
The Bloom Clock to Characterize
Causality in Distributed Systems

Ajay D. Kshemkalyani and Anshuman Misra

Abstract Determining the causality between events in distributed executions
is a fundamental problem. Vector clocks solve this problem but do not scale
well. The probabilistic Bloom filter data structure can be used as a Bloom
clock to determine causality between events with lower space overhead than
vector clock; however, the Bloom filter and hence the Bloom clock naturally
suffer from false positives. We give a formal protocol of the Bloom clock
based on Counting Bloom filters and study its properties. We formulate the
probabilities of a positive outcome, a positive being false, and a false positive
for Bloom clocks as a function of the corresponding vector clocks, as well as
their estimates as a function of the Bloom clocks. We also indicate how to
estimate the accuracy, precision, and false positive rate of an execution slice
that is identified by the Bloom timestamps of two events.

Keywords: Causality · Vector clock · Bloom clock · Bloom filter · Partial
order · Distributed system

1 Introduction

Determining causality between pairs of events in a distributed execution has
many applications [8, 15]. This problem can be solved using vector clocks
[10, 5]. However, vector clocks do not scale well. Several works attempted to
reduce the size of vector clocks [16, 18, 11, 7], but they had to make some
compromises in accuracy or alter the system model, and in the worst-case,
were as lengthy as vector clocks. A survey of such works is included in [6].

Ajay D. Kshemkalyani
University of Illinois at Chicago, Chicago, IL 60607, USA e-mail: ajay@uic.edu

Anshuman Misra
University of Illinois at Chicago, Chicago, IL 60607, USA e-mail: amisra7@uic.edu

1

2 A. D. Kshemkalyani and A. Misra

The Bloom filter, proposed in 1970, is a space-efficient probabilistic data
structure that supports set membership queries [1]. The Bloom filter is widely
used in computer science. Surveys of the variants of Bloom filters and their
applications in networks and distributed systems are given in [2, 17]. The
accuracy of a Bloom filter depends on the size of the filter (m), the number
of hash functions used in the filter (k), and the number of elements added
to the set (n). Bloom filters suffer from false positives but no false negatives.
Recently, the idea of using the Bloom filter as a Bloom clock to determine
causality between events with lower space overhead than that of vector clocks
was proposed, where, like Bloom filters, the Bloom clock will naturally inherit
false positives [14]. However, the Bloom clock protocol was not given. We give
a formal protocol of the Bloom clock based on Counting Bloom filters. We
then formulate the expressions for the probabilities of a positive outcome, a
positive being false, and a false positive as a function of the corresponding
vector clocks, as well as their estimates as a function of the Bloom clocks.
We also study properties of the Bloom clock. We give a way to estimate the
accuracy, precision, and the false positive rate for a slice of the execution as
identified by two given events’ Bloom timestamps.

Section 2 gives the system model. Section 3 details the Bloom clock pro-
tocol. Section 4 studies properties of the Bloom clock and discusses ways to
estimate the probability that a positive is false and the probability of a false
positive. Section 5 presents an analysis of the probabilities as the distance
between the events varies, and this is followed by a discussion. Section 6
presents a way to estimate the accuracy, precision, and false positive rate of
an execution slice that is identified by the Bloom timestamps of two events.
Section 7 concludes.

2 System Model

A distributed system is modeled as an undirected graph (P,L), where P is
the set of processes and L is the set of links connecting them. Let p = |P|.
Between any two processes, there may be at most one logical channel over
which the two processes communicate asynchronously. A logical channel from
Pi to Pj is formed by paths over links in L. We do not assume FIFO logical
channels.

The execution of process Pi produces a sequence of events Ei = 〈e0i , e1i , e2i ,-
· · ·〉, where eji is the jth event at process Pi. An event at a process can be
an internal event, a message send event, or a message receive event. Let
E =

⋃
i∈P{e | e ∈ Ei} denote the set of events in a distributed execution. The

causal precedence relation between events, defined by Lamport’s “happened
before” relation [9], and denoted as →, induces an irreflexive partial order
(E,→).

The Bloom Clock to Characterize Causality 3

Mattern [10] and Fidge [5] designed the vector clock which assigns a vector
V to each event such that: e → f ⇐⇒ Ve < Vf . The vector clock is a
fundamental tool to characterize causality in distributed executions [8, 15].
Each process needs to maintain a vector V of size p to represent the local
vector clock. Charron-Bost has shown that to capture the partial order (E,→
), the size of the vector clock is the dimension of the partial order [3], which
is bounded by the size of the system, p. Unfortunately, this does not scale
well to large systems.

Let ↓ e = {f | f ∈ E ∧ f → e}
⋃
{e} denote the causal past of event e.

The vector timestamp of ↓ e, V↓e is defined as: ∀i ∈ [1, p], V↓e[i] = Ve[i].
The set of events ↓ e

⋂
↓ f represents the common past of e and f . The

vector timestamp of ↓ e
⋂
↓ f , V↓e

⋂
↓f is defined as: ∀i ∈ [1, p], V↓e

⋂
↓f [i] =

min(Ve[i], Vf [i]).

3 The Bloom Clock Protocol

The Bloom clock is based on the Counting Bloom filter. Each process Pi
maintains a Bloom clock B(i) which is a vector B(i)[1, . . . ,m] of integers,
where m < p. The Bloom clock is operated as shown in Figure 1. To try to
uniquely update B(i) on a tick for event exi , k random hash functions are
used to hash (i, x), each of which maps to one of the m indices in B(i). Each
of the k indices mapped to is incremented in B(i); this probabilistically tries
to make the resulting B(i) unique. As m < p, this gives a space savings over
the vector clock.

1. Initialize B(i) = 0.
2. (At an internal event exi):

apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick).

3. (At a send event exi):
apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick). Then Pi sends the message
piggybacked with B(i).

4. (At a receive event exi for message piggybacked with B′):
Pi executes
∀j ∈ [1,m], B(i)[j] = max(B(i)[j], B′[j]) (merge);
apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick).
Then deliver the message.

Fig. 1 Operation of Bloom clock B(i) at process Pi.

4 A. D. Kshemkalyani and A. Misra

The Bloom timestamp of an event e is denoted Be. Let V and B denote
the sets of vector timestamps and Bloom timestamps of events. The standard
vector comparison operators <, ≤, and = [5, 10] apply to pairs in V and in
B. Thus, for example, Bz ≥ By is ∀i ∈ [1,m], Bz[i] ≥ By[i]. The Bloom
clock mapping from E to B is many-one. (B,≤) is a partial order that is
not isomorphic to (E,→). If the local tick (after merge) at a receive event
is optionally omitted, this may introduce some added false positives (see the
discussion in Section 4.4 for an analysis). In the development that follows
next, we assume a local tick at a receive event.

Proposition 1. Test for y → z using Bloom clocks: if Bz ≥ By then declare
y → z else declare y 6→ z.

4 Properties of the Bloom Clock

4.1 Accuracy of Causality Test

We have the following cases based on the actual relationship between y and
z, and the relationship inferred from By and Bz.

1. y → z and Bz ≥ By: From Proposition 1, this results in a true positive.
2. y → z and Bz 6≥ By: This false negative is not possible because from the

rules of operation of the Bloom clock, Bz must be ≥ By when y → z.
Thus, given a negative outcome, i.e., Bz 6≥ By, the probability that the
negative outcome is false, i.e., y → z, is 0.

3. y 6→ z and Bz 6≥ By: From Proposition 1, this results in a true negative.
Given a negative outcome of the Bloom clock test, the probability that
the negative outcome is true, i.e., y 6→ z, is 1.

4. y 6→ z and Bz ≥ By: From Proposition 1, this results in a false positive.

4.2 Probability of a False Positive and Probability that
a Positive is False

We define probabilities along the following lines for the false positive case
(Case (4)), and for the true positive and true negative cases.

1. The probability of a false positive, which we denote as prfp, is pr(y 6→
z and Bz ≥ By). This probability is the equivalent of the error rate,
which is defined as the percentage of causal relationships that are classified
incorrectly.

2. We define the probability of a positive prp as pr(Bz ≥ By).

The Bloom Clock to Characterize Causality 5

3. The probability pr(y 6→ z) must be evaluated using only By and Bz as we
do not have access to vector timestamps in practice. Thus, we approximate
the probability that ∃i |Vy[i] > Vz[i] as the probability that ∃i |By[i] >
Bz[i], which equals 1− prp. Then, pr(y 6→ z) = 1− prp.

4. prfp = pr(y 6→ z) · pr(Bz ≥ By) = (1− prp) · prp.
5. Given a positive outcome of the Bloom Clock test, prpf = 1− prp is used

to denote the probability that a positive is false.
6. Let prtp denote the probability of a true positive. prtp = prp · prp = pr2p.
7. Let prtn denote the probability of a true negative. For a negative outcome

having probability 1− prp, it is certain that y 6→ z and hence in this case
prtn = 1; and for a positive outcome having probability prp, in this case
prtn = 0. So prtn = 1 · (1− prp) = 1− prp.

The probabilities prpf and prfp are functions of prp. We now show how
prp can be calculated for the false positive case (Case (4)) where Bz ≥ By,
otherwise if Bz 6≥ By it is defined as 0. Observe that pr(y → z) and pr(y 6→ z)
are estimated as prp and 1−prp. However, as By and Bz are inputs, one could
define the second term of prfp = (1− prp) · prp, which is pr(Bz ≥ By), as a
step function prδ(p) which equals 1 if Bz ≥ By and 0 otherwise. Then prfp
becomes (1 − prp) · prδ(p) and prpf remains 1 − prp and evaluates to prfp.
Also, prtp becomes prp · prδ(p) and prtn becomes 1− prδ(p). It is a difference
in perspective.

Events in ↓ y
⋂
↓ z contribute exactly equally to increments in By and

Bz. Beyond those increments, we have the following. ↓ y\ ↓ z 6= ∅. Events in
↓ y\ ↓ z contribute to increments in By. Disjoint events in ↓ z\ ↓ y contribute
to increments in Bz. This happens in such a way that for each increment to an
index in By due to events in ↓ y\ ↓ z, there is an increment to the same index
in Bz due to disjoint events in ↓ z\ ↓ y. The probability of this occurrence is
prp.

We now formulate the precise expression for prp using vector timestamps
Vy and Vz, if they were available. Then we estimate this prp using Bloom
timestamps By and Bz.

Definition 1. V↓y\↓z ≡ ∀i ∈ [1, p], V↓y\↓z[i] = Vy[i]− V↓y
⋂
↓z[i].

Definition 2. For a vector X, Xsum ≡
∑|X|
i=1 X[i].

V↓y\↓z gives the process-wise number of events in ↓ y\ ↓ z whereas V sum
↓y\↓z

gives the total number of events in ↓ y\ ↓ z.
As analyzed above, for a false positive to occur, for each increment to

By[i] due to events in ↓ y\ ↓ z, there is an increment to Bz[i] due to disjoint
events in ↓ z\ ↓ y. The expected number of increments to By[i], which we
denote as c the count threshold, is kV sum

↓y\↓z/m. The probability prp of Bz ≥ By
is now formulated. Let b(l, n, 1/m) denote the probability mass function of
a binomial distribution having success probability 1/m, where l increments
have occurred to a position in Bz after applying uniformly random hash

6 A. D. Kshemkalyani and A. Misra

mappings n times. From the above analysis, it follows that n = kV sum
↓z\↓y

times. Then,

b(l, kV sum
↓z\↓y, 1/m) =

(
kV sum
↓z\↓y
l

)
(

1

m
)l(1− 1

m
)kV

sum
↓z\↓y−l (1)

The expected number of increments to By[i] is kV sum
↓y\↓z/m. The probability

that less than the count threshold kV sum
↓y\↓z/m increments have occurred to

Bz[i] is given by:
dkV sum

↓y\↓z/m−1e∑
l=0

b(l, kV sum
↓z\↓y, 1/m) (2)

The probability that each of the m positions of Bz is incremented at least
kV sum
↓y\↓z/m times (after events in ↓ y

⋂
↓ z), which gives prp, can be given

by:

prp(k,m, Vy, Vz) = (1−
dkV sum

↓y\↓z/m−1e∑
l=0

b(l, kV sum
↓z\↓y, 1/m))m (3)

Equation 3 assumed access to vector timestamps V↓y\↓z and V↓z\↓y, which
are derived from Vy and Vz. If only Bloom clocks are maintained, then we
can approximate prp(k,m, Vy, Vz) to p̂rp(k,m,By, Bz) as follows. Clearly,
Bsum
z ≥ Bsum

y because Bz ≥ By. We use Bsum
z as estimate of kV sum

↓z\↓y, while

simultaneously varying l (for each i) from 0 to By[i] instead of to Bsum
y /m

(or to kV sum
↓y\↓z/m) across all i. Thus, in Equation 3, kV sum

↓z\↓y changes to Bsum
z ,

dkV sum
↓y\↓z/m−1e in the summation bound changes to By[i]−1 (i.e., the count

threshold changes from kV sum
↓y\↓z/m to By[i]), and rather than treating each

position in By identically and raising to the exponent m, now a product is
taken across all i ∈ [1,m]. This gives the following.

p̂rp(k,m,By, Bz) =

m∏
i=1

(1−
By [i]−1∑
l=0

b(l, Bsum
z , 1/m)) (4)

Equation 4 treats the V sum
↓y events in V↓y and the V sum

↓z events in V↓z as dis-
joint and independent, whereas in reality, only the V sum

↓y\↓z events in V↓y\↓z and

the V sum
↓z\↓y events in V↓z\↓y are disjoint and independent. Events in ↓ y

⋂
↓ z

increment the Bloom clocks By and Bz identically in reality, whereas Equa-
tion 4 assumes these events independently update the positions in By and
Bz randomly through the k hash functions. This approximation is made as
Bloom timestamps cannot identify the actual number of independent events.

The Bloom Clock to Characterize Causality 7

4.3 Efficient Estimation of Probabilities

Equations 3 and 4 are time-consuming to evaluate for events y and z as
the execution progresses. Specifically, Equation 4 has to consider events in
the entire causal past of y and z. A binomial distribution b(l, n, 1/m) can
be approximated by a Poisson distribution with mean n/m, for large n and
small 1/m. Also, the cumulative mass function of a Poisson distribution is
a regularized incomplete gamma function. This provides an efficient way of
evaluating Equations 3 and 4.

A more efficient-to-evaluate estimate p̂rp can be obtained by taking the
Bloom clock equivalents of V sum

↓y\↓z events in V↓y\↓z and the V sum
↓z\↓y events in

V↓z\↓y, by trying to exclude the impact of events in ↓ y
⋂
↓ z. For By and

Bz, the common increments to each index are min(min(By),min(Bz)), which
we denote reduce. (Here, min(X) is the lowest element in vector X.) So we
reduce each index entry of By and Bz by reduce to obtain B reducey|z and
B reducez|y vectors, respectively.

Definition 3. For By and Bz,

1. B reducey|z ≡ ∀i ∈ [1,m], B reducey|z[i] = By[i]−min(min(By),min(Bz))
2. B reducez|y ≡ ∀i ∈ [1,m], B reducez|y[i] = Bz[i]−min(min(By),min(Bz))

We then use B reducey|z and B reducez|y instead of By and Bz in Equa-
tion 4 to get the following.

p̂rp(k,m,By, Bz) =

m∏
i=1

(1−
B reducey|z [i]−1∑

l=0

b(l, B reducesumz|y , 1/m)) (5)

4.4 Ticking at a Receive Event

In the Bloom clock protocol given in Figure 1, omitting the local tick at a
receive event slows the growth of the Bloom clock but introduces more false
positives which depend on the partial order induced by the communication
pattern. Let s and r denote a send and receive event, respectively. Let the
message sent at syi be received at rzj and let sz−1j → syi . Then Bsyi = Brzj .

For events ewk such that syi → ewk , then Brzj ≤ Bewk even though rzj 6→ ewk
may be the case. The impact of such additional false positives on p̂rp is not
considered in Equation 4 or 5 and seems non-trivial to quantify. Note that
the number of false positives increases further if multicasts are allowed in
the system model and the local tick is omitted at a receive. This is because
for one send event, there will be multiple receive events and all these receive

8 A. D. Kshemkalyani and A. Misra

events will have the same Bloom clock value if the tick is omitted at the
receive events. If rz1j1 and rz2j2 are two such receive events, then for any event

e1 such that rz1j1 → e1 and rz2j2 6→ e1, the false positive rz2j2 → e1 will be
inferred.

In Figure 1, with a local tick at a receive event, a more accurate test for
a false positive gives the following instead of Proposition 1.

Proposition 2. Test for y → z using Bloom clocks: if Bz ≥ By
∧

Bsum
z ≥

Bsum
y + k then declare y → z else declare y 6→ z.

To compute the new p̂rp, the expression in Equation 4 or 5 needs to be
multiplied by the conditional probability that Bsum

z ≥ Bsum
y + k, given that

Bz ≥ By. This probability depends on the selection of y and z, and on |E|.
However, we expect it can be approximated to 1 and hence Equation 4 and
5 which are based on Proposition 1 are still good estimates of p̂rp.

5 Analysis and Discussion

For arbitrary events y and z, as V sum
↓z\↓y − V sum

↓y\↓z increases, or equivalently
in terms of the Bloom clock, as Bsum

z − Bsum
y increases, we can predict the

following trends from the definitions of prp, prfp, and prpf .

1. prp, the probability of a positive, is low if z is close to y and this probability
increases as z goes further in the future of y. This is because, in Equation 4,
as Bsum

z increases with respect to Bsum
y or rather its m components, the

summation (cumulative probability distribution function) decreases and
hence p̂rp increases. Likewise for Equation 5.
This behavior is intuitive because intuition says that as z becomes more
distant from y, the more is the likelihood that some causal relationship will
get established from y to z either directly or transitively, by the underlying
message communication pattern.

2. prpf , the probability that a positive is false, decreases as z goes further in
the future of y. This is because prpf is defined as 1− prp.
This behavior is also intuitive. Given a positive outcome, if z is close to
y (Bsum

z is just a little greater than Bsum
y), it is unlikely that a causal

relationship has been established either directly or transitively from y to
z by the underlying message communication pattern, and thus prpf will
tend to be higher; as z goes more distant from y, this likelihood increases,
resulting in a lower prpf .

3. prfp, the probability of a false positive, which is the product of prp and
prpf , is lower than the above two probabilities. It will likely reach a max-
imum of 0.25 and then decrease.
If prδ(p) were used instead of prp for pr(Bz ≥ By), then prfp would be
higher for a positive outcome. Once Bz ≥ By becomes true, it steps up
from 0 and then as z goes into the future of y, it decreases.

The Bloom Clock to Characterize Causality 9

We remind ourselves that these probabilities depend on By, Bz, k, and m,
and observe that they are oblivious of the communication pattern in the
distributed execution.

There is a trade-off using Bloom clocks. m can be chosen, as desired,
arbitrarily less than p, for space savings. To minimize the prp or p̂rp, the
expression for the optimal number of hash functions k as a function of m,
n, and c (the m values of c if Equation 4 or 5 is used) can be derived.
Alternatively, for an acceptable prp or p̂rp, the combination of values for m
and k can be determined.

We observe that many applications in distributed computing require test-
ing for causality between pairs of events that are temporally close to each
other. In checkpointing, causality needs to be tracked only between two con-
sistent checkpoints. In fair mutual exclusion in which requests need to be
satisfied in order of their logical timestamps, contention occurs and request
timestamps need to be compared only for temporally close requests. For de-
tecting data races in multi-threaded environments, a causality check based
on vector clocks can be used; however, in practice one needs to check for data
races only between read/write events that occur in each other’s temporal lo-
cality [13]. In general, many applications are structured as phases and track
causality only within a bounded number of adjacent phases [4, 12].

6 Estimating Accuracy, Precision, and False Positive
Rate

Accuracy (Acc), Precision (Prec), Recall (Rec), and False Positive Rate (fpr)
are metrics defined over all data points, i.e, pairs of events, in the execution.
Let TP, FP, TN, and FN be the number of true positives, number of false
positives, number of true negatives, and the number of false negatives, re-
spectively. Observe that FN is 0 as there are no false negatives. We have:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, fpr =

FP

FP + TN

(6)

Recall is always 1 with Bloom clocks. Given events y and z and their Bloom
timestamps By and Bz, there is not enough data to compute these metrics.
So we consider the slice of the execution from y to z and define the metrics
over the set of events X in this slice. Specifically, we fix event y and we let z′

be virtual events from y to z and estimate the TP, FP,TN, and FN of events
x ∈ X with respect to each other x′ ∈ X. We define v = (Bsum

z −Bsum
y)/k+1

virtual events x, having timestamps such that Bsum
x = Bsum

y + k(i − 1), for
i ∈ [1, v].

10 A. D. Kshemkalyani and A. Misra

• The contribution of each Bx′ (w.r.t. Bx) to TP is pr(x → x′ and Bx′ ≥
Bx), which is estimated as pr(Bx′ ≥ Bx) · pr(Bx′ ≥ Bx) = pr2p for that x′

w.r.t. x.
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution
to TP would be prp · prδ(p).

• The contribution of each Bx′ (w.r.t. Bx) to FP is estimated as prfp =
(1 − prp) · prp for that x′ w.r.t. x. (See the discussion and definitions at
the start of Section 4.2.)
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution
to FP would be (1− prp) · prδ(p).

• The contribution of each Bx′ (w.r.t. Bx) to TN is pr(x 6→ x′ and Bx′ 6≥
Bx). If Bx′ 6≥ Bx then certainly x 6→ x′. (See Case 3 of Section 4.1). So
the contribution is estimated as 1 · pr(Bx′ 6≥ Bx) = (1 − prp) for that x′

w.r.t. x.
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution
to TN would be 1 · (1− prδ(p)).

Let prp(x, x
′) denote prp for event x′ with respect to event x, where x, x′ ∈ X.

We get the following estimates.
The equivalent of the error rate is given by 1−Acc.

1− Âcc =
FP∑
x,x′ 1

=

∑
x,x′ prfp(x, x

′)∑
x,x′ 1

=

∑
x,x′(1− prp(x, x

′)) · prp(x, x′)∑
x,x′ 1

(7)

The equivalent of the error rate that a positive is false is given by 1−Prec.

1− P̂ rec =
FP

TP + FP

=

∑
x,x′(1− prp(x, x

′)) · prp(x, x′)∑
x,x′(1− prp(x, x′)) · prp(x, x′) + (prp(x, x′))2

=

∑
x,x′(1− prp(x, x

′)) · prp(x, x′)∑
x,x′ prp(x, x′)

(8)

fpr is the proportion of actual negatives that are misclassified as false
positives.

The Bloom Clock to Characterize Causality 11

f̂pr =

∑
x,x′(1− prp(x, x

′)) · prp(x, x′)∑
x,x′(1− prp(x, x′)) · prp(x, x′) + (1− prp(x, x′))

=

∑
x,x′(1− prp(x, x

′)) · prp(x, x′)∑
x,x′ 1− (prp(x, x′))2

(9)

Note that prδ(p)(x, x
′) cannot be used unless we have access to Bloom

timestamps for events x, x′ in the execution slice X. In a real execution, we
would have access to these timestamps, and we have the following in terms
of prδ(p).

1− Âcc =

∑
x,x′(1− prp(x, x

′)) · prδ(p)(x, x′)∑
x,x′ 1

(10)

1− P̂ rec =

∑
x,x′(1− prp(x, x

′)) · prδ(p)(x, x′)∑
x,x′(1− prp(x, x′)) · prδ(p)(x, x′) + prp(x, x′) · prδ(p)(x, x′)

=

∑
x,x′(1− prp(x, x

′)) · prδ(p)(x, x′)∑
x,x′ prδ(p)(x, x′)

(11)

f̂pr =

∑
x,x′(1− prp(x, x

′)) · prδ(p)(x, x′)∑
x,x′(1− prp(x, x′)) · prδ(p)(x, x′) + (1− prδ(p)(x, x′))

=

∑
x,x′(1− prp(x, x

′)) · prδ(p)(x, x′)∑
x,x′ 1− prp(x, x′) · prδ(p)(x, x′)

(12)

7 Conclusions

Detecting the causality relationship between a pair of events in a distributed
execution is a fundamental problem. To address this problem in a scalable
way, this paper gave the formal Bloom clock protocol, derived expressions for
the probability of false positives and the probability that a positive is false
using Bloom clock, and studied the properties of the Bloom clock. We also
gave a way to estimate the accuracy, precision, and the false positive rate for
a slice of the execution as identified by two given events’ Bloom timestamps.

The Bloom clock is seen to offer a trade-off between accuracy (minimiza-
tion of false positives) and space overhead. The trade-off provides the Bloom
clock with adaptability to different scenarios. It would be interesting to study
such trade-offs in some practical applications of detecting causality between
event pairs, for example, fair mutual exclusion, checkpointing, or dynamic
race detection in multi-threaded environments. As future work, one could
compute the values of the expressions of accuracy, precision, and false posi-

12 A. D. Kshemkalyani and A. Misra

tive rates for a simulated execution to study their behavior. This will give an
indication about the feasibility of the Bloom clock for real applications.

References

1. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Commu-
nications of the ACM 13, 7 pp. 422–426 (1970)

2. Broder, A.Z., Mitzenmacher, M.: Survey: Network applications of bloom filters:
A survey. Internet Mathematics 1(4), 485–509 (2003)

3. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems.
Inf. Process. Lett. 39(1), 11–16 (1991)

4. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended ab-
stract). In: Proceedings of the 12th International Conference on Distributed Com-
puting Systems, Yokohama, Japan, June 9-12, 1992. pp. 486–493 (1992)

5. Fidge, C.J.: Logical time in distributed computing systems. IEEE Computer
24(8), 28–33 (1991)

6. Kshemkalyani, A., Shen, M., Voleti, B.: Prime clock: Encoded vector clock to
characterize causality in distributed systems. Journal of Parallel and Distributed
Computing 140 pp. 37–51 (2020)

7. Kshemkalyani, A.D., Khokhar, A.A., Shen, M.: Encoded vector clock: Us-
ing primes to characterize causality in distributed systems. In: Proceedings of
the 19th International Conference on Distributed Computing and Networking,
ICDCN 2018, Varanasi, India, January 4-7, 2018. pp. 12:1–12:8 (2018)

8. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press (2011)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 pp. 558–565 (1978)

10. Mattern, F.: Virtual time and global states of distributed systems. Proceedings
of the Parallel and Distributed Algorithms Conference pp. 215–226 (1988)

11. Meldal, S., Sankar, S., Vera, J.: Exploiting locality in maintaining potential
causality. In: Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing. pp. 231–239. PODC ’91 (1991)

12. Misra, J.: Phase synchronization. Inf. Process. Lett. 38(2), 101–105 (1991)
13. Pozzetti, T.: Resettable Encoded Vector Clock for Causality Analysis with an

Application to Dynamic Race Detection. M.S. Thesis, University of Illinois at
Chicago (2019)

14. Ramabaja, L.: The bloom clock. CoRR abs/1905.13064 (2019),
http://arxiv.org/abs/1905.13064

15. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed Computing 7(3), 149–174 (1994)

16. Singhal, M., Kshemkalyani, A.D.: An efficient implementation of vector clocks.
Inf. Process. Lett. 43(1), 47–52 (1992)

17. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom fil-
ters for distributed systems. IEEE Communications Surveys and Tutorials 14(1),
131–155 (2012)

18. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: Constant size logical clocks for
distributed systems. Distributed Computing 12(4), 179–195 (1999)

