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In a space-time view of a distributed system, each point in space has
its own time axis. This paper studies the interaction of intervals at
different spatial points in a distributed system. We formalize the notion
of what it means for one such interval to affect another such interval.
Thus, this paper contributes to the quintessential field of the study of
time. The results extend the 1972 work by Hamblin that demonstrated
the interaction of time intervals which shared the same linear global
time axis. The results also shed light on the nature of interprocess
communication in distributed systems, an area which was pioneered by
Lamport in 1986. The diverse suite of temporal relations between inter-
vals included in our results provides much greater flexibility than do
Lamport’s relations to model interprocess interaction in a distributed
system. The results are also useful in specifying global predicates and
distributed synchronization conditions. © 1996 Academic Press, Inc.
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1. INTRODUCTION

This paper presents a theory of the interactions of inter-
vals in distributed systems without assuming the existence
of global time. This is a fundamental problem whose under-
standing can simplify the design and analysis of any system
that involves concurrent actions. We show separate results
for the interactions between dense linear intervals and
between nondense linear intervals that occur at different
points in space. Although time is dense and linear at a point
in space [2], in practice, clocks use nondense scales to
measure time. The interactions between nondense linear
intervals are also useful because actions in a distributed
system are modeled as sequences of discrete events on each
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node. Hence, both results are useful and contribute to the
quintessential study of time and intervals [ 1, 2]. This is the
first contribution of the results.

In an early seminal work that advocated a theory of inter-
vals over a theory of instants as a means to model time,
Hamblin studied the relations between intervals and gave a
suite of ten axioms in first-order predicate calculus to
describe the logic of intervals [ 7]. A temporal interval is a
time duration, which implicitly identifies its start and finish
instants. Hamblin identified 13 distinct ways in which two
temporal intervals may be related to each other in terms of
overlapping or concurrent existence. Specifically, two inter-
vals may be related by the following relations: before, meets,
overlaps during —', starts, finishes~', equals. The first six
relations above have their corresponding inverses. For
example, for intervals X and Y, if X before Y, then Y
before ' X. The seventh relation above is its own inverse.
Van Benthem proved in Theorem 1.3.1.4 [2] that these 13
possibilities cover all the ways by which two intervals may
be related.

Hamblin’s work [ 7] on intervals assumed a universal or
global time axis that was instantaneously accessible. The
two intervals between which the interaction was studied
occurred at a single point in space rather than at different
points in Euclidian three-dimensional space. This was
reflected by Axiom 2 in [7]. The real world is distributed
and the absence of a common global clock as well as the
impossibility of perfectly synchronizing local clocks
invalidates the existence of a global time axis. This work
extends Hamblin’s work by giving the interactions between
intervals that occur at two different points in space and that
do not share a common time axis. This is the second
contribution of our results. While Hamblin’s result is
applicable to a study of interactions of intervals in a unipro-
cessor system, it is inadequate for modeling the interactions
of intervals in distributed systems.

The partial order of events in the universe viewed as
Minkowski’s four-dimensional space—time [15] has been
studied by many logicians, physicists, mathematicians, and
philosophers throughout this century, e.g., [ 1, 2,4, 5]. The
causality or “happens before” relationship between points
in space-time was given in [4]. Lamport demonstrated
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the utility of the causality relation in reasoning about
distributed systems [9]. Thus, until the mid-eighties, only
the interaction between two points in a distributed system
was studied. There were three possibilities for the interac-
tion between two points x and y that were specified using the
causality relation ——: (i) (x — p) A (y —— x), (ii)
(y — x) A (x—— ), and (iii) (y—— x) A (x—— ).

In a landmark paper on interprocess communication,
Lamport argued that “it is useful to assume that primitive
elements between which concurrency is modeled are non-
atomic” [10]. Lamport defined system executions using
two relations —— and ——— between these primitive non-
atomic elements (“operation executions”) and axioms
satisfied by —— and ——— [ 10, 12]. Lamport further says
“the relations —— and ——— capture the essential temporal
properties of system executions, ..., and A1-AS5 (the corre-
sponding axioms) provide the necessary tools for reasoning
about these relations” [ 10, p. 80]. We show that the two
relations defined by Lamport are not sufficient to capture
the essential temporal properties of system executions in
distributed systems. The set of relations we propose can
capture the essential temporal properties, model a wide
range of interactions, and specify synchronization condi-
tions between various loci of control in distributed systems
and in parallel systems. Thus, the third contribution of this
work is that it models concurrency more clearly than before.

We proceed by specifying and examining three families of
system executions for a semantic model that represents the
space—time view and its causality relation. For each family
of system executions, we define relations, based on the
causality relation, that specify how one interval may be
related to another. We give the significance of and an
evaluation condition for each relation. We then derive a set
of axioms for these relations. For each family of system
executions, we enumerate and define all valid combinations
of values of the defined relations, to give derived meta-level
relations called interaction types. Interaction types are
orthogonal to the other. We graphically depict each of the
derived orthogonal interaction types.

The first family of system executions deals with the inter-
action of a linear interval and a point interval. The second
family deals with the interaction of a pair of dense linear
intervals. This family extends Hamblin’s result to a
distributed system. This family permits 29 interaction types
between a pair of intervals. Of these, there are 13 pairs of
inverses, while three are inverses of themselves. The third
family deals with nondense linear intervals. This family
permits eleven interaction types between a pair of intervals
in addition to those permitted by the second family. Of
these, there are five pairs of inverses, while one is its own
inverse. The family of system executions that deals with the
interaction between a pair of poset intervals is given in [ 8].

The paper then identifies two applications of the results.
One application is the specification of global predicates [ 6]
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which are useful in debugging, industrial process control,
and detecting specific states in the distributed system.
Another application is the modeling of synchronization
conditions between two intervals for distributed applica-
tions such as multimedia [ 13, 16].

The results of this paper are included in [ 8]. This paper
is organized as follows. Section 2 presents the framework
and system model. Section 3 presents the results by specify-
ing and examining some families of system executions.
Section 4 outlines some applications and examines why
Lamport’s framework to study interprocess communication
is inadequate for distributed systems. Section 5 gives the
conclusions.

2. FRAMEWORK AND SYSTEM MODEL

The framework is similar to the one used by Lamport in
[10]. Consider a poset (E, <), where < is an irreflexive
partial ordering. Let & denote the power set of E. Let
A(#P)< (& — ). Thus, there is an implicit one-many
mapping from .o/ to E. Let this mapping be denoted by u.
Each element 4 of .o/ is a nonempty subset of E, and is
termed an interval. (E, <) represents space—time coor-
dinates related by the causality relation of special relativity.
Each point in (E, <) represents the most primitive atomic
entity in space—time. Each set 4 € .o/ is a higher level group-
ing of these coordinates that is of interest to the particular
application.

Lamport defined system executions {.&/, —,———)
and provided a set of axioms on the relations — and ——
[10]. To aid in the understanding of a system execution, he
provided an independent semantic model which he defined
as a triple E, <, u. < was an irreflexive, partial ordering on
set £ and u mapped elements of ./ to subsets of E such that
for X, Ye .7,

X— Y
X——Y

-

iff Vxeu(X)Vyeu(Y), x<y
iff Jeu(X) yeu(Y), x<y.

A premise of this paper is that the above two relations are
not sufficient to capture all possible interactions between
two intervals. Additional relations will be defined in the sub-
sequent sections, depending on the assumptions made
about elements of .«Z. Specifically, like — and ———,!
these relations are defined over .o/ x .7 and map to {true,
false} using first-order predicate logic.

The framework and system model differ from those of
Lamport [10] in two ways: First, we define a “family of
system executions” instead of system executions. Second,
the definition of a family of system executions is formulated

—_— =

"' We will rename relations — and ——— as R1 and R4, respectively, in
Section 3.2 to use consistent terminology with the new relations we intro-
duce in that section.
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using the semantic model provided by the poset (E, <) and
the implicit mapping u.

DErFINITION 1. A family of system executions is a quad-
ruple # =</, ¥, #, Xy, where .« is a set of intervals, ¥
is an expression specifying constraints satisfied by each
element in o7, and Z is a set of precedence relations on .<Z,
determined by ¥ and satisfying a set of axioms given in Z.

DerFINITION 2. The semantic model of any family of
system executions {.oZ, ¥, %, Z ) is the poset (E, <) and a
one-many mapping u: ./ to E such that

1. u correlates the semantics of ¥ specified on <7 to the
semantics of u(A4) in (E, <), where 4 € .</.

2. u correlates the semantics of r(A4, A"), where
A, A' € o/, re R, to the semantics of < (u(A)xu(A4")).

Each family of system executions is specified in the follow-
ing steps, each of which uses the semantic model as a
reasoning tool: (i) specify ¥ on .o/; (ii) determine an
appropriate Z so that there is sufficient expressive power to
reason; and (iii) formulate 2" for #. Then define interaction
types which are orthogonal meta-level relations based
on #, using # and %, to capture all interactions
between intervals specified by ¥ on .o7. As a trivial example
of the above method, we describe the well-understood inter-
action between points in space—time using the family of
system executions %,,,,. Let 7, =< As ¥orrr Rpipis
Zpipy» Where (i) .o is a set of intervals, (ii)

pipt
Vi VA€ A, |A| =1, (i) R,,, = {—} and (iv) Z,

nipt
is the set of axioms derivable fro[;n the fact that — isla[;l
irreflexive partial ordering on .«/,,,,. In the semantic model,
(1 is a 1-1 mapping and there are three orthogonal interac-
tion types. For X, Ye .o/, (a) (X—Y) A (Y—— X);
(b) (Y—bmX)A(X——Y); and (c) (Y—— X)A
(X—— Y). (a) and (b) are inverses of each other, whereas
(c) is its own inverse.

In a distributed system or in a space—time view of the
universe, elements of E are partitioned into local computa-
tions at a point in space (in a space—time view) or at a pro-
cess (in a view of processes at discrete nodes). Each local
computation is a linearly ordered set of events. Let P be the
set of all partitions. An event e in partition i is denoted e;.

A cut C< E such that if e; € C then Ve: e <e,:: e e C.
Thus, a cut is downward closed within partitions. A cut that
preserves causality is a consistent cut and denotes a com-
putation [3, 14]. Only all downward-closed subsets of E

preserve causality.

DEFINITION 3. A consistent cut is a downward-closed
subset of E'in (E, <).

For event e, there are two special consistent cuts | e and
el.

DEFINITION 4. |e={¢' | ¢ <e}.
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DEFINITION 5.

el ={e|e >e}

uleni=1,.,|P|le;=en (Vei<e;, e;xe)}.

l e is the maximal set of events that happen before or
equal e. e is the set of all events up to and including the
earliest events on each process or point in space, for which
e happens before or equals the events.

Given a cut C and set X < E, let C, be the maximal subset
of C that contains elements in those partitions that also
have elements in X. Thus, C is projected over the partitions
that have elements in X.

Finally, some words about the notation used. Given a
boolean variable x, x denotes the complement of x. The
mapping ¢ will be kept implicit henceforth to simplify the
notation.

3. THEORY OF LINEAR INTERVALS

AxioM 1.
YV Yy<X

An internal A is linear iff Vx,ye A, x<

In this section, we assume all intervals are linear. Linear
intervals adequately model read and write operations at a
memory location in a shared-memory multiprocessor
system. Linear intervals also naturally model a sequence of
events at any process as well as the progression of time at a
point in space. We define and examine two families of
system executions %;, and %, which deal with dense
linear and nondense linear intervals, respectively. As an
intermediate step to examining %;; and %,.,., we consider
the interaction between a point interval and a linear interval
by defining a family of system executions .7, ,,.

3.1. Interaction between a Linear Interval and
a Point Interval

Consider the interaction of two elements of .o/ where one
element, say Y, contains only one element of E, and the
other element of .o7, say X, contains one or more elements
of E. Also assume without loss of generality that the inter-
vals X and Y are disjoint. The interaction between X and Y
is specified by assigning boolean values to r(X, Y) and to
r( Y, X), where r is instantiated by — and ——— [ 10, 12].
The axioms on these two relations are A1-A4 given in [ 10,
127 and discussed in Section 4.1 of this paper.? An addi-
tional axiom, viz, A6:4A —— B = B—+— A, for intervals A
and B, holds.

2 As mentioned in Section 2, we will rename relations — and ——— as
R1 and R4, respectively, in Section 3.2 to use consistent terminology with
three new relations we introduce in that section.
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TABLE 1
Possible Interactions between a Linear Interval X and a Point
Interval ¥
Interaction Relation r(X, Y) Relation r( Y, X)
type — X Y) — (X Y) — (Y, X) — (Y, X)
116" 1 1 0 0
12(157") 0 1 0 0
137371 0 1 0 1
41471 0 0 0 0
15(1271Y) 0 0 0 1
16(11-") 0 0 1 1

Evaluation conditions if X is a linear interval
and Y is a point interval

y>max(X) y>min(X) min(X)>y max(X)>y

ProrosiTioN 1. Fy,, =<y, Yipes Ripes Xrpe), Where
(1) 4, ,, is a set of intervals; (ii) ¥, : each A € <4, ,, is linear;
(iii) Ry, ={—,———} and each r in R,,, is defined on
Ay XAy, and oAy, S, such  that  for each
Ae 'y, |Al=1;(iv) A, is the set of axioms A1-A4 [ 10,
127, and Axiom A6.

THEOREM 1. Any two intervals in the family of system
executions ¥, may interact in one of six ways (given in
Table 1).

Proof. Table 1 describes the (valid) interactions using
combinations of the values of — (X, Y), ——— (X, Y),
—— (Y, X), and — (Y, X); all other combinations of the
four relations are invalid because they violate Z;,,. The six
interaction types are labeled I1-16. The dominating
relations for any interaction type are indicated by displaying
their boolean values in boldface. For example, for interac-
tion type 12, — (X, Y) = false, ———(X, Y) = true, and
——(Y, X) = false uniquely define the interaction type.
Observe that relations — and ——— suffice to define all
interaction types if X is a linear set and | Y| = 1. Interaction
types 11 and 16 are inverses of each other. Interaction types
12 and IS are inverses of each other. I3 and 14 are their own
inverses. The six possibilities for the interaction between X
and Y are pictorally depicted in Fig. 1. Interval X is shown

time
—_—

max(X)ﬁ

T
Y min(X) X max(X)

FIG. 1. [Illustration of linear interval-point interval interactions.
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in a fixed position using a rectangular box. Interval Y,
shown as a shaded circle to depict a point, is in different
positions relative to X. Each position of Y is labeled by an
interaction type, 11-16. The various interaction types are
identified by the various positions of Y relative to X.
Observe from Fig. 1 that the two intervals can interact in
one of only these six ways. ||

The interpretation of the six interaction types is:

I1. Interval X entirely happened before interval Y.

12. Interval Y is affected by part of interval X and no
event in interval Y affects any event in interval X.

13. Events in interval X affect events in Y, and those
same events in Y affect some events in interval X.

I14. Events in interval X can neither affect nor are
affected by events in interval Y.

I5. Events in interval X cannot affect events in interval
Y but events in interval Y affect some events in interval X.

16. Interval Y entirely precedes interval X.

The interaction types of  ,, will be used in defining the
interaction types between a pair of linear intervals.

PROPOSITION 2. 7,0 = Ay prs Ciprs Ripes Xrpe > Where
(1) o, is a set of intervals; (ii) ¥;,,:: no constraints on
each A € o, ,,; (iii) R,,, = {——,———} and eachrin R,,,,,
is defined on oy, X .y, (\V) X1, is the set of axioms
Al1-A4 [ 10, 127, and Axiom A6.

Proposition 2 gives a family of system executions that
corresponds to Lamport’s definition of a system execution

[10].

COROLLARY 1. Any two intervals in the family of system
executions F;,, may interact in one of same six ways (given
in Table 1) in which any two intervals in F;,, may interact.

Proof. Follows from the proof of Theorem 1 which did
not assume that the interaction types given in Table 1
between X and Y required X and Y to be a linear interval
and a point interval, respectively. Only the evaluation con-
ditions given in Table 1 for the relations in %, ,, would not
hold. |

Corollary 1 will be used in Section 4.1° to show that the
framework used by Lamport in [ 10, 12] is not sufficient to
capture interprocess communication in a distributed system.

3.2. Interaction between a Pair of Linear Intervals

Four additional relations besides — and ——— need to
be defined to capture the interaction between a pair of linear
intervals where ¥, :: 4 € </, is linear. Henceforth, we will
refer to Lamport’s relations — and ——— by R1 and R4,

3 As mentioned in Section 2, we will rename relations — and ——— as
R1 and R4, respectively, in Section 3.2 to use consistent terminology with
the new relations we introduce in that section.
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TABLE 2

Relations used to define Interval Interactions

Relation r Expression for r(X, Y) Evaluation condition for r(X, Y)
if X, Y are linear intervals
R1 VxeXVyeY, x<y min(Y) > max(X)
Rl =VyeYVxeX, x<y
R2 VxeX3dyeY,x<y max(Y) > max(X)
R2 =JyeYVxelX,x<y
R3 dxeXVyeY, x<y min(Y) > min(X)
R3’ =VyeYIxeX,x<y
R4 dxeXdyeY,x<y max(Y) > min(X)
R4’ =dJyeYIxeX, x<y
S1 IxeXVyeY, x£yAay€x if min(Y) <min(X) A max(Y)>3max(X)
then 3x € X
max((min(Y) 7)y) € x £ max(( | max(Y))y)
else false
S2 Ix, xeXye Y, x <y<x, if max(Y) > min(X) A min(Y) <max(X)
then max(( | max(X))y)<max((min(X) 7)y)
else false
respectively. Relations R1, R2, R3, R4 define causality con- TABLE 3
ditions, whereas S1 and S2 define coupling conditions. The Reflexivity, Symmetry, and Transitivity of Relations in Table 2
relathns R1-R4 and Sl—$2 are expressed in terms of 'the Relation Reflexive? Symmetric? Transitive?
quantifiers over X and Y in Table 2 along with evaluation
conditions for the relations. Although the relations apply to RI[10] No No Yes
. . . .. . . R2 No No Yes
nonlinear intervals, the evaluation conditions in the third R3 No No Ves
column apply only to linear intervals. R4 [10] No No No
The following is an interpretation of the relations: S1 No No No
S2 No No No
R1. Same as—— [10].
R2. R2(X, 7Y) iff every event in interval X causally TABLE 4

happens before some event in interval Y. R2 signifies that
interval Y completes after it fully knows the result of interval
X. Thus, Y can take actions based on the complete result of
X and in this sense, Y is later than X.

R3. R3(X, 7Y) iff some event in interval X causally
happens before every event in interval Y. R3 signifies that
interval Y can be fully controlled by some input from X.
However, the complete input from X may not be received by
all of Y or even some of Y.

R4. Same as——— [10].

S1. SI(X, Y) iff some event in interval X has not
affected any event in interval Y and has not been affected
by any event in Y.

S1 is useful when programs communicate asynchronously
and use the nonblocking mode for operations. S1(X, Y)
when X sends a nonblocking request to Y, performs local
operations before receiving a reply from Y, and this is the
only communication between X and Y.

S2. S2(X, Y) iff interval X completes after having a
round-trip interaction with interval Y.

S2 is useful for modeling interactions between
programs/processes or groups of statements. For example,

Hierarchy of Causality Relations in Table 2

Quantifiers in row/col. RI(X,Y) R2(X,Y) R3(X,Y) RA(X, Y)

headers are for x <y Vx Vy Vx 3y dx Vy dx 3y
Rl(X Y): Vx Vy = > > >
R2(X, Y):Vx 3y < = I >
R3(X, Y):3x Vy < [ = >
RA(X, Y):3x Iy < < < =
TABLE 5

Axioms for Causality Relations in Table 2

Axiom label (X, Y)Ar(Y,Z)=r(X, Z)

ALl RI(X,Y)AR2Y,Z)=R2(X, Z)
AL2 RI(X, Y) AR3(Y,Z)=RI(X, Z)
AL3 RI(X,Y)ARAY,Z)=R2(X, Z)
Al4 R2(X, Y) A RI(Y,Z)=RI(X, Z)
AL5 R3(X, Y) A RI(Y,Z)=R3(X, Z2)
AL6 RA(X, Y) A RI(Y,Z)=R3(X, Z)
AL7 R2(X, Y) A R3(Y, Z)=true

ALS R2(X, Y) A RA(Y, Z) = true

AL9 R3(X,Y)AR2Y,Z)=R4(X, Z)
ALI10 RA(X, Y) A R2AY,Z)=RA(X, Z)
ALI1l ( g Y)AR4(Y Z)=RA(X, Z)
ALI12 RA(X, Y) A R3(Y, Z)=true
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S2(X, Y) if program X invokes a remote procedure Y which
then completes and X gets back the reply.

S2(X, Y) evaluates to a boolean value 0 or 1. (In Table 6
we refine S2 to be a tri-valued type, where the third value n
indicates that the number of round-trips that X can have
with Y is greater than 1. Whenever S2 appears in a
predicate, value of n is considered as value 1.)

R1’, R2’, R3’, and R4’ are the same as R1, R2, R3, and
R4, respectively, when defined on linear intervals. A detailed
treatment of relations between nonlinear intervals, based on
the above relations is given in [ 8].

Table 3 describes whether the relations defined in Table 2
are reflexive, symmetric, or transitive. Note that all the
above are not independent relations. Table 4 gives the
hierarchy and inclusion relationship of the causality rela-
tions R1-R4 defined above. Each cell in the grid indicates
the relationship of the row header to the column header.
The relationship can be one of three possible ones: <, >,
and |, where | indicates that the two relations being com-
pared are incomparable, > indicates “implies,” and <
indicates “is implied by.” Relations S1 and S2 are measures
of the degree of coupling between the two intervals. Table 5
gives axioms AL1-AL12 on the causality relations. Axioms
AL7, ALS8, and AL12 simply state that no relation between
X and Z is implied. The following axioms AL13-AL18 give
all the relations that are implied by each of the causality and
coupling relations:

AL13: RI(X,Y)=S
AST(Y, X) A S2(Y, X)

AL14: R2(X, Y)=SI(X, Y) A R2(Y, X)

AL15S: R3(X, Y)=TR3(Y, X) A

AL16: R4(X, Y)=RI(Y, X)

ST(X, Y) A S2(X, Y) A RA(Y, X)

(Y, X)
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AL17: SI(X, Y)=R2(X, Y) A R3(Y, X) A S2(Y, X)

ALIS: S2(X, Y)=RI(X, Y) A R4(X, Y) A RI(Y, X)
ARA(Y, X) A SI(Y, X).

Tables 3, 4, 5 and the above axioms, ALI3-ALIS,
collectively form an adequate set of axioms to reason
because:

e Table 4 and axioms AL13-AL18 give all enumera-
tions of all relations r(X, Y) and r(Y, X) implied by
R(X, Y),VrVRe {RIl, R2, R3, R4, S1, S2}.

e Tables 3 and 5 enumerate all relations implied by
(X, Y) A ry(Y, Z),Vr,Vr, € {R]l, R2, R3, R4}. We do not
specify any relation implied between X and Z by
ri(X, Y) A ry(Y, Z), if either r, or r, belongs to {S1, S2}.

o This set of axioms can be used to derive all possible
implications, from any given valid predicates on these rela-
tions.

Before we examine the interaction types between a pair of
linear intervals, we consider an axiom on the nature of
linear intervals.

AxioM 2. Each interval A is dense,
x<y=3dzed|x<z<y.

ie, Vx,yeA,

Axiom 2 states that A is defined over an infinite dense set
E and each A that is not a single-member set contains oo
number of elements. This axiom is Axiom 8 of Hamblin [ 7].

3.2.1. Dense Linear Intervals

We define a family of system executions assuming dense
linear intervals. This family is useful because each interval
can model the passage of time at a point in space. Time at

TABLE 6

Interaction Types between Dense Linear Intervals

Interaction Relation r(X, Y) Relation (Y, X)
type R1 R2 R3 R4 S1 S2 R1 R2 R3 R4 S1 S2
IA(=1Q7 Y 1 1 1 1 0 0 0 0 0 0 0 0
IB(=IR") 0 1 1 1 0 0 0 0 0 0 0 0
IC(=1V~h 0 0 1 1 1 0 0 0 0 0 0 0
ID (=IX"1) 0 0 1 1 1 1 0 1 0 1 0 0
ID' (=1U"Y) 0 0 1 1 0 n 0 1 0 1 0 n
IE(=IW"1) 0 0 1 1 1 1 0 0 0 1 0 0
IE' (=IT7 1) 0 0 1 1 0 n 0 0 0 1 0 n
IF (=187 0 1 1 1 0 n 0 0 0 1 0 n
IG(=1G™) 0 0 0 0 1 0 0 0 0 0 1 0
IH(=IK™") 0 0 0 1 1 0 0 0 0 0 1 0
(=" 0 1 0 1 0 0 0 0 0 0 1 0
IL(=10"") 0 0 0 1 1 1 0 1 0 1 0 0
IL' (=1P7 ) 0 0 0 1 0 n 0 1 0 1 0 n
IM(=IM"1) 0 0 0 1 1 0 0 0 0 1 1 0
IN(=IM'"1) 0 0 0 1 1 1 0 0 0 1 0 0
IN' (=IN'"1) 0 0 0 1 0 n 0 0 0 1 0 n
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FIG. 2. [Illustration of interaction types between dense linear intervals.

a point in space is dense and linear. This family extends
Hamblin’s result to a distributed system. We show that this
family permits 29 interaction types between a pair of inter-
vals. Of these, there are 13 pairs of inverses, while three are
inverses of themselves.

ProrosiTioN 3. F, =L A1, Vi, Rrr, Xy, Wwhere
(1) o7, is a set of intervals; (1) ¥, : : each A € o, is linear
and dense (Axiom 2); (iii) #,, = {R1, R2, R3, R4, S1, S2};
(iv) &, is the set of axioms in and derivable from Tables 3,
4, and 5, and axioms AL13-AL18.

THEOREM 2. Any two intervals in the family of system

executions F;; may interact in one of 29 ways (given in
Table 4).

ﬁ min(X) ﬁ max(X) max(X)4,

1
I
1
!
'
1
1

FIG. 3.
(continued).

Tllustration of interaction types between dense linear intervals
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Proof. Any pair of linear time intervals lie in (or can be
projected onto) a two-dimensional plane where one dimen-
sion is the time dimension. Consider Figs. 2 and 3 that
enumerate every possible interaction type between a pair of
dense linear intervals. In Fig. 2, interval X is shown in a
fixed position using a rectangular box whereas interval Y,
indicated using horizontal lines, is in different positions
relative to X. Each position of Yis labeled by an interaction
type, IA through IX (and their modifiers). The different
types of interactions are identified by the various positions
of Y relative to X. Some positions of Y have two labels each.
Specifically, five positions of Y are labeled ID and ID’, IE
and /E’ , IL and IL', IM and IM', and IN and IN’, respec-
tively. For each of these five positions of Y, the distinction
between the two interaction types, represented by the two
labels, is illustrated using Fig. 3. In this figure, the positions
of Y are indicated using a thick horizontal line. Observe
from Figs. 2 and 3 that X and Y can interact in one of only
29 ways.

Each of the 29 interaction types between two linear inter-
vals in .o/ satisfying ¥, is formally specified using boolean
vectors. The six relations R1-R4 and S1-S2* in #,, form a
boolean vector of length 12 (six bits for r( X, Y) and six bits
for r( Y, X)). The 29 possibe interaction types are defined in
Table 6. Each combination of values in the 29 boolean vec-
tors can be seen to satisfy 27, . In the 29 interaction types,
there are 13 pairs of inverses and three interaction types are
inverses of themselves.

An example of how to interpret Table 6 follows:
consider interaction /C and its inverse /V. We have
IC(X, Y)=1IV(Y, X). The vector components for interac-
tion IC (and for IV in brackets) are R1(X, Y)[R1(Y, X)],
R2(X, Y)[R2(Y, X)], R3(X, Y)[R3(Y,X)], RA(X,Y)
[RA(Y, X)], SI(X, V)[SL(Y,X)], S2(X, Y)[S2(Y, X)],
RI(Y, )[RI(X, V)], R2(Y,X)[RAX,Y)], R3(Y,X)
[R3(X, Y)], RA(Y,X)[R4(X,Y)], SI(Y,X)[SI(X, V)],
S2(Y, X)[S2(X, V)]. 1

3.2.2. Nondense Linear Intervals

When Axiom 2 does not hold, the intervals may be non-
dense. This defines a different family of system executions
. This family is significant because clocks which
measure dense linear time use a nondense linear scale in
practice and are, nonetheless, very useful. This family is also
significant because actions at each node in a distributed
system are often modeled as a linear sequence of discrete
events. This family permits eleven interaction types between
a pair of intervals in addition to those permitted by %, ;. Of

“In Table 6 we refine the boolean S2 to be a tri-valued type, where the
third value » indicates that the number of round-trips that X can have with
Y is greater than 1. Whenever S2 appears in a predicate, value of n is con-
sidered as value 1.
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these, there are five pairs of inverses, while one is its own
inverse.

ProposiITION 4. F o =L App, Vi, Rops X s
where (1) <2, is a set of intervals; (11) ¥, : each A € <ty
is linear; (iii) #,,,, = {R1, R2, R3, R4, S1, S2}; (iv) X, is
the set of axioms in and derivable from Tables 3, 4 and 5 and
axioms AL13-AL18.

. differs from &, ; in the specification of ¥. ¥, ., per-
mits % to be applied to a larger set of intervals than does
¥, . Therefore it is plausible that there are more interaction
types possible between two intervals in %, than in %, .
We will identify all possible interaction types for F; ;..

THEOREM 3. Any two intervals in the family of system
executions F;.,. may interact in one of forty ways (given in
Tables 6 and 8).

Proof. To identify all interaction types between a pair of
nondense linear intervals in .o, satisfying ¥,.,., we first
identify all combinations of interaction types that various
events in a nondense linear interval Y can have with the
nondense linear interval X. For each such combination, we
will either identify an interaction type already defined in
Table 6 for dense intervals or define a new interaction type.
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The individual events in Y will interact with nondense
interval X in one of the six ways identified by interactions
I1-16 in Table 1. This is because the formulation of interac-
tion types I1-16 was done using only min(X) and max(X)
and did not assume that X was dense. Observe that if some
event in Y has interaction type 13 (I4) with X, then no other
event in Y can have interaction type 14 (I3) with X. Define
an increasing sequence S,,, as <I1, 12,13, 15,16 5({11, 12,
14, 15, 16 ) if some event in Y has (does not have) an interac-
tion type I3 with X. Also define /,,;, and 7, as the interaction
types interval X has with min(Y) and max(Y), respectively.
For the purpose of classifying interactions, interval ¥ may be
considered to be dense (with respect to interval X) if for each
I'in §,,, satistying I, >1>I,,,,3y€ Y, such that y has
interaction type I with X.

The number of combinations of interaction types
that various events in some Y can have with X is

2G4+t CF = (2°—1)+ 2% The first (second) term
is the number of combinations such that no event (at least
one event) in Y has interaction type 14 with X. The above
combinations include all cases, where Y is dense and Y is
nondense. As noted earlier, X is not assumed to be dense.
Therefore, these are all the combinations of interac
tion types between individual events in ¥ and a not neces-
sarily dense X. These combinations are enumerated in the first
and fifth columns of Table 7. For each combination, we will

TABLE 7

Enumeration of Interactions between Nondense Linear Intervals

Interaction  Interaction types New Interaction Interaction  Interaction types New Interaction
between from Table 6 interaction types types if ¥ between from Table 6 Interaction types types if ¥
XandyeY if Yis dense if Y is dense is nondense XandyeY if Y is dense if Y is dense is nondense

11 1A 13,15, 16 IS
12 IC 11, 12, 13, I5 1P
13 1D, ID’ 1D” I1, 12, I3, 16 U
15 1J 11, 12, 15, 16 1UX
16 1Q I1, 13, I5, 16 U
11, 12 1B 12, 13, 15, 16 1T
I1, 13 IF I1, 12, 13, 15, 16 U
11, I5 10P 14 1G
11, 16 1UX 14, 11 1
12, 13 IE, IE’ IE” 14, 12 IH
12, I5 IMN, IMN’, IMN" 14, 15 IK
12, 16 ITW 14, 16 v
13, 15 IL, IL' IL” 14,11, 12 11
13, 16 IS 14,11, 15 10
15, 16 IR 14,11, 16 IX
11,12, 13 IF 14,12, 15 M, IM’ M
I1, 12, 15 10P 14, 12, 16 Iw
11, 12, 16 1UX 14, 15, 16 v
11,13, 15 1P 14, 11, 12, I5 10
11, 13, 16 1U 14,11, 12, 16 X
11, 15, 16 1UX 14, 12, 15, 16 W
12, 13, 15 IN, IN’ IN” 14, 11, 15, 16 X
12,13, 16 IT 14,11, 12, 15, 16 IX
12, 15, 16 ITW
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FIG. 4. Illustration of some additional interaction types for nondense
linear intervals.

identify an already defined interaction type from Table 6 or
define a new interaction type.

Observe that in Table 6 only the interactions
ID,ID', IE, IE', IL, IL', IM, IM', IN, and IN' assume X
was dense. The second and sixth columns of Table 7 give
the interaction types from Table 6. These assume Y is
dense; X is not assumed to be dense, except for interactions
ID, ID', IE, IE', IL, IL', IM, IM", IN, and IN'. The third
and seventh columns give the new interaction types required
assuming Y is dense and X is nondense. The interaction
types are ID", IE", IL", IM", and IN". These are defined in
Table 8 and illustrated in Fig. 4. In Fig. 4, X is shown in
a fixed position, whereas the positions of Y vary relative to
X. The linear interval X is shown as a rectangle. A line run-
ning along the length of the rectangle shows a dense region
of the interval. The breaks in the line inside the rectangle
indicate the absence of events. The linear interval Y is
shown as a thick horizontal line.

The fourth and eighth columns of Table 7 give the
interaction types between X and nondense Y. X is not
assumed to be dense. Some of these interaction types for
nondense Y intervals are the same as the interaction types
in Table 6 for dense Y, using the expressive power of the
defined suite of relations. For example, intervals ¥ whose
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individual events have interaction types (/1, 12, I3, IS5, I6) or
(11,13, I5,16) or (11,12, I3, 16) have the same interaction
type IU with interval X. Similarly, intervals Y whose
individual events have interaction types (/1, 73) or (11, 12,
13) have the same interaction type IF with X. However, some
new interaction types are required for nondense Y intervals,
namely, IMN, IMN', IMN”", ITW, IUX, and IOP. These are
defined in Table 8 and described using Figs. 2 and 4. Interac-
tion types IMN, IMN', IMN”", IOP, TUX, and ITW are like
interaction types IN, IN’, IN”, IP, TU, and IT, respectively,
except that there is no event y € Y in region I3 with respect
to X, ie,Aye Y| min(X) <y <max(X). Alternately viewed,
interaction types IMN, IMN', IMN”, IOP, IUX, and ITW
are like interaction types IM, IM’, IM”", 10, IX, and IW,
respectively, except that there is no event y € Y in region 14
with respect to X, i.e., Aye Y | y €« max(X) A y 3 min(X).

Of the above new interaction types in columns 4 and 8,
only IMN”" requires that X is nondense. It is observed that
the interaction type between X and various Y, that have dif-
ferent combinations of interaction types between X and the
events of Y, may be the same using the expressive power of
the defined suite of relations. For example, intervals Y
whose individual events have interaction types (I1, 12, I5,
16) or (I1, 12, 16) or (I1, IS, 16) have the same interaction
type ITUX with X.

Thus, an exhaustive enumeration of the combinations of
the interaction types between X and individual events in Y
yields eleven additional valid interaction types that have not
been defined in Table 6. These eleven interaction types are
defined in Table 8 using #,.,. and can be seen to satisfy
X, ;.. Of these, there are five pairs of inverses, and one is its
own inverse. It follows that there are 40 interaction types for
linear (possibly nondense) interval interactions. ¥, ., differed
from ¥, in that it permitted Z to be applied to a larger set
ofintervals than did , , . We showed above that #; ., . allowed
more interaction types between two intervals than did 7, ;. ||

4. APPLICATIONS

The results presented in this paper contribute to the quin-
tessential study of time [ 1, 2] and give an insight into the

TABLE 8

Additional Interaction Types for Nondense Linear Intervals

Relation (X, Y)

Relation r( Y, X)

Interaction
type RI R2 R3 R4 SI S2 RI R2 R3 R4 SI S2
ID” (=(IUX)™") 0 0 1 1 0 1 0 1 0 1 0 0
IE" (=(ITW)! 0 0 1 1 0 1 0 0 0 1 0 0
IL" (=(I0P)™!) 0 0 0 1 0 1 0 1 0 1 0 0
IM” (=(IMN)"") 0 0 0 1 0 0 0 0 0 1 1 0
IN" (=(IMN'")~ b 0 0 0 1 0 1 0 0 0 1 0 0
IMN" 0 0 0 1 0 0 0 0 0 1 0 0
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concurrency and interprocess communication in a dis-
tributed system. In this section, we consider the relation of
our results to Lamport’s work and present two applications.
We anticipate that in the future, as applications and systems
get more sophisticated, they will need to resort to the theory
presented here.

4.1. Relation to Lamport’s Work

We apply our theory to Lamport’s relations — and
——— [10, 127, which we renamed R1 and R4, respectively,
in Section 3.2. We proved in Corollary 1 that for intervals
X and Y, of the 2* combinations of the values of
RI(X, Y), R4(X, Y), R1(Y, X), and R4(Y, X), the only ones
that are valid using semantics and axioms defined in [ 10,
12] (and used in Proposition 2 for %;,,) are ones corre-
sponding to the six combinations I1 through 16. By
comparing Table 1 and Table 6, it can be deduced that
these six combinations are not sufficient to model all
possible interactions between a pair of dense linear intervals
in a distributed system. Specifically,

1. 11 maps to IA,
2. 12 maps to IB,IC,IH,II,

3. I3mapstoID,IX, ID’, IU, IE, IW, IE/, IT, IF, IS, IL,
10, IL', TP, IM, IN, IM’, IN/,

4. 14 maps to IG,
5. IS5 maps to IR, IV, IK, 1J, and
6. 16 maps to 1Q.

Because of the above ambiguity, Lamport’s framework can-
not capture all possible interactions between two (linear)
intervals in a distributed system and is “incomplete.” The
relations R1 and R4 defined by Lamport are a part of a
larger suite of relations formulated in #,, and %,,,., which
can capture a wider range of interaction types between
linear intervals in a distributed system. Any application that
needs to model the interaction of intervals more powerfully
than can be done with R1 and R4 will use our results.

Next, we examine how Lamport’s axioms A1-AS5 [10]
relate to the ones presented here. Axiom Al (R1 is an
irreflexive partial order) is included in Table 3. Axiom A2
(R1(X, Y)= R4(X, Y) A RI(Y, X)) can be inferred from
Table 4 and Axiom AL15. Axiom A3 (RI(X, Y) A
RA(Y,Z) or RAX,Y)A RI(Y,Z)=RA(X,Z)) can be
refined to a finer granularity by axioms AL3 and ALG6
presented here. Axiom A4 (RI(X,Y)A R4(Y,Z) A
RIU(Z, W)= R1(X, W)) is really a composite of more
elementary axioms and can be derived from the axioms in
Table 5. Axiom A5 of Lamport can be used if a system
execution with a finite starting instant in time is to be
modeled. Our axioms AL1-AL18 are far more inclusive
than Lamport’s axioms [ 10].
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Relations R1 and R4, and axioms AI-AS5 along with
Lamport’s register axioms [ 11] were sufficient to study con-
current read and write accesses to shared memory because
all interactions between read and write operations were
through the common register. The features of shared
registers that made Lamport’s framework [10, 11]
complete were:

1. Intervals X and Y were read and write operations, Rd
and W, respectively, that interacted through a common
register. This register provided a common time axis, which
is implied by the register axiom “R4(Rd, W) or R4(W, Rd)”
[11].

2. The central assumption about the dynamic atomic
registers (as well as regular and safe registers which are
more permissive) Lamport considered was the following.
The read or write operation on the register can go into effect
at any point during the operation interval (... as long as the
resulting history was equivalent to a serial execution).

If Rd and W are related by R1, then the two operations
are unambigiously serialized. If there is any overlap at all
then R4 holds and the ordering between the two operations
is necessarily ambigious. The distinction of whether any of
R2(Rd, W), R3(Rd, W), R2(W, Rd), R3( W, Rd) hold is not
useful, i.e., a further level of granularity beyond whether
RI1(Rd, W) or R1(W, Rd) holds is not useful. Again, S1 and
S2 are not useful for this particular problem because the Rd
and W operations interact only through a common register
and not directly with one another. Thus, S1 and S2 are not
interesting for analysing dynamic atomic registers.

However, if a stronger model than dynamic atomic were
assumed, i.e., item 2 above was relaxed, then the distinctions
offered by R2, R3, S1, and S2 would be useful. For example,
if R2(X, Y) and R3(X, Y), then a certain probability could
be associated to “X precedes Y”. The results can be applied
to defining a spectrum of registers that vary in the degree of
concurrency they permit for reads and writes.

4.2. Specification of Global Predicates

Global predicates play an important role in distributed
systems for applications such as debugging, industrial
process control, and detecting specific states in the system
([ 6], which also refers to related literature). To adapt to the
framework of specifying global predicates, we assume that
each process/point partition of the system has a local state
and there is a local state transition at every local event.

An unstable predicate is a predicate whose value may
change with time. Specifying unstable predicates is a
challenging problem. Unstable predicates have been
classified as being either strong or weak. A strong (weak)
predicate holds iff each (some) run of the system execution
goes through a state in which the predicate holds. An
orthogonal classification is conjunctive and disjunctive
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predicates. Global predicates can be expressed as a conjunc-
tion (conjunctive predicates) or disjunction (disjunctive
predicates) of local predicates.

We will disregard disjunctive predicates because they are
locally detectable. Conjunctive predicates are a subset of the
set of possible interaction types identified here.

Let X and Y represent the linear intervals for which the
local predicates hold on two nodes. The evaluation condi-
tion of a strong conjunctive predicate can be expressed in
our framework as R4(X, Y) A R4(Y, X), for every pair of
nodes whose local predicates are used to specify the global
predicate.

The necessary and sufficient condition for a weak
conjunctive predicate to hold was given in [ 6] as “the exist-
ence of an incomparable set of local states in which the local
predicates are true.” The condition for a weak conjunctive
predicate to exist can be expressed using intervals. We
specify an interval to be the set of contiguous events within
a partition such that (i) all these events must lie between
two consecutive message send events in the partition and
(i1) the local predicate is true for all such events. For any
two such intervals X and Y, it is observed that min(X) 1 =
max(X) T when projected on partitions other than the one
that contains X, and hence, regions 12 and 13 of Fig. 1 disap-
pear. Also, constraint (i) above implies that interval Y has
to lie entirely in | min(X), in ( | max(X)) — ( | min(X)) or in
FE— (| max(X)). By examining the interaction types between
X and Y given in Table 6, it is seen that only for interaction
types II, IG, 1J are there local states in X and Y that are
concurrent and for which the local predicates are true.

Currently, global predicates under the existing classifica-
tion can be specified using only R1 and R4; moreover, they
do not even use all the valid combinations of R1 and R4
which we derived in Table 1. We can specify a broad range
of global predicates using R1-R4, S1, and S2, to denote any
of the interaction types in Tables 6 and 8. These inter-
action types can be used to specify any arbitrary global
predicates. It is my conjecture that some day applications
will be sophisticated enough to require this range of
predicates.

4.3. Synchronization Conditions in a Distributed System

The relations and interaction types for each family of
system executions can serve as synchronization conditions
on the two intervals between which they are specified. The
use of these synchronization conditions was described in
Section 3, along with the formulations of the relations. For
example, S1 and S2 are useful for modeling remote proce-
dure calls issued in blocking and nonblocking modes, as
well as data dependency relations between programs or
statement blocks. Interaction types ID and ID’ can model
nested transactions.

Distributed multimedia applications require synchron-
ization within a media, among the media at a site and
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among different sites [ 13, 16]. The 13 interactions identified
by Hamblin [7] have been used in multimedia systems to
meaningfully manage and coordinate the data representa-
tion and playback [ 13]. The Son—-Agarwal technique [ 16]
provides for playback, where the different media streams
satisfy the interactions given by Hamblin [7]. The syn-
chronization conditions that can be specified on different
data streams in a distributed environment using the rela-
tions and interaction types presented here offer much wider
flexibility.

There is a wide class of multimedia applications such as
videoconferencing, where it is sufficient to have a part of the
coordination among multiple sites based on causality rela-
tions. For example, if S2(X, Y) holds, then it may be
inferred that the videoconferencing party Y has had a
chance to respond to the query or data furnished by party
X, and party X has received the response from Y. The
relations and interaction types proposed here allow a wider
expression of coordination conditions among different sites
and multiple data streams, than do any previous results.

5. CONCLUSIONS

This paper studied how two intervals at distinct points in
space—time in a distributed system interact with each other.
There are three main contributions of this paper. The first
contribution is that it identified all possible interaction
types between two linear time intervals on different time
axes, 1.e., at different spatial coordinates, in a distributed
system. We showed separate results for interaction types
between dense linear intervals and between nondense linear
intervals. Although time is dense and linear at a point, in
practice, clocks use nondense scales to measure time. Also,
the interaction types for nondense linear intervals are useful
because actions in a distributed system are modeled as
sequences of discrete events on each node. Therefore, both
these results are useful and contribute to the study of time
[1, 2]. The second contribution is that the results extend the
1972 result of Hamblin which considered interaction of
intervals that occurred at the same spatial point, ie.,
the intervals used a single global time axis [7]. The third
contribution is that it enhances the understanding of
concurrency in a distributed system and the nature of inter-
process communication. A consequence of this contribution
is that Lamport’s modeling of interprocess communication
is seen to be adequate for access to a shared register but not
for distributed systems.

The applications of the results to the specification of
global predicates and to synchronization conditions in a
distributed system were examined.

The results of this paper have already been extended to
provide a theory of the interaction of intervals, each of
which spans across multiple time axes signifying a grouping
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of instants across various spatial points [ 8 ]. This grouping
of space-time instants into an interval can be arbitrary,

al

lowing an interval to model arbitrarily chosen levels of

atomicity across space—time.

A future work direction is to identify more applications of

the results to the state-of-the-art computing technology.
Another direction for future work is to study hierarchical

Vi

1

2.

3.

ews [ 10] for the new relations we have defined.
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