocation
local response response | response response

memory manager

Figure 3: Sequential invocations and responses in a DSM system, without any pipelining.

6.2 Memory Consistency Models

Memory coherence is the ability of the system to execute memory operations correctly. As-
sume n processes and s; memory operations per process P;. Also assume that all the op-
erations issued by a process are executed sequentially (that is, pipelining is disallowed), as
shown in Figure 3. Observe that there are a total of

(s1+ 824 ...+ 5,)!/(s1lsa) ... sn))

possible permutations or interleavings of the operations issued by the processes. The prob-
lem of ensuring memory coherence then becomes the problem of identifying which of these
interleavings are “correct”, which of course requires a clear definition of “correctness”. The
memory consistency model defines the set of allowable memory access orderings. While a
traditional definition of correctness says that a correct memory execution is one that returns
to each Read operation, the value stored by the most recent Write operation, the very def-
inition of “most recent” becomes ambigious in the presence of multiple replicas of the data
item. Thus, a clear definition of correctness is required in such a system; the objective is to
disallow the interleavings that make no semantic sense, while not being overly restrictive so
as to permit a high degree of concurrency.

The DSM system enforces a particular memory consistency model; the programmer writes
his program keeping in mind the allowable interleavings permitted by that specific memory
consistency model. A program written for one model may not work correctly on a DSM
system that enforces a different model. The model can thus be viewed as a contract between
the DSM system and the programmer using that system. We now consider six consistency
models, that are related as shown in Figure 12.
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Notation: A write of value a to variable x is denoted as Write(z,a). A read of variable z
that returns value a is denoted as Read(z,a). A subscript on these operations is sometimes
used to denote the processor that issues these operations.

6.2.1 Strict consistency/Atomic consistency/Linearizability

The strictest model, corresponding to the notion of correctness on the traditional Von Neu-
mann architecture or the uniprocessor machine, requires that any Read to a location (vari-
able) should return the value written by the most recent Write to that location (variable).
Two salient features of such a system are the following. (i) A common global time axis is
implicitly available in a uniprocessor system. (ii) Each write is immediately visible to all
processes. Adapting this correctness model to a DSM system with operations that can be
concurrently issued by the various processes gives the strict consistency model, also known
as the atomic consistency model, that is more formally specified as follows.

1. Any Read to a location (variable) is required to return the value written by the most
recent Write to that location (variable) as per a global time reference.

For operations that do not overlap as per the global time reference, the specification
is clear. For operations that overlap as per the global time reference, the following
further specifications are necessary.

2. All operations appear to be executed atomically and sequentially.

3. All processors see the same ordering of events, which is equivalent to the global-time
occurrence of non-overlapping events.

An equivalent way of specifying this consistency model is in terms of the ‘invocation’ and
‘response’ to each Read and Write operation. Recall that each operation takes a finite time
interval and hence different operations by different processors can overlap in time. However,
the invocation and the response to each invocation can both be separately viewed as being
atomic events. An execution sequence in global time is viewed as a sequence Seq of such
invocations and responses. Clearly, Seq must satisfy the conditions:

e (Liveness:) Each invocation must have a corresponding response, and

e (Correctness:) The projection of Seq on any processor i, denoted Seg;, must be a
sequence of alternating invocations and responses if pipelining is disallowed.

Despite the concurrent operations, a linearizable execution needs to generate an equiva-
lent global order on the events, that is a permutation of Seq, satisfying the semantics of
linearizability.

More formally, a sequence Seq of invocations and responses is linearizable (LIN) if there
is a permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying:

1. For every variable v, the projection of Seq' on v, denoted Segq,, is such that

e every Read (adjacent (invoc, resp) event pair) returns the most recent Write (ad-
jacent (invoc,resp) event pair) that immediately preceded it.
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b Write(x,4) Read(y,2)
1
o . Write(y2) _ Read(x0)
2 (d)Sequentially consistent but not linearizable
B Write(x,4) | Read(y,2)
1
B Write(y,2) Read(x,4)
2 (b) Sequentially consistent and linearizable
b Write(x,4) Read(y,0)
1
P Write(y,2) Read(x,0)
2

(c) Not sequentially consistent (and hence not linearizable)

Figure 4: Examples to illustrate definitions of linearizability and sequential consistency. The
initial values of variables are zero.

2. If the response opl(resp) of operation opl occurred before the invocation op2(invoc)
of operation op2 in Seq, then opl (adjacent (invoc, resp) event pair) occurs before op2
(adjacent (invoc, resp) event pair) in Seq'.

Condition 1 specifies that every processor sees a common order Seq’ of events, and that in
this order, the semantics is that each Read returns the most recent completed Write value.
Condition 2 specifies that the common order Seq’ must satisfy the global time order of events,
viz., the order of non-overlapping operations in Seq must be preserved in Seq'.

Examples: Figure 4 shows three executions.

Figure 4(a): The execution is not linearizable because although the Read by P, begins
after Write(x,4), the Read returns the value that existed before the Write. Hence, a
permutation Seq’ satisfying the above condition(2) on global time order does not exist.

Figure 4(b): The execution is linearizable. The global order of operations (corresponding
to (response, invocation) pairs in Seq'), consistent with the real-time occurrence is:
Write(y,2), Write(x,4), Read(x,4), Read(y,2). This permutation Seq’ satisfies the
conditions (1 and 2).

Figure 4(c): The execution is not linearizable. The two dependencies: Read(x,0) before
Write(x, 4), and Read(y, 0) before Write(x,2) cannot both be satisfied in a global order
while satisfying the local order of operations at each processor. Hence, there does not
exist any permutation Seq’ satisfying conditions (1 and 2).

Implementations

Implementing linearizability is expensive because a global time scale needs to be simulated.
As all processors need to agree on a common order, the implementation needs to use total or-

6
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(shared var)
int: x;

1) When the Memory Manager receives a Read or Write from application:
la) total_order_broadcast the Read or Write request to all processors;
1b) await own request that was broadcast;

1c) perform pending response to the application as follows

1d) case Read: return value from local replica;

le) case Write: write to local replica and return ack to application.

(
(
(
(
(
(

(2) When the Memory Manager receives a total_order_broadcast(Write, z, val) from network:
(2a) write wval to local replica of .

(3) When the Memory Manager receives a total_order_broadcast(Read, z) from network:
(3a) no operation.

Figure 5: Implementing Linearizability (LIN) using total order broadcasts. Code shown is
for P, 1 <i<n.

der. For simplicity, we assume full replication of each data item at all the processors. Hence,
total ordering needs to be combined with a broadcast. Figure 5 gives the implementation
assuming the existence of a total order broadcast primitive that broadcasts to all processors
including the sender. Hence, the Memory Manager software has to be placed between the
application above it and the total order broadcast layer below it.

Although the algorithm in Figure 5 appears simple, it is also subtle. The total order
broadcast ensures that all processors see the same order.

e For two nonoverlapping operations at different processors, by the very definition of
nonoverlapping, the response to the former operation precedes the invocation of the
latter in global time.

e For two overlapping operations, the total order ensures a common view by all proces-
SOTS.

For a Read operation, when the Memory Managers systemwide receive the total order broad-
cast, they do not perform any action. Why is the broadcast then necessary? The reason is
this. If Read operations do not participate in the total order broadcasts, they do not get
totally ordered with respect to the Write operations as well as with respect to the other Read
operations. This can lead to a violation of linearizability, as shown in Figure 6.2.1. The Read
by Py returns the value written by P;. The later Read by P; returns the initial value of 0. As
per the global time ordering requirement of linearizability, the Read by P; that occurs after
the Read by P, must also return the value 4. However, that is not the case in this example,
wherein the Read operations do not participate in the total order broadcast.

6.2.2 Sequential Consistency

Linearizability or strict/atomic consistency is difficult to implement because the absence of
a global time reference in a distributed system necessitates that the time reference has to be

7
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Figure 6: A violation of linearizability (LIN) if Read operations do not participate in the
total order broadcast.

simulated, which is very expensive. Programmers can deal with weaker models. The first
weaker model, that of sequential consistency (SC) was proposed by Lamport and uses logical
time reference instead of the global time reference.

Sequential consistency is specified as follows.

e The result of any execution is the same as if all operations of the processors were
executed in some sequential order.

e The operations of each individual processor appear in this sequence in the local program
order.

Although any possible interleaving of the operations from the different processors is possible,
all the processors must see the same interleaving. In this model, even if two operations from
different processors (on the same or different variables) do not overlap in a global time scale,
they may appear in reverse order in the common sequential order seen by all the processors.

More formally, a sequence Seq of invocation and response events is sequentially consis-
tent if there is a permutation Seq' of adjacent pairs of corresponding (invoc, resp) events
satisfying:

1. For every variable v, the projection of Seq’ on v, denoted Seg;,, is such that:

e every Read (adjacent (invoc, resp) event pair) returns the most recent Write (ad-
jacent (invoc,resp) event pair) that immediately preceded it.

2. If the response opl(resp) of operation opl at process P; occurred before the invocation
op2(invoc) of operation op2 by process P; in Seq, then opl (adjacent (invoc,resp)
event pair) occurs before op2 (adjacent (invoc, resp) event pair) in Seq’.

Condition (1) is the same as that for linearizability. Condition (2) differs from that for
linearizability. It specifies that the common order Seq’ must satisfy only the local order
of events at each processor, instead of the global order of nonoverlapping events. Hence
the order of non-overlapping operations issued by different processors in Seq need not be
preserved in Seq’.

Examples: Three examples are considered in Figure 4.
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(shared var)
int: x;

(1) When the Memory Manager at P; receives a Read or Write from application:
(1d) case Read: return value from local replica;
(le) case Write(z,val): total_order_broadcast;( Write(z,val) to all processors including itself.

(2) When the Memory Manager at P; receives a total_order_broadcast;( Write, z, val) from network:

(2a) write wval to local replica of z;
(2b) if 1 = j then return acknowledgement to application.

Figure 7: Implementing Sequential Consistency (SC) using local Read operations. Code
shown is for P;, 1 < i < n.

Figure 4(a): The execution is sequentially consistent: the global order Seq' is: Write(y, 2),
Read(z,0), Write(z,4), Read(y,2).

Figure 4(b): As the execution is linearizable (seen in Section 6.2.1), it is also sequentially
consistent. The global order of operations (corresponding to (response, invocation)
pairs in Seq'), consistent with the real-time occurrence is: Write(y,2), Write(x,4),
Read(z,4), Read(y,2).

Figure 4(c): The execution is not sequentially consistent (and hence not linearizable). The
two dependencies: Read(x,0) before Write(z,4), and Read(y, 0) before Write(z,2) can-
not both be satisfied in a global order while satisfying the local order of operations at
each processor. Hence, there does not exist any permutation Seq’ satisfying conditions
(1 and 2).

Implementations

As sequential consistency (SC) is less restrictive than linearizability (LIN), it should be easier
to implement it. As all processors are required to see the same global order, but global time
orderng need not be preserved across processes, it is sufficient to use total order broadcasts for
the Write operations only. In the simplified algorithm, no total order broadcast is required
for Read operations, because:

1. all consecutive operations by the same processor are ordered in that same order because
of not using pipelining, and

2. Read operations by different processors are independent of each other and need to be
ordered only with respect to the Write operations in the execution.

In Exercise 1, you will be asked to reason this more thoroughly. Two algorithms for SC are
next given, that exhibit a trade-off of the inhibition of Read versus Write operations.

Local-Read algorithm: The first algorithm for SC, given in Figure 7, is a direct simplifi-
cation of the algorithm for linearizability, given in Figure 5. In the algorithm, a Read
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operation completes atomically, whereas a Write operation does not. Between the in-
vocation of a Write by P; (line le) and its acknowledgement (lines 2a,2b), there may
be multiple Write operations initiated by other processors that take effect at P; (line
2a). Thus, a Write issued locally has its completion locally delayed. Such an algorithm
is acceptable for Read-intensive programs.

Local-Write algorithm: The algorithm in Figure 8 does not delay acknowledgement of
Writes. For Write-intensive programs, it is desirable that a locally issued Write gets
acknowledged immediately (as in lines 2a-2c), even though the total order broadcast for
the Write, and the actual update for the Write may not go into effect by updating the
variable at the same time (line 3a). The algorithm achieves this at the cost of delaying a
Read operation by a processor until all previously issued local Write operations by that
same processor have locally gone into effect (i.e., previous Writes issued locally have
updated their local variables being written to). The variable counter is used to track
the number of Write operations that have been locally initiated but not completed at
any time. A Read operation completes only if there are no prior locally initiated Write
operations that have not written to their variables (line 1a), i.e., there are no pending
locally initiated Write operations to any variable. Otherwise, a Read operation is
delayed until after all previously initiated Write operations have written to their local
variables (lines 3b-3d), which happens after the total order broadcasts associated with
the Write have delivered the broadcast message locally.

This algorithm performs fast (local) Writes and slow Reads. The algorithm pipelines
all Write updates issued by a processor. The Read operations have to wait for all Write
updates issued earlier by that processor to complete (i.e., take effect) locally before the
value to be read is returned to the application.

6.2.3 Causal Consistency

Under sequential consistency, it is required that Write operations issued by different proces-
sors must necessarily be seen in some common order by all processors. This requirement can
be relaxed to require only that Writes that are causally related must be seen in that same
order by all processors, whereas ‘concurrent’ Writes may be seen by different processors in
different orders. The resulting consistency model is the causal consistency model. We have
seen the definition of causal relationships among events in a message passing system. What
does it mean for two Write operations to be causally related?
The causality relation for shared memory systems is defined as follows.

Local order: At a processor, the serial order of the events defines the local causal order

Inter-process order: A Write operation causally precedes a Read operation issued by an-
other processor if the Read returns a value written by the Write.

Transitive closure: The transitive closure of the above two relations defines the (global)
causal order.

Examples: The examples in Figure 9 illustrate causal consistency.

10
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(shared var)
int: x;

(1) When the Memory Manager at P; receives a Read(z) from application:
(1a) if counter = 0 then
(1b) return z.

2) When the Memory Manager at P; receives a Write(z,val) from application:

(
(2a) counter «— counter + 1;

(2b) total_order_broadcast; the Write(x,val);
(2c) return acknowledgement to the application.

(3) When the Memory Manager at P; receives a total_order_broadcast;( Write, z, val) from network:
(3a) write wval to local replica of z.

(3b) if i = j then

(3c) counter <— counter — 1;

(3d) if (counter = 0 and any Reads are pending) then

(3e) perform pending responses for the Reads to the application.

Figure 8: Implementing Sequential Consistency (SC) using local Write operations. Code
shown is for P;, 1 <7 < n.

Figure 9(a): The execution is sequentially consistent (and hence causally consistent). Both
P5 and P, see the operations at P, and P, in sequential order and in causal order.

Figure 9(b): The execution is not sequentially consistent but it is causally consistent. Both
P; and P, see the operations at P, and P, in causal order because the lack of a
causality relation between the Writes by P, and by P, allows the values written by
the two processors to be seen in different orders in the system. The execution is not
sequentially consistent because there is no global satisfying the contradictory ordering
requirements set by the Reads by P; and by P,. What can be said if the two Read
operations of P, returned 7 first and then 4?7 (See Exercise 4.)

Figure 9(c): The execution is not causally consistent because the second Read by P, returns
4 after P, has already returned 7 is an earlier Read.

Implementation

We first examine the definition of sequential consistency. Even though all processors only
need to see some total order of the Write operations, observe that if two Write operations are
related by causality (i.e., the second Write begins causally after a Read that reads the value
written by the first Write), then the order of the two Writes seen by all the processors also
satisfies causal order! In the implementation, even though a total-order-broadcast primitive
is used, observe that it implicitly provides causal ordering on all the Write operations. Thus,
due to the nature of the definition of causal ordering in shared memory systems, a total-
order-broadcast also provides causal order broadcast, unlike the case for message-passing
systems. (Exactly why is it so?)

11
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W(x,2) W(x.4)

Py
R(x,4) WI(X,7)
P —
R(x,2) R(x,7)
P3 —
R(x,4) R(x,7)
P4 ‘ TR !

(a)Sequentially consistent and causally consistent

W(x,2) W(x.4)

P
P, W(X,7)
R(x,7) R(x,2)
P3 1 —— —1
R(x,4) R(x,7)
P4 [ 1 [ 1

(b) Causally consistent but not sequentially consistent

W(x2) W(x4)

P
R(x,4) WI(x,7)
P> — ===
R(x,2) R(x,7)
P3 — =
P Rx7)  R(x4)

4 (c) Not causally consistent but PRAM consistent

Figure 9: Examples to illustrate definitions of sequential consistency (SC), causal consistency
(CC), and PRAM consistency. The initial values of variables are zero.

In contrast to the SC requirement, causal consistency implicitly requires only that causal
order be provided. Thus, a causal-order-broadcast can be used in the implementation. The
details of the implementation are left as Exercise 5.

6.2.4 PRAM (Pipelined RAM) or Processor Consistency

Causal consistency requires all causally-related Writes to be seen in the same order by all
processors. This may be viewed as being too restrictive for some applications. A weaker
form of consistency requires only that Write operations issued by the same (any one) pro-
cessor are seen by all other processors in that same order in which they were issued, but
Write operations issued by different processors nay be seen in differing orders by different
processors. In relation to the ‘causality’ relation between operations, only the local causal-
ity relation, as defined by the local order of Write operations, needs to be seen by other
processors. Hence, this form of consistency is termed processor consistency. An equivalent
name for this consistency model is Pipelined RAM (PRAM), to capture the behavior that
all operations issued by any processor appear to the other processors in a FIFO pipelined

12



Do not circulate, for use in CS 566, Spring 2006 only © A. Kshemkalyani, 2004

(shared variables)

int: z,y;

Process Process j

(la) x +— 4; (2a) y «— 6;

(1b) if y = 0 then kill(P,). (2b) if z = 0 then kill(P).

Figure 10: A counter-intuitive behaviour of a PRAM-consistent program. The initial values
of variables are zero.

sequence.
Examples:

e In Figure 9(c), the execution is PRAM consistent (even though it is not causally
consistent) because (trivially) both P; and P, see the updates made by P; and P; in
FIFO order along the channels P, to P3 and P, to Ps, and along P, to P, and P; to
Py, respectively.

e While PRAM consistency is more permissive than causal consistency, this model must
be used with care by the programmer because it can lead to rather unintuitive results.
For example, examine the code in Figure 10, where z and y are shared variables. It
is possible that on a PRAM system, both processes P, and P, get killed. This can
happen as follows. (i) P; writes 4 to z in line (1a) and P, writes 6 to y in line (2a) at
about the same time. (ii) Before these written values propagate to the other processor,
P, reads y (as being 0) in line (1b) and P, reads z (as being 0) in line (2b). Here, a
Read (e.g., in (1b) or (2b)) can effectively ‘overtake’ a preceding Write (of (2a) or (1a),
resp.) if the two accesses by the same processor are to different locations. However,
this would not be expected on a conventional machine, where at most one process may
get killed, depending on the interleaving of the statements.

e The execution in Figure 11(a) violates PRAM consistency. An explanation is given in
Section 6.2.5.

Implementations

PRAM consistency can be implemented using FIFO broadcast. The implementation details
are left an Exercise 6.

6.2.5 Slow Memory

The next weaker consistency model is that of slow memory. This model represents a location-
relative weakening of the PRAM model. In this model, only all Write operations issued by
the same processor and to the same memory location must be observed in the same order
by all the processors.

Examples: The examples in Figure 11 illustrate slow memory consistency.

13
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W(x,2) W(y.4) W(x,7)
R(y.4) R(x0) R0) R(x7)

1

P2
() Slow memory but not PRAM consistent

W(x,2) Wiy.4) W(x,7)
R(y.4) R(x7) Rx0) Rx2)

1
)

(b) Violation of slow memory consistency

Figure 11: Examples to illustrate definitions of PRAM consistency and slow memory. The
initial values of variables are zero.

Figure 11(a): The updates to reach of the variables are seen pipelined separately in a FIFO
fashion. The ‘z’ pipeline from P; to P; is slower than the ‘y’ pipeline from P; to Ps.
Thus, the overtaking effect is allowed. However, PRAM consistency is violated because
the FIFO property is violated over the single common ‘pipeline’ from P; to P, — the
update to y is seen by P, but the much older value of x = 0 is seen by P; later.

Figure 11(b): Slow memory consistency is violated because the FIFO property is violated
for the pipeline for variable z. ‘c = 7’ is seen by P, before it sees ‘x = 0’ and ‘z = 2’
although 7 was written to x after the values of 0 and 2.

Implementations

Slow memory can be implemented using a broadcast primitive that is weaker than even the
FIFO broadcast. What is required is a FIFO broadcast per variable in the system, i.e., the
FIFO property should be satisfied only for updates to the same variable. The implementation
details are left as Exercise 7.

6.2.6 Hierarchy of Consistency Models

Based on the definitions of the memory consistency models seen so far, there exists a hierarchy
among the models, as depicted in Figure 12.

6.2.7 Other Models based on Synchronization Instructions

We have seen several popular consistency models. Based on the consistency model, the be-
haviour of the DSM differs, and the programmer’s logic therefore depends on the underlying
consistency model. It is also possible that newer consistency models may arise in the future.

All the consistency models seen so far apply to all the instructions in the distributed pro-
gram. We now briefly mention some other consistency models that are based on a different
principle, namely that the consistency conditions apply only to a set of distinguished ‘syn-
chronization’ or ‘coordination’ instructions. These synchronization instructions are typically
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no consistency mode

pipelined RAM (PRAM)

Sequential consistency
Linearizability/
Atomic consistency/
Strict consistency

Causal consistency

Sow memory

Figure 12: A strict hierarchy of the memory consistency models.

from some run-time library. A common example of such a statement is the barrier synchro-
nization. Only the synchronization statements across the various processors must satisfy the
consistency conditions; other program statements between synchronization statements may
be executed by the different processors without any conditions. Examples of consistency
models based on this principle are: entry consistency, weak consistency, and release consis-
tency. The synchronization statements are inserted in the program based on the semantics
of the types of accesses. For example, accesses may be conflicting (to the same variable) or
non-conflicting (to different variables), conflicting accesses may be competing (a Read and a
Write, or two Writes) or non-conflicting (two Reads), and so on. We outline the definitions
of these consistency models but skip further implementation details of such models.

Weak Consistency:

Some applications do not require even seeing all writes, let alone seeing them in some order.
Consider the case of a process executing a CS, repeatedly reading and writing some variables
in a loop. Other processes are not supposed to read or write these variables until the first
process has exited its CS. However, if the memory has no way of knowing when a process
is in a CS and when it is not, the DSM has to propagate all writes to all memories in the
usual way. But by using synchronization variables, processes can deduce whether the CS is
occupied.

A synchronization variable in this model has the following semantics: it is used to prop-
agate all writes to other processors, and to perform local updates with regard to changes to
global data that occurred elsewhere in the distributed system. When synchronization oc-
curs, all Writes are propagated to other processes, and all Writes done by others are brought
locally. In an implementation specifically for the CS problem, updates can be propagated in
the system only when the synchronization variable is accessed (indicating an entry or exit
into the CS).

Weak consistency has the following three properties which guarantee that memory is
consistent at the synchronization points.

1. Accesses to synchronization variables are sequentially consistent.
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2. No access to a synchronization variable is allowed to be performed until all previous
writes have completed everywhere.

3. No data access (either Read or Write) is allowed to be performed until all previous
accesses to synchronization variables have been performed.

An access to the synchronization variable forces Write operations to complete, and effectively
flushes the pipelines. Before reading shared data, a process can perform synchronization to
ensure it accesses the most recent data.

Release Consistency:

The drawback of weak consistency is that when a synchronization variable is accessed, the
memory does not know whether this is being done because the process is finished writing the
shared variables (exiting the CS) or about to begin reading them (entering the CS). Hence,
it must take the actions required in both cases.

e Ensuring that all locally initiated Writes have been completed, i.e., propagated to all
other processes.

e Ensuring that all Writes from other machines have been locally reflected.

If the memory could differentiate between entering the CS and leaving the CS, a more effi-
cient implementation is possible. To provide this information, two kinds of synchronization
variables or operations are needed instead of one.

Release consistency provides these two kinds. Acquire accesses are used to tell the memory
system that a critical region is about to be entered. Hence, the actions for Case (2) above
need to be performed to ensure that local replicas of variables are made consistent with
remote ones. Release accesses say that a critical region has just been exited. Hence, the
actions for Case (1) above need to be performed to ensure that remote replicas of variables
are made consistent with the local ones that have been updated. The Acquire and Release
operations can be defined to apply to a subset of the variables. The accesses themselves can
be implemented either as ordinary operations on special variables or as special operations.

If the semantics of a CS is not associated with the Acquire and Release operations, then
the operations effectively provide for barrier synchronization. Until all processes complete
the previous phase, none can enter the next phase.

The following rules are followed by the protected variables in the general case.

e All previously initiated Acquire operations must complete successfully before a process
can access a protected shared variable.

e All accesses to a protected shared variable must complete before a Release operation
can be performed.

e The Acquire and Release operations effectively follow the PRAM consistency model.

A relaxation of the release consistency model is called the lazy release consistency model.
Rather than propagating the updated values throughout the system as soon as a process
leaves a critical region (or enters next phase in the case of barrier synchronization), the
updated values are propagated to the rest of the system only on demand, i.e., only when
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they are needed. Changes to shared data are only communicated when an Acquire access is
performed by another process.

Entry Consistency:

Entry consistency requires the programmer to use Acquire and Release at the start and at the
end of each CS, respectively. But unlike release consistency, entry consistency requires each
ordinary shared variable to be associated with some synchronization variable such as a lock
or barrier. When an Acquire is performed on a synchronization variable, only access to those
ordinary shared variables that are guarded by that synchronization variable is regulated.

6.3 Shared Memory Mutual Exclusion

Operating systems have traditionally dealt with multi-process synchronization using algo-
rithms based on first principles (e.g., the well-known bakery algorithm), high-level constructs
such as semaphores and monitors, and special ‘atomically executed’ instructions supported
by special-purpose hardware (e.g., Test-€-Set, Swap, and Compare-€-Swap). These algo-
rithms are applicable to all shared memory systems. In this section, we will review the
bakery algorithm which requires O(n) accesses in the entry section, irrespective of the level
of contention. We will then study fast mutual exclusion which requires O(1) accesses in the
entry section in the absence of contention. This algorithm also illustrates an interesting
technique in resolving concurrency. As hardware primitives have the in-built atomicity that
helps to easily solve the mutual exclusion problem, we will then examine mutual exclusion
based on these primitives.

6.3.1 Lamport’s Bakery Algorithm

Lamport proposed the classical bakery algorithm for n-process mutual exclusion in shared
memory systems. The algorithm is so called because it mimics the actions that customers
follow in a bakery store. A process wanting to enter the critical section picks a token number
that is one greater than the elements in the array choosing[l...n]. Processes enter the
critical section in the increasing order of the token numbers. In case of concurrent accesses
to choosing by multiple processes, the processes may have the same token number. In this
case, a unique lezicographic order is defined on the tuple (token,pid), and this dictates the
order in which processes enter the critical section. The algorithm for process i is given in
Figure 13. The algorithm can be shown to satisfy the three requirements of the critical
section problem: (i) mutual exclusion, (ii) bounded waiting, and (iii) progress.

In the entry section, a process chooses a timestamp for itself, and resets it to 0 in the
exit section. In steps (1a)-(1c), each process chooses a timestamp for itself, as the max of
the latest timestamps of all processes, plus one. These steps are non-atomic; thus multiple
processes could be choosing timestamps in overlapping durations. When process ¢ reaches
(1d), it has to check the status of each other process j, to deal with the effects of any
race conditions in selecting timestamps. In (1d)-(1f), process 7 serially checks the status of
each other process j. If j is selecting a timestamp for itself, j’s selection interval may have
overlapped with that of ¢, leading to an unknown order of timestamp values. Process ¢ needs
to make sure that any other process j (j < ¢) that had begin to execute (1b) concurrently with
itself and may still be executing (1b) does not assign itself the same timestamp. Otherwise
mutual exclusion could be violated as 7 would enter the CS, and subsequently, j, having a
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(shared vars)
array of boolean: choosing[l...n|;
array of integer: timestampl[l...n];

1) P; executes the following for the entry section:
1a) choosing[i] <+— 1;
1b) timestamp(i] +— maxye. n)(timestamplk]) + 1;
c
d)

(
(
(
(1c) choosing(i] <— 0;

(1d) for count =1 to n do

(le) while choosing|count] do no-op;

(1f) while timestamp|count] # 0 and (timestamp[count], count) < (timestamp[i],i) do
(

1g) no-op.

(2) P; executes the critical section (CS) after the entry section

(3) P; executes the following exit section after the CS:
(3a) timestampli] «— 0.

(4) P; executes the remainder section after the exit section

until false;

Figure 13: Lamport’s n-process bakery algorithm for shared memory mutual exclusion. Code
shown is for process Pi, 1 <1 < n.

lower process identifier and hence a lexicographically lower timestamp, would also enter the
CS. Hence, i waits for j's timestamp to stabilize, i.e., choosing[j]| to be set to false. Once j’s
timestamp is stabilized, ¢ moves from (1e) to (1f). Either j is not requesting (in which case
j’s timestamp is 0) or j is requesting. Step (1f) determines the relative priority between i
and j. The process with a lexicographically lower timestamp has higher priority and enters
the CS; the other process has to wait (step (1g)). Hence, mutual exclusion is satisfied.

Bounded waiting is satisfied because each other process j can “overtake” process 7 at most
once after ¢ has completed choosing its timestamp. The second time j chooses a timestamp,
the value will necessarily be larger than ¢’s timestamp if 7 has not yet entered its CS. Progress
is guaranteed because the lexicographic order is a total order and the process with the lowest
timestamp at any time in the loop (1d)-(1g) is guaranteed to enter the CS.

Attempts to improve the bakery algorithm have lead to several important results.

e Space complexity: A lower bound of n registers, specifically, the timestamp array, has
been shown for the shared memory critical section problem. Thus, one cannot hope to
have a more space-efficient algorithm for distributed shared memory mutual exclusion.

e Time complerity: In many environments, the level of contention may be low. The
O(n) overhead of the entry section does not scale well for such environments. This
concern is addressed by the field of fast mutual exclusion that aims to have O(1) time
overhead for the entry and exit sections of the algorithm, in the absence of contention.
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Although this algorithm guarantees mutual exclusion and progress, unfortunately, this
fast algorithm has a price — in the worst case, it does not guarantee bounded delay.
Next, we will study Lamport’s algorithm for fast mutual exclusion in asynchronous
shared memory systems. This algorithm is notable in that it is the first algorithm for
fast mutual exclusion, and uses the asynchronous shared memory model. Further, it
illustrates an important technique for resolving contention. The worst-case unbounded
delay in the presence of persisting contention has been addressed subsequently, by using
a timed model of execution, wherein there is an upper bound on the time it takes to
execute any step. We will not discuss mutual exclusion under the timed model of
execution.

6.3.2 Lamport’s RWRWR Mechanism and Fast Mutual Exclusion

Lamport’s fast mutual exclusion algorithm is given in Figure 14. The algorithm illustrates
an important technique — the (W — R — W — R) sequence that is a necessary and sufficient
sequence of operations to check for contention and to ensure safety in the entry section, using
only two registers.

start : 1: b[i] «— true;
2t x— 1
3: if y # 0 then
4: b[i] <— false;
5: await y = 0;
6: goto start fi;
T y<— 1
8 if  #4 then
9: bli] «— false;
10: for j=1to N do await —b[j] od;
11: if y # 1 then
12: await y = 0;
13: goto start fi fi;
[CS]:  critical section;
14: y<«—0;
15:  b[i] «— false;

Figure 14: Lamport’s deadlock-free solution for process P;, where 1 < i < n, using Q(n)
registers.

Steps (2), (3), (7) , and (8) represent a basic (W (z) — R(y) — W(y) — R(x)) sequence
whose necessity in identifying a minimal sequence of operations for fast mutual exclusion is
justified as follows.

1. The first operation needs to be a Write, say to variable z. If it were a Read, then all
contending processes could find the value of the variable even outside the entry section.
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2. The second operation cannot be a Write to another variable, for that could equally be
combined with the first Write to a larger variable. The second operation should not
be a Read of x because it follows Write of x and if there is no interleaved operation
from another process, the Read does not provide any new information. So the second
operation must be a Read of another variable, say .

3. The sequence must also contain Read(z) and Write(y) because there is no point in
reading a variable that is not written to, a writing a variable that is never read.

4. The last operation in the minimal sequence of the entry section must be a Read, as it
will help determine whether the process can enter CS. So the last operation should be
Read(z), and the second-last operation should be the Write(y).

In the absence of contention, each process writes its own id to z and then reads y. Then
finding that y has its initial value, the process writes its own id to y and then reads zx.
Finding x to still be its own id, it enters CS. Correctness needs to be shown in the presence
of contention — let us discuss this after considering the structure of the remaining entry and
exit section code.

In the exit section, the process must do a Write to indicate its completion of the CS.
The Write cannot be to z which is also the first variable written in the entry section. So the
operation must be Write(y).

Now consider the following sequence of interleaved operations by processes ¢, 7, and k in
the entry section.

Wi(z){z = j,y = 0), Wi(z){x =1,y = 0), Ri(y)(z = 4,y = 0), R;(y)(z = i,y = 0), Wi(y)(z = 4,y = i),

W;(y)(z =i,y = j), Ri(z){z = i,y = j), Wi(z)(z = k,y = j), R;(z)(z = k,y = j),
Process 7 enters its critical section, but there is no record of its identity or that it had
written any variables at all, because the variables it wrote (shown boldfaced above) have
been overwritten. In order that other processes can discover when (and who) leaves the CS,
there needs to be another variable that is set before the CS and reset after the CS. This is
the boolean, flag[i]. Additionally, y needs to be reset on exiting the CS.

The code in lines (3)-(6) has the following use. If a process p finds y # 0, then another
process has executed at least line (7) and not yet executed line (14). So process p resets its
own flag, and before retrying again, it awaits for y = 0. If process p finds y = 0 in line (3),
it sets y = p in line (7) and checks if z = p.

e If x = p, then no other process has executed line (2), and any later process would be
blocked in the line (3)-(6) loop now because y = p. Thus, if x = p, process p can safely
enter the CS.

e If x # p, then another process, say ¢, has overwritten z in line (2) and there is a
potential race. Two broad cases are possible.

— Process ¢ finds y # 0 in line (3). It resets its flag, and stays in the line (3)-(6)
section at least until p has exited the CS. Process p on the other hand resets its
own flag (line (9)) and waits for all other process such as ¢ to reset their own
flags. As process ¢ is trapped in lines (3)-(6), process p will find y = ¢ in line (11)
and enter the CS.
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(shared variables among the processes accessing each of the different object types)

register: Reg «— initial value; // shared register initialized
(local variables)
integer: old «+— initial value; // value to be returned

1) Test&Set(Reg) returns value:
a) old «— Reg;
b) Reg +— 1;

¢) return(old).

(
(1
(1
(1

2) Swap(Reg, new) returns value:
a) old «— Reg;

b) Reg +— new;

c) return(old).

(
(2
(2
(2

Figure 15: Definitions of synchronization operations Test&Set and Swap.

— Process ¢ finds y = 0 in line (3). It sets y to ¢ in line (7), and enters the race,
even closer to process p which is at line (8). Of the processes such as p and ¢ that
contend at line (8), there will be a unique winner.

* If no other process r has since written to z in line (2), the winner is the
process among p and g that executed line (2) last, i.e., wrote its own id to
z. That winner will enter the CS directly from line (8), whereas the losers
will reset their own flags, await the winner to exit and reset its flag, and also
await other contenders at line (8) and newer contenders to reset their own
flags. The losers will compete again from line (1) after the winner has reset
Y.

* If some other process r has since written its id to z in line (2), both p and
q will enter code in lines (9)-(13). Both p and ¢ reset their flags, await for r
which will be trapped in lines (4)-(6) to reset its flag, and then both p and ¢
check the value of y. Between p and ¢, the process that last wrote to y in line
(7) will become the unique winner and enter the CS directly. The loser will
then await for the winner to reset y, and then compete again from line (1).

Thus, mutual exclusion is guaranteed, and progress is also guaranteed. However, a process
may be starved, although with decreasing probability, as its number of attempts increases.

6.3.3 Hardware support for mutual exclusion

Hardware support can allow for special instructions that perform two or more operations
atomically. Two such instructions, Test&Set and Swap, are defined and implemented as
shown in Figure 15. The atomic execution of two actions (a Read and a Write operation)
can greatly simplify a mutual excluison algorithm, as seen from the mutual exclusion code in
Figure 16 and Figure 17, respectively. The algorithm in Figure 16 can lead to starvation. The
algorithm in Figure 17 is enhanced to guarantee bounded waiting by using a “round-robin”
policy to selectively grant permission when releasing the critical section.
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(shared variables)

register: Reg <— false; // shared register initialized
(local variables)

integer: blocked <— 0; // value to be returned

repeat
1¢) Swap(Reg, blocked);
1d) until blocked = false;

(2) P; executes the critical section (CS) after the entry section

(3) P; executes the following exit section after the CS:
(3a) Reg «— false;

(4) P; executes the remainder section after the exit section

until false;

Figure 16: Mutual exclusion using Swap. Code shown is for process Pi, 1 < i < n.

6.4 Wait-freedom

Processes that interact with each other, whether by message passing or by shared memory,
need to synchronize their interactions. Traditional solutions to synchronize asynchronous
processes via shared memory objects (also called concurrent objects) use solutions based on
locking, busy waiting, critical sections, semaphores, or conditional waiting. An arbitrary
delay of a process or its crash failure can prevent other processes from completing their
operations. This is undesirable.

Wait-freedom is a property that guarantees that any process can complete any synchro-
nization operation in a finite number of lower-level steps, irrespective of the execution speed
of other processes. More precisely, a wait-free implementation of a concurrent object guaran-
tees that any process can complete an operation on it in a finite number of steps, irrespective
of whether other processes crash or encounter unexpected delays. Thus, processes that crash,
or encounter unexpected delays (such as delays due to high processor load, swapping out of
memory, or CPU schedulng policies) should not delay other processes in a wait-free imple-
mentation of a concurrent object.

Not all synchronizations have wait-free solutions. As a trivial example, a producer-
consumer synchronization between two processes cannot be implemented in a wait-free man-
ner if the producer process crashes before posting its value — the consumer is necessarily
blocked. Nevertheless, the notion of wait-freedom is an important concept in designing
fault-tolerant systems and algorithms whenever possible. An alternate view of wait-freedom
in terms of fault-tolerance is as follows.

e An f-resilient system is a system in which up to f of the n processes can fail, and
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(shared variables)

register: Reg «— false;

array of boolean: waiting[l...n];
(local variables)

integer: blocked <— initial value;

) while waiting[i] and blocked do
) blocked «— Test& Set(Reg);
le) waiting[i] «— false;

a

1b) blocked «— true;
c
d

(2) P; executes the critical section (CS) after the entry section

(3) P; executes the following exit section after the CS:
(3a) next «— (i + 1)modn;

(3b) while next # i and waiting[nezxt] = false do

(3¢) next «— (next + 1)modn;
(
(
(

3d) if next =i then
3e) Reg «+— false;
3f) else waiting[j] «— false;

(4) P; executes the remainder section after the exit section

until false;

// shared register initialized

// value to be returned

Figure 17: Mutual exclusion with bounded waiting, using Test&Set. Code shown is for

process Pi, 1 <1 < n.

the other n — f processes can complete all their operations in a finite number of steps,

independent of the states of the f processes that may fail.

e When f =n — 1, any process is guaranteed to be able to complete its operations in a
finite number of steps, independent of all other processes. A process does not depend
on other processes, and its execution is therefore said to be wait-free. Wait-freedom
provides independence from the behavior of other processes, and is therefore a very

desirable property.

In the remainder of this chapter which deals with shared register accesses, only wait-free

solutions are considered.

6.5 Register Hierarchy and Wait-free Simulations

Observe from our analysis of DSM consistency models that an underlying assumption was
that any memory access takes a finite time interval, and the operation, whether a Read
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Writell(x,4) Write2, (x,6)
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Figure 18: Examples to illustrate definitions of safe, reqular, and atomic registers. The
regular lines assume a SRSW register. If the dashed line is also used, the register is assumed
to be SRMW.

or Write, takes effect at some point during this time duration. In the face of concurrent
accesses to a memory location, we cannot predict the outcome. In particular, in the face
of a concurrent Read and Write operation, the value returned by the Read is unpredictable.
This observation is true even for a simpler multiprocessor memory, without the context
of a DSM. This observation led to the research area that tried to define the properties of
access orderings to the most elementary memory unit, hereafter called a register. The access
orderings depend on the properties of the register. An implicit assumption is that of the
availability of global time. This is a reasonable assumption because we are studying access
to a single register. Whether that register value is replicated in the system or not is a lower
detail that is not relevant to the level of abstraction of this analysis.

In keeping with the semantics of the Read and Write operations, the following register
types have been identified to specify the value returned to a Read in the face of a concurrent
Write operation. For the time being, we assume that there is a single reader process and a
single writer process.

Safe register: A Read operation that does not overlap with a Write operation returns the
most recent value written to that register. A Read operation that does overlaps with a
Write operation returns any one of the values that the register could possibly contain
at any time.

Consider the example of Figure 18 which shows several operations on an integer-valued
register. We consider two cases, without and with the Write by Pj.

No Write by Pj: If the register is safe, Readls must return the value 4, whereas
Read?2, and Read3, can return any possible integer (up to MAXINT) because these
operations overlap with a Write, and the value returned is therefore ambiguous.

Write by P3;: Same as for the “no Write” case.

If multiple writers are allowed, or if Write operations are allowed to be pipelined,
then what defines the most recent value of the register in the face of concurrent Write
operations becomes complicated. We explicitly disallow pipelining in this model and
analysis. In the face of Write operations from different processors that overlap in time,
the notion of a serialization point is defined. Observe that each Write or Read operation
has a finite duration between its invocation and its response. In this duration, there
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‘ Type ‘ Value ‘ Writing ‘ Reading ‘

safe binary | Single-Writer | Single-Reader
regular | integer | Multi-Writer | Multi-Reader
atomic

Table 2: Classification of registers by Type, Value, Writing Access, and Reading Access.
The strength of the register increases down each column.

is effectively a single time instant at which the operation takes effect. For a Read
operation, this instant is the one at which the instantaneous value is selected to be
returned. For a Write operation, this instant is the one at which the value written is
first ‘reflected’ in the register. Using this notion of the serialization point, the ‘most
recent’ operation is unambiguously defined.

Regular register: In addition to being a safe register, a Read that is concurrent with
a Write operation returns either the value before the Write operation, or the value
written by the Write operation.

In the example of Figure 18, we consider the two cases, with and without the Write

by P3.

No Write by P;: Readl, must return 4, whereas Read2; can return either 4 or 6,
and Read3; can also return either 4 or 6.

Write by P3: Readl, must return 4, whereas Read2; can return either 4 or -6 or 6,
and Read3; can also return either 4 or -6 or 6.

Atomic register: In addition to being a regular register, the register is linearizable ((defined

in Section 6.2.1) to a sequential register.

In the example of Figure 18, we consider the two cases, with and without the Write

by P3.

No Write by P;: Readl, must return 4, whereas Read?2, can return either 4 or 6. If
Read?2y returns 4, then Read3; can return either 4 or 6, but if Read?; returns 6,
then Read8 must also return 6.

Write by P3;: Readl, must return 4, whereas Read2, can return either 4 or -6 or 6,
depending on the serialization points of the operations.

1. If Read?2, returns 6 and the serialization point of Writel3 precedes the serial-
ization point of Write2;, then Read3, must return 6.

2. If Read2, returns 6 and the serialization point of Write2; precedes the serial-
ization point of Writels, then Read3, can return +6 or -6.

3. Cases (3) and (4) where Read2, returns -6 are similar to cases (1) and (2).
The following properties, summarized in Table 2, characterize registers.
e whether the register is single-valued (boolean) or multi-valued

e whether the register is a single-reader (SR) or multi-reader (MR) register
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Figure 19: Register simulations.
e whether the register is a single-writer (SW) or multi-writer (MW) register

e whether the register is safe, reqular, or atomic

The above characteristics lead to a hierarchy of 24 register types, with the most elementary
being the boolean SRSW safe register and the most complex being the multi-valued MRMW
atomic register.

A study of register construction deals with designing the more complex registers using
simpler registers. Such constructions allow us to construct any register type from the most
elementary register — the boolean SRSW safe register. We will study such constructions
by assuming the following convention. R; ... R, are ¢ registers that are used to construct a
stronger register R, as shown in Figure 19. We assume n processes exist; note that fo various
construcitons, ¢ may be different from n.

Although the traditional memory architecture, based on serialized access via memory
ports to a memory location, does not require such an elaborate classification, the bigger pic-
ture needs to be kept in mind. In addition to illustrating algorithmic design techniques, this
study paves the way for accommodating newer technologies such as — quantum computing
and DNA computing — for constructing system memory.

6.5.1 Construction 1: SRSW Safe to MRSW Safe

Figure 20 gives the construction of a MRSW safe register R using only SRSW safe registers.
Assume the single writer is process Py and the n reader processes are P; to P,. Each of the n
processes P; can read only SRSW register R;. As multiple readers are not allowed to access
the same register, in essence, the data needs to be replicated. So in the construction, the
writer P writes the same value to the n registers. Register R; is read by P;. In Figure 19,
the value of ¢ would hence be n. When a Read by P; and a Write by Py do not overlap their
access to R;, the Read obtains the correct value. When a Read by P; and a Write by P,
overlap their access to R;, as R; is a safe register, P; reads a legitimate value from R;.

Complexity: This construction has a space complexity of n times the size of a single
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(shared variables)
SRSW safe registers R; ... R, «— 0; // R; is readable by P;, writable by P,

(1) Write(R,val) executed by single writer P,
(la) for alli € {1...n} do
(1b) R; +— val.

(2) Read;(R,val) executed by reader P;, 1 <i<n
(2a) val «+— R;
(2b) return(val).

Figure 20: Construction 1: SRSW Safe register to MRSW Safe register R. This construction
can also be used for SRSW Regular register to MRSW Regular register R.

register, which may be either binary or integer-valued. The time complexity is n steps.

6.5.2 Construction 2: SRSW Regular to MRSW Regular

This construction is identical to Construction 1 (Figure 20) except that regular registers are
used instead of safe registers. When a Read by P; and a Write by Py do not overlap their
access to R;, the Read obtains the correct value. When a Read by P; and a Write by F,
overlap their access to R;, as R; is a regular register, P; reads a legitimate value from R;.

Complexity: This construction has a space complexity of n times the size of a single
register, which may be either binary or integer-valued. The time complexity is n steps.

6.5.3 Construction 3: Boolean MRSW Safe to integer-valued MRSW Safe

Figure 21 gives the construction of an integer-valued MRSW safe register R. Assume the
single writer is process P, and the n reader processes are P; to P,. The construction can use
only boolean MRSW registers — to construct an integer register of size m, at least log(m)
boolean registers are necessary. So in the construction, the writer P, writes the value in its
binary notation to the log(m) registers R, to Riyg(m). Similarly, any reader reads registers
R; to Rjpg(m)- When a Read by P; and a Write by Py do not overlap, the Read obtains the
correct value. When a Read by P; and a Write by P, overlap their access to the registers, as
the R; (1 =1 to log(m)) registers are safe, P; reads a legitimate value.

Complexity: This construction has a space complexity of log(m) times the size of an integer
m. The time complexity is O(log(m)) steps.

6.5.4 Construction 4: Boolean MRSW Safe to boolean MRSW Regular

Figure 22 gives the construction of a boolean MRSW regular register R from a MRSW safe
register. Assume the single writer is process Py and the reader process is P; (1 <i <mn). In
Figure 19, ¢ has the value 1. P, writes R; and all the n processes read R;.

When a Read by P; and a Write by P, do not overlap, the Read obtains the correct value.
When a Read by P; and a Write by P, overlap, the safe register may not necessarily return
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(shared variables)
boolean MRSW safe registers R; ... Rjog(m) <— 0; // Ri readable by all, writable by Pj.

(local variable)
array of boolean: Val[l...log(m)];

(1) Write(R,Val[l...logm]) executed by single writer Py
(la) for alli € {1...log(m)} do
(1b) R; «— Vall[i].

(2) Read;(R,Val[l...log(m)]) executed by reader P;, 1 <i<n
(2a) for all j € {1...logm} do Val[j] +— R;
(2b) return(Val[l...log(m)]).

Figure 21: Construction 3: boolean MRSW Safe register to integer-valued MRSW Safe
register R.

(shared variables)
boolean MRSW safe register: R' «— 0; // R' is readable by all, writable by P.

(local variables)
boolean local to writer P,: previous +— 0;

) Write(R,val) executed by single writer Py
1a) if previous # val then
b) R’ «— val;

c) previous <— val.

(2) Read(R,val) process P;, 1 <i<mn
(2a) val +— R/;
(2b) return(val).

Figure 22: Construction 4: boolean MRSW Safe register to boolean MRSW Regular register
R.

the overlapping or the previous value (as required by a regular register), but may return a
value written much earlier. If the value written before the Read begins is o, and the value
being written by the concurrent Write is also «, the Read could return « or (1 — «) from the
safe register, which is a problem for the regular register. The solution bypasses this problem
by having the Write use a local variable previous to track the previous value of val. If the
previous value that was written (line (1b)) and stored in previous (line (1c)) is the same
as the new value to be written, then the new value is simply not written. This avoids any
concurrent access to R.

Complexity: This construction uses O(1) space and time.
Can the above construction also construct a binary SRSW atomic register from a safe
register? No. Consider P, issues a Writel;(«) that completes; then Write2; (1 — «) begins
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(shared variables)
boolean MRSW regular registers Ry ... R, 1 +— 0; Ry, +— 1;
// R; readable by all, writable by P,.
(local variables)
integer: count;

1) Write(R,val) executed by writer P
a) Rya — L;

b) for count = val — 1 down to 1 do
C) Reount <— 0.

2) Read;(R,val) executed by P;, 1 <i<mn

(
(2a) count = 1;

(2b) while Repunt = 0 do

(2c) count <— count + 1;
(2d) val «— count;

(2e) return(val).

Figure 23: Construction 5: boolean MRSW Regular register to integer-valued MRSW Reg-
ular register R.

and overlaps with Readl, and Read?2, of P,. With the above construction, Readl, could
return 1 — o whereas the later Read2; could return «, thus violating the property of an
atomic register.

6.5.5 Construction 5: Boolean MRSW Regular to integer-valued MRSW Reg-
ular

Figure 23 gives the construction of an integer-valued MRSW regular register R using boolean
MRSW regular registers. Assume the single writer is process Py and the n reader processes
are P; to P,. The construction can use only boolean MRSW registers — to construct an
integer register of size m, unary notation is used, so m boolean registers are necessary. In
Figure 19, ¢ = m, and all the n processes all the ¢ registers.

When a Read by P; and a Write by P, do not overlap, the Read obtains the correct value.
To deal with a Read by P; and a Write(s) by Py overlapping their access to the registers,
the following approach is used. A reader P; scans left-to-right looking for a ‘1’ whereas the
Py writer process writes ‘1’ to the R,,; location and then zeros out entries right-to-left. The
Read is guaranteed to see a ‘1’ written by one of the Write operations it overlaps with, or
the ‘1’ written by the Write that completed just before the Read began. As each of the bits
are regular, its current or previous value is read; if the value is ‘0’, it is guaranteed that a
‘1’ has been written to the right. An implicit assumption here is the integer size, bounded
by the number of bits in use. The register is initialized by this largest value.

Complexity: This construction uses m binary registers, where m is the largest integer that
can be written by the application.
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Writel, (R2) Write2, (R:3)

Write(Rp,1)  Write(Ry,0) Mrite(Rg,1) Write(R ,O)\Nrite(Rl,O)

Read(R1,0) ReadRp0)  Read(Rg1)  Read(Ry,0) Read(Rpl)
P

Readl, (R,?) returns3 Read? (R,?) returns 2

Figure 24: Example to illustrate inversion of values read.

6.5.6 Construction 6: Boolean MRSW Regular to integer-valued MRSW Atomic

Can the above construction (Figure 23) also construct a binary SRSW atomic register from
a regular register? No. The problem is that when two successive Read operations overlap
Write operations, ‘inversion’ of values returned by the Read operations can occur.

Consider the following sequence of operations, depicted in Figure 24.

1. Writel;(R,2): The low-level operation Write(Ry, 1) begins, i.e., Ry «— 1 begins.

2. Readl3(R,?): The following low-level operations get executed. count <— 1; Read(Rcount, 0);
count <— 2; Reads(Reount, 0); count «— 3;

3. Writel;(R,2): The low-level operation Write(Ry,1) from step 1 completes, i.e., the
value ‘1’ gets written to Ry; then the left scan to zero out R; proceeds by executing
Write; (R1,0) and the Writel,(R,2) ends.

4. Write2 (R, 3): The low-level operation Write;(R3,1) executes, i.e., R3 «— 1 begins
and ends.

5. Readls(R,?): The low-level operation Reads(Reount—3,?) that was to begin after step 2
returns 1; the high-level Read completes.

6. Read2y(R,?): This operation’s left-to right scan for a ‘1’ finds R, = 1 and returns 2;
because the low-level operation Write2;(Rs,0) belonging to the high-level operation
Write2: (R, 3) has not yet zeroed out Rj.

Here, Read?2;(R,2) returns the value written by Writel;(R,2); whereas the earlier Read1y(R, 3)
returns the value written by the later Write2; (R, 3). Hence, this execution is not linearizable.
Figure 25 gives the construction of a integer-valued MRSW atomic register R by mod-
ifying the above solution as follows. The reader makes a right-to-left scan for a ‘1’ after
its left-to-right scan completes. If it finds a ‘1’ in a lower index, it updates the value to be
returned to this index. The purpose is to make sure that the lowest index (say «) in which a
‘1’ is found in this second ‘right-to-left’ scan is returned by the Read. As the writer also zeros
out entries ‘right-to-left’; it is not possible that a later Read will find a ‘1’ written earlier
in a position lower than «, by a Write that occurred earlier than the Write which wrote a.
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This allows a linearizable execution. In Figure 19, ¢ = m, and all the n processes all the ¢
registers.

A formal argument that this construction is correct needs to show that any execution is
linearizable. To do so, it would define the linearization point of a Read and Write operation
to capture the notion of the exact instant at which that operation effectively appears to take
effect.

e The value of the MRSW register at any moment is x, where R, = 1 and Vy < z,
R, =0.

e The linearization point of a Write(R, x) operation is the first instant (line (1a) or (1c))
when R, =1 and Vy <z, R, = 0.

e The linearization point of a Read(R,val) that returns (z) is the first instant (line (2d)
or (2g)) when val gets assigned z in the low-level operations.

The following observation can now be made from the construction and the definition of the
linearization point of a Write.

e The value of the MRSW register remains unchanged between the linearization points
of any two consecutive Write operations.

The Write operations are naturally ordered in the linearization sequence. In order to deter-
mine a complete linearization of the Read operations in addition to the Write operations,
observe the following.

e A Read operation returns the value written by that Write operation which has the
latest linearization point that precedes the Read operation’s linearization point.

It naturally follows that a later Read will never return the value written by a earlier Write,
and hence the construction is linearizable.

Complexity: This construction uses m binary registers, where m is the largest integer that
is written by the application program. The time complexity is O(m).

6.5.7 Construction 7: Integer MRSW Atomic to integer MRMW Atomic

We are given MRSW atomic registers, i.e., each register has only a single writer. To simulate
a MRMW atomic register R, the variable has multiple copies, R;...R,, one per writer
process. Writer P; can only write to its copy R;. Reader P; can read all the registers
Ry ...R,. When concurrent updates occur, a global linearization order must be created
somehow. The Read operations must be able to recognize such a global order, and then
return the appropriate version as per the semantics of the atomic register. That is the
challenge.

The construction is shown in Figure 26. In Figure 19, ¢ = n, and all the n processes all the
g MRSW registers but only P; can write to R;. The idea used is similar to that used by the
Bakery algorithm for mutual exclusion (Section 6.3.1), wherein each process competing for
the critical section first sets its flag (behaving as the writer process) signalling its intention.
The competing processes that make concurrent accesses (behaving as the reader processes)
then read all the flags and deduce a global order that resolves the contention.
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(shared variables)
boolean MRSW regular registers Ry ... R, 1 +— 0; Ry, «— 1.
// R; readable by all; writable by P,.

(local variables)
integer: count,temp;

1) Write(R,val) executed by P
a) val S— 1;
b) for count = val — 1 down to 1 do

C) Rcount +— 0.

(

(1
(1
(1

2) Read;(R,val) executed by P;, 1 <i<mn
2a) count +— 1;

2b) while Reount = 0 do

2¢) count <— count + 1;

) val «— count;

2e) for temp = count down to 1 do

) if Riemp = 1 then

2g) val <— temp;

2h) return(val).

Figure 25: Construction 6: boolean MRSW Atomic register to integer-valued MRSW Atomic
register R.

Each register R; has two fields: R;.data and R;.tag, where tag = (seq_no,pid). A lez-
wcographic order is defined on the tags, using seq_no as the primary key, and then pid as
the secondary key. A common procedure invoked by the readers and writers is the Collect
which reads all the registers, in no particular order. The reader returns the data correspond-
ing to the (lexicographically) most recent Write. A writer chooses a tag greater than the
(lexicographically) greatest tag returned by the Collect, when it writes its new value.

All the Write operations are lexicographically totally ordered. Each Read is ordered
so that it immediately follows that Write with the matching tag. Thus, this execution is
linearizable.

Complexity: This construction uses m binary registers, where m is the largest integer
written by the application. The time complexity is O(m).

6.5.8 Construction 8: Integer SRSW Atomic to integer MRSW Atomic

We are given SRSW atomic registers. To simulate a MRSW atomic register R, the variable
has multiple copies, Ry, ... R,, one per reader process. The single writer can write to all of
these registers.

A first attempt at this construction would have the writer write to all the registers
R, ... R,, whereas reader P; reads R;. In Figure 19, ¢ = n, and each R; is read by F; and
written to by the single writer ). However, such a construction does not give a linearizable
execution. Consider two reads Readl; and Read2; that both overlap a Write and Read?2
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(shared variables)
MRSW atomic registers of type (data, tag), where tag = (seq-no,pid): R; ... Ry;

(local variables)

array of MRSW atomic registers of type (data,tag), where tag = (seq_no,pid):
Reg_Array[l...n];

integer: seq_no,j,k;

(1) Write;(R,val) executed by Pj, 1 <i<mn

(1a) Reg_Array <— Collect(Ry,...,R,);

(1b) seq-no «— max(Reg_Array[l].tag.seq-no, ... Reg_Array[n].tag.seq_-no) + 1;
(1c) R; «— (val, (seq_no,1i)).

(2) Read;(R,val) executed by P;, 1 <i<mn

(2a) Reg_Array «— Collect(Ry,...,Ry);

(2b) identify j such that for all k # j, Reg_Array[j|.tag > Reg_Array[k].tag;
(

(

2¢) val <— Reg_Arraylj|.data;
2d) return(val).

(3) Collect(Ry,...,Ry) invoked by Read and Write routines
(3a) for j =1 ton do

(3b) Reg_Arraylj] «— Rj;

(3c) return(Reg_Array).

Figure 26: Construction 7: integer MRSW Atomic register to integer MRMW Atomic reg-
ister R.

begins after Readl terminates. It is possible that:
1. Readl; reads R; after the Write has written to R;
2. but Read?; reads R; before the writer has had a chance to update R;.

This results in a non-linearizable execution.

The problem above arose because a reader did not have access to what other readers
read; in particular, a reader P; cannot tell if another Read by P; that completed before this
Read began got a value that is newer than the value that the writer has written to R;. In
fact, performing multiple reads by the P; processes, and/or more writes by Py, and/or using
more registers cannot solve this problem.

To fix this problem, a reader process P; must choose the latest of the values that other
reader processes have last read, and the value in R;. As only SRSW registers are available,
unfortunately, this requires communication between each pair of reader processes, leading to

O(n?) variables. Thus, a reader process must also write! An array Last_Read_Values[l...n,1...

is used for this purpose. Last_Read_Values|i, j| is the value that P;’s last Read returned,
which P; has set aside for P; to know about. Once a reader P; determines the latest of the
values that other readers read (lines 2(b-d)), and the value written for it by the writer process
(line 2a), the reader publishes this value in Last_Read_V alues|i, ] (lines 2e-2f). As there is
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(shared variables)

SRSW atomic register of type (data, seq-no), where data, seq_no are integers: R;...R,
«— (0,0);

SRSW atomic register array of type (data,seqno), where data,seqno are integers:

Last_Read_Values[l...n,1...n] +— (0,0);

(local variables)
array of (data, seqno): Last_Read[0...n];
integer: seq, count;

(1) Write(R,val) executed by writer P
(1a) seq +— seq + 1;
(1b
(

1b) for count =1 to n do
1c) Reount <— (val, seq). // write to each SRSW register

(2) Read;(R,val) executed by P;, 1 <i<n

(2a) (Last_Read|0].data, Last_Read[0].seq-no) «— R;; /] Last_Read|0] stores value of R;
(

(

2b) for count =1 ton do // read into Last_Read|count], the latest values stored for P; by Peoynt

2¢) (Last_Read|count].data, Last_Read[count].seq_no) <—
(Last_Read_V alues[count,i].data, Last_Read_V alues[count, i].seq_no);

(2d) identify j such that for all k # j, Last_Read[j].seq-no > Last_Read|[k].seq_no;

(2e) for count =1 to n do

(2f) (Last_Read_V alues|i, count].data, Last_Read_V alues|[i, count].seq_no) «—
(Last_Read|j].data, Last_Read[j].seq-no);

(2g) val «— Last_Read|[j].data;

(2h) return(val).

Figure 27: Construction 8: integer SRSW Atomic register to integer MRSW Atomic register
R.

a single writer, the format (data, seq_no) for each register value and each Last_Read_V alue
entry is adequate to give a total order on all the values written by it. The construction is
shown in Figure 27. Here, ¢ = n? +n — there are n? SRSW registers that act as personalized
mailboxes between pairs of processes, and the n registers that are the mailboxs between
writer Py and each reader P;.

Complexity: This construction uses O(n?) integer registers. The time complexity is O(n).

Achieving linearizability: All the Write operations form a total order. A Read by P;
returns the value of the latest preceding Write, as observed directly from the register R;,
or indirectly from the register R; and communicated to P; via Last_Read_V alues. In a lin-
earized execution, a Read is placed after the Write whose value it reads. For nonoverlapping
Reads, their relative order represents the order in a linearizable execution, because of the
indirect communication among readers. For overlapping Reads, their ordering in a linearized
execution is consistent with the Writes whose values they read. Hence, the construction is
a valid construction.
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Figure 28: Atomic snapshot object, using MRSW atomic registers.

6.6 Wait-free Atomic Snapshots of Shared Objects

Observing the global state of a distributed system is a fundamental problem. For message-
passing systems, we have studied how to record global snapshots which represent an in-
stantaneous possible global state that could have occurred in the execution. The snapshot
algorithms used message-passing of control messages, and were inherently inhibition-free,
although some variants that use fewer control messages do require inhibition.

In this section, we examine the counterpart of the global snapshot problem in a shared-
memory system, where only Read and Write primitives can be used. The problem can be
modeled as follows.

Given a set of SWMR atomic registers R, ... R,, where R; can be written only by P,
and can be read by all processes, and which together form a compound high-level object,
devise a wait-free algorithm to observe the state of the object at some instant in time. The
following actions are allowed on this high-level object, as also illustrated in Figure 28.

e Scan;: This action invoked by P; returns the atomic snapshot which is an instantaneous
view of the object (Ry,..., R,) at some instant between the invocation and termination
of the Scan.

e Update;(val): This action invoked by P; writes the data val to register R;.

Clearly, any kind of locking mechanism is unacceptable because it is not wait-free. Con-
sider the following attempt at a wait-free solution. The format of each register R; is as-
sumed to be the tuple: (data, seq_no) in order to uniquely identify each Write operation to
the register. A scanner would repeatedly scan the high-level object until two consecutive
scans, called double-collect in the shared memory context, returned identical content. This
principle of “double-collect” has been encountered in multiple contexts, such in two-phase
deadlock detection and two-phase termination detection algorithms, and essentially embod-
ies the two-phase observation rule. However, this solution in not wait-free because between
the two observations of each double-collect, an Update by another process can prevent the
Scan from being successful.
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A wait-free solution is given in Figure 30. Process P; can write to its MRSW register R;
and can read all registers Ry,... R,. To design a wait-free solution, it needs to be ensured
that a scanner is not indefinitely prevented from getting identical scans in the double-collect,
by some writer process periodically making updates. The problem arises because of the
imbalance in the roles of the scanner and updater — the updater is inherently more powerful
in that it can prevent all scanners from being successful. One elegant solution therefore
neutralizes the unfair advantage of the updaters by forcing the updaters to follow the same
rules as the scanner. Namely, the updaters also have to perform a double-collect, and only
after performing a double-collect can an updater write the value it needs to! Additionally,
an updater also writes the snapshot it collected in the register, along with the new value
of the data item. Now, if a scanner detects that an updater has made an update after the
scanner initiated its Scan, then the scanner can simply ‘borrow’ the snapshot recorded by
the updater in its register. The updater helps the scanner to obtain a consistent value. This
is the principle of “helping” that is often used in designing wait-free solutions for various
problems.

A scanner detects that an updater has made an update after the scanner initiated its
Scan, by using the local array changed. This array is reset to 0 when the Scan is invoked.
Location changed[k] is incremented (line (2k)) if the Scan procedure detects (line (2j)) that
process P, has changed its data and seq-no (and implicitly the old_snapshot) fields in Ry.
Based on the value of changed[k], different inferences can be made, as now explained with
the help of Figure 29.

e If changed[k] = 2 (line (21)), then two updates (line (1b)) were made by Py after P
began its Scan. Between the first and the second update, the Scan preceding the second
update must have completed successfully, and the scanned value was recorded in the
old_snapshot field. This old snapshot can be safely borrowed by the scanner P; (line
(2m)) because it was recorded after P finished its first double-collect, and hence after
the scanner P; initiated its Scan.

e However, if changed[k] = 1, it cannot be inferred that the old_snapshot recorded by
P, was taken after P;’s Scan began. When P, does its Update (the first ‘write’ shown
in Figure 29(b)), the value it writes in old_snapshot is only the result of a double-scan
that preceded the ‘write’ and may be a value that existed before P;’s Scan began.

There are two cases by which a snapshot can be captured, as illustrated using Figure 29.

1. A scanner can collect a snapshot (line (2g)) if the double-collect (lines (2d-2e)) returns
identical views (line (2f)). See Figure 29(a). The returned snapshot represents an
instantaneous state that existed at all times between the end of the first collect (line
(2d)) and the start of the second collect (line (2e¢)).

2. Otherwise the scanner returns a borrowed snapshot (line (2m)) from Py if Py has
been noticed to have made two updates (lines (21)) and therefore P, has made a Scan
embedded inside P;’s Scan. This borrowed snapshot itself (i) may have been obtained
directly via a double-collect, or (ii) indirectly been borrowed from another process (line
(21)). In case (i), it represents an instantaneous state in the duration of the double-
collect. In case (ii), a recursive argument can be applied. Observe that there are n
processes, so the recursive argument can hold at most n times. The n + 1** time, a
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(b) P_j’s Double—Collect nested within P_i’s SCAN. The Double—Collect
successful, or P_j may have borrowed snapshot from P_k’s Double—Collec
nested within P_j’s SCAN. And so on recursively, up to n times.

Figure 29: Nesting of double-collects, in Scanning for Atomic snapshots of object.

double-collect must have been successful. See Figure 29(b). Note that between the
two double-collects of P; that are shown, there may be up to n — 2 other unsuccessful
double-collects of P;. Each of these (n — 2) other double-collects corresponds to some
P, k # 1,7, having ‘changed’ once.

The linearization of the Scan and Update operations follows in a straightforward manner.
For example, nonoverlapping operations get linearized in the order of their occurrence. An
operation by P; that borrows a snapshot from Py gets linearized after Pj.

Complexity: The space complexity is O(n) integers. The shared space is O(n?) corre-
sponding to each of the n registers of size O(n) each. The time complexity is O(n?). This
is because the main Scan loop has a complexity of O(n) and the loop may be executed at
most (n + 1) times — the n + 1-th time, at least one process P, must have caused P;’s local
changed[k] to reach a value of two, triggering an end to the loop (lines (2k-21)).

6.7 Exercises

1. Why do the algorithms for sequential consistency (Section 6.2.2) not require the Read
operations to be broadcast?

2. Give a formal proof to justify the correctness of the algorithm in Figure 7 that imple-
ments sequential consistency using local Read operations.

3. In the algorithm to implement sequential consistency using local Write operations,
as given in Figure 8, why is a single counter counter sufficient for the algorithm’s
correctness?
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(shared variables)
MRSW atomic register of type (data, seq_no, old_snapshot), where data, seq_no are of type
integer, and old_snapshot[l...n] is array of integer: R;... R,;

(local variables)
array of int: changed|[l...n];
array of type (data, seq_no, old_snapshot): v1[1...n],v2[1...n],v[l...n];

(1) Updates(z)
(l1a) v[l...n] «— Scan;;
(Ib) R; +— (z, R;j.seqno+ 1,v[l...n]).

(2) Scan;

(2a) for count =1 to n do

(2b) changed|count] <— 0;

(2c) while true do

(2d) vl[l...n] +— collect();

(2e) v2[1...n] +— collect();

(2f) if (Vk,1 <k < n)(vl[k].seq-no = v2[k].seq-no) then
(2g) return(v2[1].data, ... ,v2[n].data);

(2h) else

(21) for k=1 ton do

(2j) if v1[k].seq_-no # v2[k].seq-no then

(2k) changed[k] «— changed[k] + 1;
(21) if changed[k] = 2 then

(2m) return(v2[k].old_snapshot).

Figure 30: Wait-free atomic snapshot of a shared MRSW object.

In other words, why is a separate counter counter, not required to track the number
of updates issued to each variable x, where a Read operation on = gets delayed only if
counter, > 07 If such a separate counter were used for every variable, what consistency
model would be implemented?

4. e In Figure 9(a), analyze whether the execution is linearizable.
e In Figure 9(b), what forms of memory consistency are satisfied if the two Read
operations of P, return 7 first and then 47

5. Give a detailed implementation of causal consistency, and provide a correctness argu-
ment for your implementation.

6. Give a detailed implementation of PRAM consistency, and provide a correctness argu-
ment for your implementation.

7. Give a detailed implementation of slow memory, and provide a correctness argument
for your implementation. Is the implementation less expensive than that of PRAM
consistency which is a stricter consistency model?
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(shared variables)
boolean: turn <— false; // shared register initialized
array of boolean: want[0,1];

repeat

(1) P; executes the following for the entry section:
(1a) wanting[i] «— true;

(1b) turn <— 1 —3;

(1c) while wanting[l —i] and turn =1 —¢ do
(1d) no-op;

(2) P; executes the critical section (CS) after the entry section

(3) P; executes the following exit section after the CS:

(3a) wanting[i] «— false;

(4) P; executes the remainder section after the exit section

until false;

Figure 31: Peterson’s mutual exclusion for two processes P, = 0,1. Modulo=2 artithmatic
is used.

10.

11.

6.8

Show that Constructions 1 and 2 (Figure 20) work for binary registers as well as
integer-valued registers.

Why are two passes needed by the reader in Construction 6, Figure 25, for a MRSW
atomic register?” Why does a single right-to-left pass not suffice?

Peterson’s mutual exclusion algortihm for two processes is shown in Figure 31.

(a) Show that it satisfies mutual exclusion, progress, and bounded waiting.

(b) Use this algorithm as a building block to construct a hierarchical mutual exclusion
algorithm for an arbitrary number of processes. (Hint: use a logarithmic number
of steps in the hierarchy.)

Determine the average case time complexity of the wait-free atomic snapshot of a
shared object, given in Figure 30.

Bibliographic Notes

A good survey on distributed shared memory systems is given by Protic, Tomasevic, and
Milutinovic [25]. This includes coverage of the various DSM systems such as Firefly, Sequent,
Alewife, Dash, Butterfly, CM*, Ivy, Mirage, Midway, Munin, Linda and Orca.

The sequential consistency model was defined by Lamport [16]. The linearizability model
was formalized by Lamport [18] and developed by Herlihy and Wing [10]. The implemen-
tations of linearizability and sequential consistency based on the broadcast primitive and
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assuming full replication are from Attiya and Welch [5], whereas a similar implementation
of sequential consistency is given by Bal, Kaashoek, and Tanenbaum [6]. The causal consis-
tency model was proposed by [3]. The PRAM model was proposed by Lipton and Sandberg
[22]. The slow memory model was proposed by Hutto and Ahamad [11]. Other consistency
models such as weak consistency [8], release consistency [9], and entry consistency [7] that ap-
ply to selected instructions in the code, were developed mainly in the computer architecture
research community, and are discussed in [2, 1].

The bakery algorithm for mutual exclusion was presented by Lamport [14]. The fast mu-
tual exclusion algorithm was presented by Lamport [20]. The two-process mutual exclusion
algorithm was presented by Peterson [23]. Its modification that is asked as Exercise 10 is
based on the algorithm by Peterson and Fischer [24].

The notion of wait-freedom was proposed by Lamport [] and developed by Herlihy [12].
The definition and classification of registers as safe, regular, and atomic were given by Lam-
port [17, 18, 19]. Constructions 1 to 5 were proposed by Lamport [18]. Register Construction
6 was proposed by Vidyasankar [26]. Register Construction 7 was proposed by Vitanyi and
Awerbuch [27]. Register Construction 8 was proposed by Israeli and Li [13]. A construc-
tion of a MRMR, snapshot object using MRSW snapshot objects and MRMW registers was
proposed by Anderson [4].
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