
Information and Computation 301 (2024) 105212
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Detecting causality in the presence of Byzantine processes:

The case of synchronous systems ✩

Anshuman Misra, Ajay D. Kshemkalyani ∗

Department of Computer Science, University of Illinois at Chicago, Chicago, 60607, IL, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2023
Received in revised form 15 June 2024
Accepted 8 August 2024
Available online 12 August 2024

Keywords:
Byzantine fault-tolerance
Causality
“Happened before” relation
Synchronous system
Distributed algorithm
Synchronization
Message-passing

Detecting causality or the “happens before” relation between events in a distributed system
is a fundamental building block for distributed applications. It was recently proved that
this problem cannot be solved in an asynchronous distributed system in the presence
of Byzantine processes, irrespective of whether the communication mechanism is via
unicasts, multicasts, or broadcasts. In light of this impossibility result, we turn attention
to synchronous systems and examine the possibility of solving the causality detection
problem in such systems. In this paper, we prove that causality detection between events
can be solved in the presence of Byzantine processes in a synchronous distributed system.
We prove the result by providing two algorithms. The first algorithm uses the Replicated
State Machine (RSM) approach and vector clocks. The second algorithm is round-based and
uses matrix clocks. The RSM-based algorithm can also run deterministically in partially
synchronous systems.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

1.1. Background

Causality is an important tool in understanding and reasoning about distributed executions [2]. Lamport formulated the
“happens before” or the causality relation, denoted →, between events in a distributed system [3]. Given two events e
and e′ , the causality detection problem asks to determine whether e → e′ . There are many applications of causality detec-
tion including determining consistent recovery points in distributed databases, deadlock detection, termination detection,
distributed predicate detection, distributed debugging and monitoring, and the detection of race conditions and other syn-
chronization errors [4].

The causality relation between events can be captured by tracking causality graphs [5], scalar clocks [3], vector clocks
[6–8], matrix clocks [9,10], and several other variants of logical clocks such as hierarchical clocks [11], plausible clocks
[12], dotted version vectors [13], interval tree clocks [14], logical physical clocks [15], Bloom clocks [16,17], incremental
clocks [18], and resettable prime clocks [19,20]. Some of these variants track causality accurately while others introduce
approximations and inaccuracies as trade-offs in the interest of savings on the space and/or time and/or message complexity
overheads. As stated by Schwarz and Mattern [2], the search for the holy grail of the ideal causality tracking mechanism is

✩ An earlier version of a part of this paper appeared in TIME 2023 [1].

* Corresponding author.
E-mail address: ajay@uic.edu (A.D. Kshemkalyani).
https://doi.org/10.1016/j.ic.2024.105212
0890-5401/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by-nc /4 .0/).

https://doi.org/10.1016/j.ic.2024.105212
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2024.105212&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:ajay@uic.edu
https://doi.org/10.1016/j.ic.2024.105212
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
on. These above works in the literature assume that processes are correct (non-faulty). It is important to solve this problem
under the Byzantine failure model as opposed to a failure-free setting because it mirrors the real world. The causality
detection problem for a system with Byzantine processes was recently introduced and studied in [21].

The related problem of causal ordering of messages asks that if the send event of message m happens before the send
event of message m′ , then require that m′ should not be delivered before m at all the common destinations of m and m′
[22]. Under the Byzantine failure model, causal ordering has recently, and concurrently with [21], been studied in [23–26].
The framework is similar to that in [21] as causality detection is implicitly involved.

In the first formulation and study of causality detection under the Byzantine failure model, it was proved that the
problem of detecting causality between a pair of events cannot be solved in an asynchronous system in the presence of
Byzantine processes, irrespective of whether the communication is via unicasts, multicasts, or broadcasts [21]. In the mul-
ticast mode of communication, each send event sends a message to a group consisting of a subset of the set of processes
in the system. Different send events can send to different subsets of processes. Communicating by unicasts and commu-
nicating by broadcasts are special cases of multicasting. It was shown in [21] that in asynchronous systems with even a
single Byzantine process, the unicast and multicast modes of communication are susceptible to false positives and false
negatives, whereas the broadcast mode of communication is susceptible to false negatives but no false positives. A false
positive means that e �→ e′ whereas e → e′ is perceived/detected. A false negative means than e → e′ whereas e �→ e′ is
perceived/detected.

1.2. Contributions

In light of the impossibility result for asynchronous systems, this paper examines the solvability of causality detection
in synchronous systems in the presence of Byzantine processes. We prove that causality detection between events can be
solved in the presence of Byzantine processes in a synchronous system by providing two algorithms. Our positive result
holds for unicasts, multicasts, as well as broadcasts. This is the first paper to establish this result. The result is significant,
similar to the results in [2,6,7], because it establishes a fundamental possibility result about causality detection in the
presence of Byzantine processes in a synchronous system. The results for our two algorithms for multicasts, unicasts, and
broadcasts are summarized in Table 1. The algorithms are presented for the multicast mode of communication – unicast
and broadcast modes are special cases of multicast.

The first algorithm (Algorithm 1) uses the Replicated State Machine (RSM) approach [27], which works in synchronous
systems, in conjunction with vector clocks [6,7]. In a system with n application processes, our RSM-based solution uses
3t +1 process replicas per application process, where t is the maximum number of Byzantine processes that can be tolerated
in a RSM. Thus, there can be at most nt Byzantine processes among a total of (3t + 1)n processes partitioned into n
RSMs of 3t + 1 processes each, with each RSM having up to t Byzantine processes. By using (3t + 1)n processes and the
RSM approach to represent n application processes, the malicious effects of Byzantine process behaviors are neutralized.
There are neither false positives nor false negatives. Efficient implementations of RSMs also require the use of cryptography
[28]. A RSM-to-RSM unicast message requires (3t + 1)2 messages between replicas whereas a message multicast by a RSM
requires n(3t + 1)2 messages between replicas. Additionally, implementing an RSM typically requires worst-case O ((t + 1)2)

messages and worst-case O (t) time per message received from another RSM. Thus a message multicast costs overall O (nt2)

messages and O (t) time.
The second algorithm (Algorithm 2) provides an alternate solution for solving the causality detection problem that does

not use expensive process replication. This algorithm uses threshold encryption in conjunction with matrix clocks [10] in a
round-based synchronous system. For multicast communication in the presence of Byzantine processes, we use the primi-
tives for Byzantine-tolerant Reliable Multicast (BRM) which under the covers invokes Byzantine-tolerant Reliable Broadcast
(BRB) [29,30]. Further, the upper bound f on the number of Byzantine processes in the system needs to satisfy only
n > f + 1 as we use Dolev-Strong authenticated agreement [31] for BRB, and thus the algorithm has optimal fault-tolerance.
Implementing a message multicast requires nf messages and f + 1 rounds for the Dolev-Strong algorithm underlying BRB
whereas the overall algorithm requires O (n2) messages and f + 2 rounds.

The round-based Algorithm 2 also makes the assumption that processes will not perform any out-of-band communication
(OOBC), which is communication not specified by the algorithm. This assumption prevents the establishment of the causality
relation between a pair of events, that cannot be captured by this algorithm. Neither false positives nor false negatives can
then arise. Two types of false negatives could potentially arise.

1. False negatives due to the non-observation of causal chains when a Byzantine process masks them by swapping the
order of a local receive event followed by a local send event when it reports the local execution history. The algorithm
prevents such false negatives by using threshold cryptography in conjunction with the BRB primitive.

2. False negatives due to the direct or out-of-band message-passing among the Byzantine processes causing causality chains
that need to be accounted for but cannot be captured/observed by correct processes. The algorithm prevents such false
negatives by making the “No OOBC” assumption. Without the no OOBC assumption, such false negatives can arise because
OOBC bypasses BRB to establish causal dependencies; the BRB used by the algorithm is incapable of detecting such
causal relationships. If OOBC is performed, OOBC events do count in the actual execution because they are real (a send
2

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Table 1
Solvability of causality detection between events under different communication modes in asynchronous and syn-
chronous systems. F P is false positive, F N is false negative. F P/F N means no false positive/no false negative is
possible. OOBC = out-of-band communication.

Communic- Asynch- Synchronous, Algorithm 1 Synchronous, Algorithm 2 Synchronous, Algorithm 2
ation mode ronous (using RSM), [1] (using BRB), No OOBC (using BRB)

Multicasts No [21] Yes [1], Theorem 2 Yes, Corollary 3 No, Theorem 6
F P , F N F P , F N F P , F N F P , F N

Unicasts No [21] Yes [1], Corollary 1 Yes, Corollary 4 No, Corollary 6
F P , F N F P , F N F P , F N F P , F N

Broadcasts No [21] Yes [1], Corollary 2 Yes, Corollary 5 No, Corollary 7
F P , F N F P , F N F P , F N F P , F N

and receive did occur) and they establish causality relations which need to be correctly cognized in the algorithm’s
view of the actual execution.

The algorithm ensures that there are no false positives by leveraging the Byzantine Reliable Broadcast (BRB) primitive for
each multicast in conjunction with the use of matrix clocks. A multicast is sent via BRB to ensure that all correct processes
in the system see the same state of the system which is also the actual state of the system (subject to the no OOBC
assumption). Even with OOBC, the algorithm cannot be misled into detecting false positives because OOBC does not remove
any actual causal relations.

Algorithm 1 is immune to OOBC because each RSM uses 3t + 1 replicas and whatever OOBC is performed by the t
Byzantine replicas is masked. For any event to get registered in a RSM, there should be at least t + 1 identical reports of
that event; as there are only t Byzantine replicas, their reports (based on OOBC) can never meet that quorum of t + 1 and
the corresponding OOBC events do not take place in the RSMs. The same logic explains why this RSM-based algorithm is
immune to fake events reported by and actual events not reported by Byzantine replicas.

Table 1 summarizes the results and places them in perspective. An earlier version of the first algorithm appeared in [1].

Roadmap. Section 2 gives the system model. Section 3 formulates the problem of detecting causality in the presence
of Byzantine processes. Section 4 proposes the RSM-based algorithm and proves its correctness. Section 5 proposes the
round-based algorithm and proves its correctness. Section 6 gives a discussion and concludes.

2. System model

This paper deals with a distributed system having Byzantine processes which are processes that can misbehave [32,33].
A correct process behaves exactly as specified by the algorithm whereas a Byzantine process may exhibit arbitrary behavior
including crashing at any point during the execution. A Byzantine process cannot impersonate another process or spawn new
processes. If processes do not perform out-of-band communication, which is communication not specified by the application
program, the system is said to satisfy the no OOBC assumption.

The distributed system is modelled as an undirected graph G = (P , C). Here P is the set of processes communicating
in the distributed system. Let |P | = n. C is the set of (logical) communication links over which processes communicate by
message passing. The channels are assumed to be FIFO. G is a complete graph.

The distributed system is assumed to be synchronous, i.e., there is a known fixed upper bound δ on the message latency,
and a known fixed upper bound ψ on the relative speeds of processors [34]. In contrast, an asynchronous system has been
defined as one in which there is no upper bound on the message latency and on the relative speeds of processors [34]. A
synchronous system guarantees that the relative speeds of non-faulty processors and message latencies are bounded, and
this is equivalent to assuming that the system has synchronized real-time clocks [27]. A partially synchronous system behaves
like an asynchronous system but with periods of synchrony [34].

Let ex
i , where x ≥ 1, denote the x-th event executed by process pi . An event may be an internal event, a message send

event, or a message receive event. Let Si , Ri , and Ii denote the set of send events, receive events, and internal events at
process pi . Let the state of pi after ex

i be denoted sx
i , where x ≥ 1, and let s0

i be the initial state. The execution at pi is the
sequence of alternating events and resulting states, as 〈s0

i , e
1
i , s

1
i , e

2
i , s

2
i . . .〉. The sequence of events 〈e1

i , e
2
i , . . .〉 is called the

execution history at pi and denoted Ei . Let E = ⋃
i{Ei} and let T (E) denote the set of all events in (the set of sequences)

E . The happens before [3] relation, denoted →, is an irreflexive, asymmetric, and transitive partial order defined over events
in a distributed execution that is used to define causality.

Definition 1. The happens before relation → on events T (E) consists of the following rules:

1. Program Order: For the sequence of events 〈e1, e2, . . .〉 executed by process pi , ∀ x, y such that x < y we have ex → e y .
i i i i

3

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
2. Message Order: If event ex
i is a message send event executed at process pi and e y

j is the corresponding message receive
event at process p j , then ex

i → e y
j .

3. Transitive Order: If e → e′ ∧ e′ → e′′ then e → e′′ .

Definition 2. The causal past of an event e is denoted as C P (e) and defined as the set of events {e′ ∈ T (E) | e′ → e}.

The round-based algorithm explicitly assumes that the execution in the synchronous system proceeds in rounds, where
messages sent in a round are received in the same round. The local sequence of events in a round contains send events,
followed by receive events, followed by internal events.

3. Problem formulation

The problem formulation is done similar to the way in [21]. An algorithm to solve the causality detection problem
collects the execution history of each process in the system and derives causal relations from it. Ei is the actual execution
history at pi . For any causality detection algorithm, let Fi be the execution history at pi as perceived and collected by the
algorithm (at a process, specified by the context) and let F = ⋃

i{Fi}. F thus denotes the execution history of the system as
perceived and collected by the algorithm. Fi and F can be thought of as local variables. Analogous to T (E), let T (F) denote
the set of all events in F . Analogous to Definition 1, the happens before relation can be defined on T (F) instead of on T (E).
With a slight relaxation of notation, let T (Ei) and T (Fi) denote the set of all events in Ei and Fi , respectively.

Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0) of e1 → e2 using E and F , respectively. Byzantine processes may
corrupt the collection of F to make it different from E as follows.

1. To delete ex
h from Fh or in general, record F as any alteration of E such that ex

h → e∗
i |F = 0, while ex

h → e∗
i |E = 1, or

2. To add a fake event ex
h in Fh or in general, record F as any alteration of E such that ex

h → e∗
i |F = 1, while ex

h → e∗
i |E = 0.

Without loss of generality, we have that ex
h ∈ T (E) ∪ T (F). Note that ex

h belongs to T (F) \ T (E) when it is a fake event in F .
We assume that a correct process pi needs to detect whether ex

h → e∗
i holds and e∗

i is an event in T (E). If ex
h �∈ T (E) then

ex
h → e∗

i |E evaluates to false. If ex
h �∈ T (F) (or e∗

i �∈ T (F)) then ex
h → e∗

i |F evaluates to false. We assume an oracle that is used
for determining correctness of the causality detection algorithm; this oracle has access to E which can be any execution
history such that T (E) ⊇ C P (e∗

i).

Definition 3. The causality detection problem C D(E, F , e∗
i) for any event e∗

i ∈ T (E) at a correct process pi is to devise an
algorithm to collect the execution history E as F at pi such that valid(F) = 1, where

valid(F) =
{

1 if ∀ex
h, ex

h → e∗
i |E = ex

h → e∗
i |F

0 otherwise

When 1 is returned, the algorithm output matches the actual (God’s) truth and solves CD correctly. Thus, returning 1
indicates that the problem has been solved correctly by the algorithm using F . 0 is returned if either

• ∃ex
h such that ex

h → e∗
i |E = 1 ∧ ex

h → e∗
i |F = 0 (denoting a false negative), or

• ∃ex
h such that ex

h → e∗
i |E = 0 ∧ ex

h → e∗
i |F = 1 (denoting a false positive).

Byzantine processes are an integral part of the system. The occurrence of an event at such a process, and its correct
order with respect to other events locally, matters to correct processes because it can impact the causality relation among
events at correct processes. Let pc1 and pc2 be correct processes and let pb be a Byzantine process. Let message m1 sent at
e_sc1 be received at e_rb . Let message m2 sent at e_sb be received at e_rc2. Consider the following two scenarios.

1. In E , we have e_sc1 → e_rb → e_sb → e_rc2. If F at the correct processes does not match this (specifically, e_rb �→ e_sb
due to pb lying), a causality detection algorithm fails to recognize e_sc1 → e_rc2, resulting in a false negative.

2. In E , we have e_sc1 → e_rb , e_sb → e_rc2, and e_sb → e_rb . If F at the correct processes does not match this and reflects
e_rb → e_sb (due to pb lying), a causality detection algorithm wrongly detects e_sc1 → e_rc2, resulting in a false positive.

Therefore it not sufficient for the correct processes to agree mutually on a F that differs from E in what happened in E at
the Byzantine processes; their F j must also agree with E j at all processes p j .

For the algorithm using the state-machine replication approach (Algorithm 1), we show that F at a correct process can
be made to exactly match E , hence there is no possibility of a false positive or of a false negative.

For the round-based algorithm (Algorithm 2), we solve a weaker version of CD where ex
h ∈ Sh ∪ Rh . This is because a

Byzantine process ph can always lie about ex
h ∈ Ih to others for the collection of Fh as ex

h is completely local to that ph . Thus
we do not consider internal events in the CD problem solution. With this caveat and the “no-OOBC” assumption, we show
4

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
that the set of events in the recorded F at any process exactly matches the set of events in E up to the same round in the
synchronous execution.

4. Solution based on replicated state machines (RSMs)

4.1. Background on RSMs

The discussion in this section is based on the survey by Schneider [27]. A process execution is modelled as the actions
of a finite state machine. Two basic requirements are: (O1: FIFO order) Messages issued by a client to a state machine are
processed in the order issued, and (O2: Causal order) If a message m1 issued to a state machine sm by client c could have
caused (i.e., causally preceded) a message m2 issued by client c′ to sm, then sm processes m1 before m2.

A t-tolerant version of a state machine is implemented by replicating that state machine and running a state machine
replica smr on different processors in an ensemble. If each replica run by a correct processor starts in the same initial state
and executes the same requests in the same order, then each replica will execute the same step at each transition and
produce the same output. Under Byzantine failures, an ensemble implementing a t tolerant RSM must have at least 3t + 1
replicas and the output of each (correct) replica in the ensemble is the output produced by t + 1 replicas. To ensure that all
replicas’ actions and transitions are coordinated, all replicas in an ensemble must receive and process the same sequence of
messages. This can be expressed as two requirements.

• Agreement: Every non-faulty replica receives every message.
• Total order: Every non-faulty replica processes the messages it receives in the same order.

Agreement requires that (IC1) for each message sent by a replica, all non-faulty replicas of the destination process agree on
the contents of the message, and (IC2) if the transmitting replica is non-faulty, then all non-faulty replicas of the destination
process use the transmitter’s value as the one on which they agree. Any of the Byzantine agreement protocols in the
literature can be used [33,32]; they all require that the total number of replicas (of the destination process) is at least
3t + 1. Furthermore, no deterministic algorithm can implement state machine replication, which requires agreement or
consensus, in an asynchronous system [35]. So we assume a synchronous system.

Total order can be satisfied by assigning unique identifiers to messages sent and having the receiver’s smrs process
the messages as per a total order relation on these unique identifiers. For the RSM of application process p j , its various
3t + 1 smrs are denoted p j,w . A message is defined to be stable at p j,w once no message from a correct sender process
replica (across all sender processes from various sender process ensembles) having a lower unique identifier can be subse-
quently delivered to p j,w . Total order is implemented by requiring a replica process to next process the stable request with
the smallest stable identifier. Mechanisms for generating unique identifiers satisfying FIFO and causal order are given by
Schneider [27]. These mechanisms are based on synchronized real-time clocks (which guarantees O1 and causal order O2
implicitly), or based on receiver replica-generated unique identifiers; the latter approach also requires for maintaining FIFO
order and causal order (O1 and O2) that once a transmitter replica starts disseminating a message, it performs no other
communication until the current message has been delivered to every receiver replica that is a destination of the current
message. In a system with Byzantine processes, the replica-generated unique identifiers approach along with using the as-
sumptions on synchronized real-time clocks can satisfy the total order. But note here that the requirement of synchronized
real-time clocks forces us to assume a synchronous system.

4.2. Adapting RSMs to our solution

In our system model having n application processes, each process pi modelled as a RSM is replicated 3t + 1-way as
pi,1, . . . , pi,3t+1 and these processes form the ensemble pi . Various RSM ensembles communicate in a peer-to-peer (P2P)
manner with each other. When a RSM ensemble sends/receives a message, it is referred to as a sender/receiver RSM en-
semble. Thus in a system having n application processes, there are (3t + 1)n processes (i.e., replicas) partitioned into n
RSM ensembles and each ensemble can have at most t Byzantine processes. Each pi,a uses a sequence number denoted
seqi,a that is incremented for each message that it sends/multicasts as a sender RSM replica. The (3t + 1)n processes can be
viewed as running in an application layer that is above the RSM layer which provides Agreement and Total Order.

Using the implementation of RSMs described by Schneider or any of the subsequent implementations proposed since
then, Agreement and Total Order are guaranteed. Furthermore, Total Order is guaranteed in a receiver RSM ensemble for
messages from multiple sender RSM ensembles. In addition, when each replica in the sender RSM ensemble does a multi-
cast, the following version of the Agreement property needs to be implemented.

• Agreement−M: Every non-faulty replica in every RSM ensemble that is included in the destination set of a multi-
cast/broadcast receives the message multicast/broadcast.

Agreement-M requires that (IC1-M) for each message sent by a replica, all non-faulty replicas of the destination processes
of a multicast/broadcast agree on the contents of the message, and (IC2-M) if the transmitting replica is non-faulty, then
5

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
all non-faulty replicas of the destination processes of a multicast/broadcast use the transmitter’s value as the one on which
they agree.

When a RSM replica receives a message from the RSM layer satisfying Total Order and Agreement/Agreement-M, we say
that the message is TOA-delivered to that RSM replica. Under Byzantine failures, an ensemble implementing a t tolerant RSM
in a system model disallowing cryptography must have at least 3t + 1 replicas and the output of each (correct) replica in
an ensemble is the output produced by a majority = t + 1 replicas. Henceforth, we treat majority as having the value t + 1.
Since we are using RSMs for “clients” and “servers” in P2P mode, whenever a correct receiver replica is TOA-delivered (gets)
t + 1 identical messages M from the replicas of a sender ensemble, the (correct) receiver replica delivers the message to the
layer above. We say that a message M is SR-delivered to a RSM replica if majority = t + 1 identical copies of the message
having the same seq j,∗ from the replicas of a sender ensemble j have been TOA-delivered to it. On SR-delivery of a message
to a RSM replica, that replica makes the next transition according to the local state machine. The Agreement and Total Order
properties guarantee that if pi,a SR-delivers such a message, then every other correct receiver replica pi,y in that ensemble
will also SR-deliver that same message M in exactly the order and sequence it was SR-delivered by pi,a . Note that there are
at least t + 1 votes for this message M from the sender replica ensemble and since there are at most t Byzantine processes
in the sender replica ensemble, their state machines can send only up to t messages (for any particular sequence number
seq j,∗ from the sender ensemble j) that are received by pi,a and that differ from the majority value of M received t + 1
times by pi,a .

When pi,a sends a message to p j at the application level, it sends it to all replicas p j,b . When pi,a SR-delivers a message,
a receive event is said to have occurred at the application level. Henceforth, we also refer to RSM i as pi .

4.3. Data structures and algorithm

Algorithm 1 is an online algorithm in which each correct replica pi,a records in F = ⋃
k{Fk} its view of the execution

history of RSM pk via lines 1-21. This recording of F in the local replica is done by piggybacking control information on the
application messages; no extra messages are used. There is also a module in Algorithm 1 lines 22-26 that takes as input
two events ex

h and e∗
i and produces output from {true, f alse} giving ex

h → e∗
i |F . Theorem 1 shows that the set of events in

E matches the set of events recorded in F , even though E is never recorded and is accessible only to an oracle. Next we
show in Theorem 2 that using the output of the algorithm lines 22-26 function test, and Theorem 1, the causality detection
problem is solved by Algorithm 1’s recording of F and function test using this F , i.e., there are no false positives nor false
negatives.

Algorithm 1 gives the processing of control information done at a RSM replica pi,a . Each RSM replica maintains the
following data structures.

1. An integer seqi,a , initialized to 0, that gives the sequence number of the latest local event at pi,a .
2. A local F that is a set of sequences Fk . F contains pi,a ’s view of the recorded execution history Fk of each RSM pk .
3. An integer matrix L A S K AL S J [n, n], where L A S K AL S J [j, k] gives the sequence number of the latest send event by pk

(as per/from the local Fk) at the point in time of the last send event to p j,∗ .
This data structure is for efficiently identifying to send to p j only the incremental updates that have occurred to the
local Fk at pi,a for each other process pk , that need to be transmitted to the destinations p j of a message send event
since pi,a ’s last send to p j . This matrix at pi,a is like a matrix clock but without the usual semantics that the [j, k]-th
entry gives pi,a ’s knowledge of the latest scalar time at pk as known to p j .

4. pi,a also maintains an auxiliary integer matrix V [|T (Fi)|, n], where V [s, k] is maxevent I D(Fk) in F (es
i,a), i.e., the highest

sequence number in Fk(∈ F) when the sth local event es
i,a was executed at pi,a .

Lines 1-6 give the processing for sending a unicast. If multicast can be implemented as a set of independent unicasts,
similar code (but with a single increment in line 2) can be executed for sending to each destination of the multicast group.
Otherwise a multicast send processing can be implemented via lines 7-12. When a message along with the incremental
update inc_F (containing the incremental updates for all pk as per the sender) is SR-delivered to a RSM replica, it updates
its Fk as shown in lines 13-18. A broadcast is a special case of multicast and is hence handled as a multicast. The test for
the happens before relation using V is given in lines 22-26.

In the auxiliary matrix V at pi,a , row V [w] is the vector timestamp [6,7] of event ew
i,a and could be stored along with

the event in Fi . V [w, j] at pi,a identifies (gives the sequence number of) the event at the surface of the causal past cone
of event ew

i,a at RSM p j . At event seqi,a for each type of event (unicast send (line 3), multicast send (line 9), delivery (line
18), internal (line 21)), V [seqi,a, k] for all k is set to maxevent I D(Fk). V is used only to implement the test ex

h → e∗
i , viz.,

V [∗, h] ≥ x.

4.4. Correctness proof

Events such as ex
h with a single subscript which denotes the application-level process ID of ph , are at the application

level or RSM-ensemble level. Events such as ex with two subscripts denote events at ph,a , the individual state machine
h,a

6

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Algorithm 1: Processing of control information and testing for ex
h → e∗

i . Code at process pi,a .

Data: Each process pi,a maintains (i) an integer seqi,a , (ii) F which is the union of sequences Fk (history of events at
pk) for all k, (iii) integer matrix L A S K AL S J [n, n], (iv) integer matrix V [|T (Fi)|, n].

Input: ex
h, e

∗
i

Output: ex
h → e∗

i |F ∈ {true, f alse}
1 when pi,a needs to send application message M to p j,∗: � Each other correct pi,a′ state machine will

execute likewise
2 seqi,a = seqi,a + 1
3 append current send event to Fi ; (∀k)V [seqi,a, k] = maxevent I D(Fk)

4 (∀k) include history from Fk after event L A S K AL S J [j, k] in inc_F
5 (∀k) L A S K AL S J [j, k] = maxevent I D(Fk)

6 send (M, inc_F , seqi,a, j) to each p j,∗ via RSM layer (to satisfy RSM Total Order and Agreement for receiver ensemble
p j)

7 when pi,a needs to send application message M to each p j,∗ for each p j ∈ G: � Each other correct pi,a′

state machine will execute likewise
8 seqi,a = seqi,a + 1
9 append current send event to Fi ; (∀k)V [seqi,a, k] = maxevent I D(Fk)

10 (∀k) include history from Fk after event minp j∈G(L A S K AL S J [j, k]) in inc_F
11 (∀p j ∈ G)(∀k) L A S K AL S J [j, k] = maxevent I D(Fk)

12 send (M, inc_F , seqi,a, G) to each p j,∗ for each p j ∈ G via RSM layer (to satisfy RSM Total Order and Agreement−M
for each receiver ensemble p j)

13 when (M, inc_F , seq j, i/G) is SR-delivered to pi,a from p j : � Happens when t + 1 identical copies of
(M, inc_F , seq j, i/G) for seq j (which equals seq j,∗) are TOA-delivered from p j,∗

14 for all k do
15 if maxevent I D(Fk) < maxevent I D(inc_Fk) then
16 append history of events 〈maxevent I D(Fk) + 1, . . . , maxevent I D(inc_Fk)〉 from inc_Fk to Fk

17 seqi,a = seqi,a + 1
18 append current receive event to Fi ; (∀k)V [seqi,a, k] = maxevent I D(Fk)

19 At internal event at pi,a:
20 seqi,a = seqi,a + 1
21 append current internal event to Fi ; (∀k)V [seqi,a, k] = maxevent I D(Fk)

22 To determine ex
h → e∗

i at correct state machine pi,a via call to test(ex
h → e∗

i):
23 if ex

h is in Fh and ∗ ≤ maxevent I D(Fi) then
24 return(ex

h → e∗
i |F) � the test is whether V [∗, h] ≥ x

25 else
26 return(false)

sm of replica a of RSM ph in its RSM ensemble. Next, we adapt the definitions of E , of the happens before relation, and of
causal past to abstract away the RSM details.

Definition 4. Define E_R S M to be the set of all events {ex
h} such that the events ex

h,a have occurred at at least majority (=
t + 1) number of processes ph,a .

Definition 5. The happens before relation →R S M on events in E_R S M (which occur in ensembles of RSMs) consists of the
following rules:

1. Program Order: For the sequence of events 〈e1
i , e

2
i , . . .〉 executed by RSM ensemble process pi , ∀ x, y such that x < y

we have ex
i →R S M e y

i .
2. Message Order: If event e y

j is a message receive event executed at RSM ensemble process p j (i.e., at at least a majority
of processes p j,b) and there is a corresponding RSM send event ex

i in RSM ensemble pi (i.e., there are at least a majority
events ex

i,a that are the corresponding message send events at processes pi,a to RSM ensemble p j), we have ex
i →R S M e y

j .
3. Transitive Order: If e →R S M e′ ∧ e′ →R S M e′′ then e →R S M e′′ .
7

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Definition 6. The RSM-causal past of an event e ∈ E_R S M is denoted as C P _R S M(e) and defined as the set of events
{e′ ∈ E_R S M | e′ →R S M e}.

In the causality graph (E_R S M, →R S M), there is a RSM-causal path from any event in C P _R S M(e) to e comprised of
program order edges and message order edges.

The following two lemmas and Theorem 1 are now obvious; the reader is referred to [1] for the proofs if needed.

Lemma 1. An event ex
h ∈ E_R S M occurs at each correct process ph,z in the RSM ensemble ph.

Lemma 2. An event ex
h,z that occurs at a correct process ph,z also occurs as event ex

h in the RSM ensemble ph.

Theorem 1. For an event e at a RSM pi (e must occur at each correct process pi,z by Lemma 1), the set of events T (F) when e is
executed at each correct pi,z is C P _R S M(e). Thus,

1. If an event belongs to C P _R S M(e), the event must belong to T (F) when event e is executed at correct process pi,z.
2. If an event e′ belongs to T (F) when event e is executed at correct process pi,z (the event e must also occur at RSM ensemble

process pi by Lemma 2), the event e′ must belong to C P _R S M(e).

Next we adapt the definition of the CD problem to deal with the RSM approach. We assume an oracle that is used for
determining correctness of the causality detection algorithm at p∗

i,z; this oracle has access to E_R S M which can be any
downward-closed superset of C P _R S M(e∗

i). Also let F (e∗
i,z) be the value of F at pi,z when e∗

i,z is executed.

Definition 7. The causality detection problem C D(E_R S M, F (e∗
i,z), e

∗
i,z) for any event e∗

i,z at a correct process pi,z (where e∗
i ∈

E_R S M) is to devise an algorithm to collect the execution history of events E_R S M as F (e∗
i,z) at pi,z such that valid(F) = 1,

where

valid(F) =
{

1 if ∀ex
h, ex

h → e∗
i,z|E_R S M = ex

h → e∗
i,z|F

0 otherwise

When 1 is returned, the algorithm output matches God’s truth and solves CD correctly. Thus, returning 1 indicates that
the problem has been solved correctly by the algorithm using F . 0 is returned if either

• ∃ex
h such that ex

h → e∗
i,z|E_R S M = 1 ∧ ex

h → e∗
i,z|F = 0 (denoting a false negative and (E_R S M ∩ C P _R S M(e∗

i,z)) \
T (F (e∗

i,z)) �= ∅), or
• ∃ex

h such that ex
h → e∗

i,z|E_R S M = 0 ∧ex
h → e∗

i,z|F = 1 (denoting a false positive and T (F (e∗
i,z)) \(E_R S M ∩C P _R S M(e∗

i,z)) �=∅).

Algorithm 1 produces the output of ex
h → e∗

i |F at pi,a (lines 22-26) via recording F (lines 1-21). Theorem 1 showed that
the set of events in E_R S M , viz., C P _R S M(e∗

i,z), matched the set of events recorded in F , viz., F (e∗
i,z), even though E_R S M

is never recorded and is accessible only to an oracle. Next we show in Theorem 2 that using the output of the algorithm
and Theorem 1, the causality detection problem C D(E_R S M, F (e∗

i,z), e
∗
i,z) is solved, i.e., there are no false positives nor false

negatives.

Theorem 2. There are neither false negatives nor false positives in solving causality detection as per Algorithm 1 for the multicast mode
of communication in synchronous systems under the Byzantine failure model.

Proof. This theorem has two parts – no false negatives and no false positives – and the proof leverages the two cases in
Theorem 1 which cover the multicast mode of communication. Recall our assumption in Definition 7 that pi,z is a correct
replica. By Lemma 2, event e∗

i,z occurs as e∗
i in E_R S M . In what follows, we use C P _R S M(e∗

i,z) instead of C P _R S M(e∗
i) to

emphasize that the reasoning is at e∗
i,z at pi,z .

1. (E_R S M ∩ C P _R S M(e∗
i,z)) \ T (F (e∗

i,z)) = ∅. This follows from the first case of Theorem 1 because each event in
C P _R S M(e∗

i,z) belongs to T (F) at e∗
i,z . Let ex

h ∈ C P _R S M(e∗
i,z). The causality test in lines 22-26 of Algorithm 1 will

return true because ex
h ∈ T (F) at e∗

i,z and V [∗, h] = maxevent I D(Fh) (when ex
h was added to T (F) at pi,z at or before

e∗
i,z occurred) ≥ x. Hence � ∃ex

h such that ex
h → e∗

i,z|E_R S M = 1 ∧ ex
h → e∗

i,z|F = 0. Hence there are no false negatives.
2. T (F (e∗

i,z)) \ (E_R S M ∩ C P _R S M(e∗
i,z)) = ∅. This follows from the second case of Theorem 1 because each event in

T (F (e∗
i,z)) must also belong to C P _R S M(e∗

i,z) which is a subset of E_R S M by definition. For the causality test of ex
h → e∗

i
at pi,z in lines 22-26 of Algorithm 1, consider the two cases: ex

h is in Fh and not in Fh . If ex
h is not in Fh , then by case

1 of Theorem 1, ex �∈ C P _R S M(e∗) and the test correctly returns false. If ex is in Fh , then by case 2 of Theorem 1,
h i,z h

8

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
ex
h ∈ C P _R S M(e∗

i,z) and V [∗, h] = maxevent I D(Fh) (when ex
h was added to T (F) at pi,z at or before e∗

i,z occurred) ≥ x.
Hence the test correctly returns true. Hence � ∃ex

h such that ex
h → e∗

i,z|E_R S M = 0 ∧ ex
h → e∗

i,z|F = 1. Hence there are no
false positives.

The theorem follows. �
As unicast and broadcast are special cases of multicast, we have the following corollaries to Theorem 2.

Corollary 1. There are neither false negatives nor false positives in solving causality detection as per Algorithm 1 for the unicast mode
of communication in synchronous systems under the Byzantine failure model.

Corollary 2. There are neither false negatives nor false positives in solving causality detection as per Algorithm 1 for the broadcast
mode of communication in synchronous systems under the Byzantine failure model.

4.5. Complexity

For Algorithm 1, discounting F and V which store the history and thus require unbounded space, the space complexity
at a replica is O (n2) and the time complexity (to update other data structures) is O (n2).

A RSM implementation requires 3t + 1-way process replication. Efficient implementations of RSMs also require the use
of cryptography [28]. A RSM-to-RSM unicast message requires (3t + 1)2 messages between replicas whereas a message mul-
ticast by a RSM requires |G|(3t + 1)2=O (nt2) messages from sender RSM replicas to receiver RSM replicas. The size of each
such message is the size of the incremental history which can be arbitrarily large. Additionally, the cost of implementing an
RSM including Agreement and Total Order within the RSM needs to be accounted for. There are many solutions for BFT-RSMs
offering trade-offs, as captured by the survey [28]. The typical deterministic solutions are leader-based, and are variants of
the precursor PBFT [36]. Such a typical deterministic implementation of an RSM requires O ((3t + 1)2) message complexity
and O (t) time complexity. Thus a message multicast costs overall O (nt2) + O (n.t2) = O (nt2) messages of potentially large
size and O (t) time.

We note that such deterministic RSMs can be implemented in partially synchronous systems [28] and Algorithm 1 also
works in partially synchronous systems. Thus the causality detection problem is also solvable deterministically in partially
synchronous systems, without any false positives or false negatives.

Algorithm 1 can be modified to allow any correct process p j to detect ex
h → e∗

i . (∀k)Fk would store the vector timestamp
of each event in Fk at every replica of every RSM. inc_F would now include the vector timestamps of the events in it,
leading to a factor n increase in the already large sizes of the messages carrying inc_F . In order to detect ex

h → e∗
i at ez

j ,
both events would have to be in the causal past of ez

j , which may never happen if there was no communication from those
processes after the events. Therefore further changes may be needed. Whenever a RSM pi adds a new local event with
its vector timestamp to Fi (at a local replica), (a) each of the 3t + 1 replicas pi,a would need to do a broadcast of that
information to each of the 3t + 1 replicas in each of the n RSMs system-wide (this requires an extra O (nt2) messages per
event at one RSM), and (b) on receipt of such information, each replica in each recipient RSM would need to run a majority
computation before inserting it in the local F . These changes would complicate the presentation of the algorithm and add
to its message, time, and space costs.

5. A round-based algorithm in a synchronous system

5.1. Background

5.1.1. Some cryptographic basics
We utilize non-interactive threshold cryptography as a means to guarantee no false negatives of multicasts [37], as

will be explained in Section 5.2.1. Threshold cryptography consists of an initialization function to generate keys, message
encryption, sharing decrypted shares of the message and finally combining the decrypted shares to obtain the original
message from ciphertext. The following functions are used in a threshold cryptographic scheme.

Definition 8. The dealer executes the generate() function to obtain the public key P K , verification key V K and the private
keys S K0, S K1, ..., S Kn−1.

The dealer shares private key S Ki with each process pi while P K and V K are publicly available.

Definition 9. When process pi wants to send a message m to p j , it executes E(P K , m, L) to obtain Cm . Here Cm is the
ciphertext corresponding to m, E is the encryption algorithm and L is a label to identify m. pi then broadcasts Cm to the
system of processes.
9

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Definition 10. When process pl receives ciphertext Cm , it executes D(S Kl, Cm) to obtain σm
l where D is the decryption

share generation algorithm and σm
l is pl ’s decryption share for message m.

When process p j receives a cipher message Cm intended for it, it has to wait for k decryption shares to arrive from
the system to obtain m. The value of k depends on the security properties of the system. It derives the message from the
ciphertext as follows.

Definition 11. When process p j wants to generate the original message m from ciphertext Cm , it executes C(V K , Cm, S)

where S is a set of k decryption shares for m and C is the combining algorithm for the k decryption shares.

The following function verifies the authenticity of a decryption share.

Definition 12. When a decryption share σ is received for message m, the Share Verification Algorithm is used to ascertain
whether σ is authentic: V (V K , Cm, σ) = 1 if σ is authentic, V (V K , Cm, σ) = 0 if σ is not authentic.

5.1.2. Reliable multicast via Byzantine reliable broadcast
In our solution to the causality detection problem, we consider multicast mode of communication (unicast mode and

broadcast mode are special cases). To prevent Byzantine processes from causing false negatives and false positives, a process
performs multicast via Byzantine-tolerant Reliable Broadcast (BRB) in conjunction with threshold cryptography. Specifically,
the communication model does multicast message sends via Byzantine-tolerant Reliable Multicast (BRM). Under the covers,
the multicast invokes broadcast in conjunction with threshold cryptography.

In a multicast, a message m is sent to a subset of processes forming a process group G . Different multicast send events
can send to different process groups. Byzantine Reliable Multicast is invoked as BRM_multicast(m, G) and the message is
delivered via BRM_deliver(m, G).

Definition 13. Byzantine Reliable Multicast (BRM) satisfies the following properties:

1. (BRM-Validity:) If a correct process pi BRM_delivers message m from sender(m) to group G , then sender(m) must have
BRM_multicast m to G and pi ∈ G .

2. (BRM-Termination-1:) If a correct process BRM_multicasts a message m to G , then some correct process in G eventually
BRM_delivers m.

3. (BRM-Agreement or BRM-Termination-2:) If a correct process BRM_delivers a message m from a possibly faulty process,
then all correct processes in G will eventually BRM_deliver m.

4. (BRM-Integrity:) For any message m, every correct process pi BRM_delivers m at most once.

The Byzantine-tolerant Reliable Broadcast (BRB) [29,30] is invoked by BRB_broadcast and its message is delivered by
BRB_deliver, and satisfies the properties given below:

Definition 14. Byzantine-tolerant Reliable Broadcast (BRB) provides the following guarantees [29,30]:

1. (BRB-Validity:) If a correct process BRB_delivers a message m from sender(m), then sender(m) must have BRB_broadcast
m.

2. (BRB-Termination-1:) If a correct process BRB_broadcasts a message m, then it eventually BRB_delivers m.
3. (BRB-Agreement or BRB-Termination-2:) If a correct process BRB_delivers a message m from a possibly faulty process,

then all correct processes eventually BRB_deliver m.
4. (BRB-Integrity:) For any message m, every correct process BRB_delivers m at most once.

The solutions to BRB [29,30,38] in a synchronous system do not have any upper bound on the number of rounds for
reaching BRB-Agreement and do not let all correct processes reach BRB-Agreement in the same round, as shown in [39,40].
Therefore, for BRB_broadcast we invoke Dolev-Strong’s authenticated Byzantine Agreement algorithm in a synchronous
system that overcomes these drawbacks [31].

Definition 15. In Byzantine Agreement (BA), a single source has an initial value and the following must be satisfied [32,33]:

• (Agreement:) All non-faulty processes must agree on the same value.
• (Validity:) If the source process is non-faulty, then the agreed upon value by all the non-faulty processes must be the

same as the initial value of the source.
• (Termination:) Each non-faulty process must eventually decide on a value.
10

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
In the Dolev-Strong authenticated BA algorithm, all correct processes reach agreement after exactly f + 1 rounds, where
f is the upper bound on the number of Byzantine processes and f + 1 < n, with nf messages [31]. They also proved f + 1
rounds is a lower bound. When correct processes reach agreement on a non-null message, that message is BRB_delivered; if
they reach agreement on a default null message, there are no BRB_deliver events for it. It can be seen that the Dolev-Strong
authenticated Byzantine agreement algorithm straightforwardly satisfies BRB-Validity, BRB-Termination-1, BRB-Agreement,
and BRB-Integrity.

5.2. Basic idea and algorithm

Algorithm 2 presents an online round-based algorithm for solving the CD problem under multicasts in the presence
of Byzantine processes. A multicast is sent via Byzantine Reliable Broadcast (BRB) to ensure the BRM-Validity, BRM-
Termination-1, BRM-Agreement, and BRM-Integrity properties. The ensuing BRM_multicast and BRM_deliver events at the
various processes are carefully assigned timestamps by correct processes to ensure that no false positives result. Besides the
no-OOBC assumption, threshold cryptography is used to ensure that there are no false negatives.

5.2.1. Need for threshold encryption
Let β denote the number of rounds of a BRB protocol. A BRB_broadcast is delivered after β number of rounds as

BRB_deliver. A Byzantine process pb may peek into the content of the message m1 sent by any process at ex
a during the (first

of the) β rounds before the message is BRB_delivered, thereby creating a receive event e_rb . It may then send message m2
at send event e_sb in the same round via BRB. We have ex

a → e_rb → e_sb (and furthermore there is a semantic information
dependency of m2 on m1). Correct processes can get fooled into believing that the Byzantine process had the receive event
in round β when m1 gets BR_delivered to all, thereby concluding incorrectly that e_sb → e_rb . Therefore e_rb → e_sb should
be detected by all processes, or prevented from happening.

Consider an online auction. Here a Byzantine bidder can make a bid based on and after peeking into (reading) a correct
bidder’s bid and yet have its own bid be registered first and gain an unfair advantage. Or consider online gaming, where a
Byzantine player could similarly win an unfair advantage.

Agreement between F at every good process is necessary but not sufficient. A trivial algorithm could have them agree on
empty sequence F . So as a sufficient condition, there must be some correlation to E including what happened at Byzantine
processes. A receive event (like peeking into, or even otherwise) e_rb at a Byzantine process pb that happens before a
subsequent send event e_sb at the Byzantine process must be recognized correctly (and e_rb → e_sb detectable or prevented)
as they can form part of a longer causality chain between events at correct processes. The whole point is recognizing and
agreeing on God’s truth (i.e., what events actually occurred in the system and in what order). It is not all right if the
correct processes agree that in F , at the Byzantine process, e_rb (at the end of round β) happened after e_sb (in round 1 of
that same meta-round) because in reality e_rb happened in round 1 before e_sb and additionally introduced a causal and
semantic dependency from e_rb to e_sb .

We solve this problem by encrypting each message using threshold encryption, which prevents a Byzantine process from
peeking into messages before they are BRB_delivered. In round β + 1, each process that has BRB_delivered the message
sends its decryption share to the destinations of the multicast. A message m gets revealed to a process only at the end of
round β + 1 at which time the receive event occurs at the application; any message sent before the end of round β + 1
cannot be causally or semantically dependent on this revealed message m, and the only messages that the process sends
that are causally (or semantically) dependent on the above message m can get sent only in later rounds. The β + 1 rounds
a × (β + 1) + 0, a × (β + 1) + 1, . . . a × (β + 1) + β − 1, a × (β + 1) + β constitute a meta-round a for a ≥ 0. Thus, rounds
r, r + 1, . . . r +β , such that r div (β + 1) = a constitute meta-round a. The first β rounds are for BRB and the (β + 1)th round
is for sending the decryption shares to the destinations of the multicast.

Even with threshold encryption, a Byzantine process pb can send message m2 at e_sb after learning in round 1 of a
meta-round that some message m1 has been sent; however, m2 is not dependent on the content of m1. Moreover, no
receive event e_rb at which m1 was read happened at the Byzantine process before the send event e_sb at it and there is no
semantic dependency of m2 on m1. The knowledge that some m1 was sent is not useful because the Byzantine process could
always send a message in the first round of each meta-round anyway, but there would never be any semantic dependency
on messages sent by others in that meta-round. In the example of online auction bidding, a Byzantine process pb bidding in
m2 without knowing what the bid was in m1 does not give any advantage to pb . Similarly in online gaming, knowing that
another player was making some move without knowing what move it is does not give the Byzantine player any advantage
as it does not know what counter-move to make via m2. If the above advantages of threshold encryption do not apply to
some application, it can omit the use of threshold encryption and the round β + 1.

5.2.2. Algorithm with description
Data Structures: The data structures at any process pi are as follows.

1. Each process pi has access to P K (global public key) and V K (global verification key). Each process has access to a
local secret key S Ki . All processes in a multicast group G locally store the group key KG .

2. Q : FIFO queue for incoming application messages.
11

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Algorithm 2: Processing of control information for CD under multicasts. Code for pi .

1 when pi invokes BRM_multicast(m, Gidm) in round r, r mod (β + 1) = 0:
2 C ′

m = Enc(KGidm
, m)

3 Cm = E(P K , C ′
m, idm)

4 q + +
5 BRB_broadcast(Cm, Gidm , i, q) in the next round r, r mod (β + 1) = 0

6 when all 〈Cm, Gidm , s,qs〉 are BRB_delivered at pi from ps in round r, r mod (β + 1) = β − 1:
7 V _previous = V
8 for BRB_delivered messages in lexicographic order on 〈s, qs〉 do
9 σm

i = D(S Ki, Cm)

10 if pi ∈ Gidm then
11 Q .push(Cm)

12 for each p j ∈ Gidm do
13 enqueue in Q sh “send(σm

i) to p j”

14 V [s, s] + +
15 enqueue in Q sent send event of Cm from ps to Gidm , along with (T ←)V [s]
16 for BRB_delivered messages in lexicographic order on 〈s, qs〉 do
17 for each j ∈ Gidm do
18 V [j, j] + +
19 if s �= j then
20 V [j, s] = T [s] of the corresponding send event enqueued in Q sent

21 for each a ∈ [1, n], a �= s, j do
22 V [j, a] = max(V [j, a], V _previous[s, a])
23 enqueue in Q rcvd receive event of Cm from ps to/at p j ∈ Gidm , along with (T ←)V [j]
24 when round r, r mod (β + 1) = β begins:
25 while Q sh not empty do
26 dequeue from Q sh “send(σm

i) to p j” and send(σm
i) to p j

27 while Q sent not empty do
28 dequeue from Q sent send event e of Cm from ps to Gidm , along with its vector timestamp T , and append to Fs

29 if s �= i then
30 C P V [s] = T [s]
31 while Q rcvd not empty do
32 dequeue from Q rcvd receive event e of Cm from ps to/at p j ∈ Gidm , along with its vector timestamp T , and append

to F j
33 if j = i then
34 C P V [j] = T [j]

35 when pi receives (t + 1) valid 〈σm
x 〉 messages for m in round r, r mod (β + 1) = β:

36 Store (t + 1) decryption shares in set Sidm

37 C ′
m = C(V K , Cm, Sidm)

38 replace Cm in Q with C ′
m

39 when the application is ready to process a message at pi :
40 if Q .head() is decrypted then
41 C ′

m = Q .pop()

42 m = Dec(KGidm
, C ′

m)

43 BRM_deliver(m, Gidm)

3. q: integer counter that is incremented for each local BRB_broadcast.
4. Q sh: FIFO queue for decryption shares.
5. Q sent : FIFO queue of system-wide send events with vector timestamps T assigned by pi in this meta-round.
6. Q rcvd: FIFO queue of system-wide deliver events with vector timestamps T assigned by pi in this meta-round.
12

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Algorithm 3: Test for CD between ex
h and e y

i at pc .

1 test for ex
h → e y

i at the end of a meta-round at correct process pc :
2 if y ≤ C P V [i] ∧ x ≤ C P V [h] then
3 if e y

i .T [h] ≥ x then
4 output true

5 else
6 output false

7 else
8 output false

7. V [n, n]: matrix clock that is an array of vector timestamps. V [j, k] indicates pi ’s knowledge of p j ’s knowledge of pk ’s
count of local send (BRM_multicast) and deliver (BRM_deliver) events.

8. V _previous[n, n]: array of vector timestamps reflecting the state (of V) at the end of the previous meta-round.
9. C P V [n]: array of timestamps. C P V [j] (j �= i) indicates pi ’s knowledge of the local scalar timestamp of the latest send

event at p j . If j = i, it is pi ’s knowledge of the local scalar timestamp of the latest event at pi .
10. F : set of sequences Fk . Fk is the recorded history of events of pk along with their vector timestamps assigned by pi ,

denoted T .

Algorithm 2 requires that key generation and distribution has been accomplished by a trusted dealer prior to the start of
execution. Therefore, all processes have access to a global P K (public key), V K (verification key) and have a local S Ki (secret
key). In addition to this, all multicast groups share a unique symmetric key for encryption and decryption of messages
intended for them. Algorithm 2 double encrypts each message, first with the group key (KGidm

) (line 2) and then with the
public key (P K) (line 3) and invokes a Byzantine Reliable Broadcast (BRB_broadcast) on the resulting ciphertext (line 5).
The BRB_broadcast has a latency of β = f + 1 rounds as it uses the Dolev-Strong authenticated Byzantine agreement under
the covers [31], as explained in Section 5.1. This action of sending a message via BRB_broadcast can be executed only in
round r, where r mod (β +1) = 0. Upon receiving the ciphertext via BRB_deliver in round r′ , where r′ mod (β +1) = β −1
(line 6), all processes compute their respective decryption shares (line 9), enqueue in a shares queue Q sh (lines 12-13) so
as to send their decryption share to all destinations of the multicast group in the next round r′′ where r′′ mod (β + 1) =
β (line 24-26) and that decryption share is received in that same round r′′ (line 35). Meanwhile, the recipients of the
multicast ciphertext message in round r′ enqueue the ciphertext in their respective FIFO delivery queue Q (lines 10-11).
Upon receiving the required number of valid and unique decryption shares in round r′′ (line 35), the ciphertext is decrypted
using the decryption shares of threshold cryptography to obtain the ciphertext encrypted with the group key in round r′′
(lines 36-38). When this ciphertext reaches the head of the delivery queue in the same round r′′ , it is decrypted using the
group key KGidm

to obtain the original message and delivered to the application (lines 39-43). We assume the application is
always ready to dequeue any plaintext message in the delivery queue Q . Note that the use of the group key ensures privacy
because only members of group Gidm should be allowed to see the plaintext. The number of Byzantine processes f that
Algorithm 2 can tolerate satisfies f + 1 < n as it invokes the Dolev-Strong authenticated agreement under the covers [31].

When a message from ps to Gidm is BRB_delivered to pi , it infers that ps must have sent m (from BRB-Validity of
BRB_broadcast); and each (correct) p j ∈ Gidm would have (and each Byzantine p j ∈ Gidm could have) BRB_delivered m (from
BRB-Agreement of BRB_broadcast). Further, p j would get the required number of correct decryption shares in the last round
of the meta-round. The vector timestamp T assigned to an event at pα in Q sent , Q recd , and in F has to be carefully set to
the current value of V [α] by pi . The notation e y

α.Tc[γ] denotes at process pc , pc ’s view of pα ’s view of the count of the
events at pγ at the event e y

α . pi acts as follows.

1. pi increments V i[s, s] for ps ’s send event (line 14). pi does so for all the messages that have been BRB_delivered.
2. Then for each of the BRB_delivered messages, considered in the same order as in the above bullet, for each p j ∈ Gidm ,

pi does the following.
(a) pi increments V i[j, j] for the receive event at p j (line 18).
(b) Then if the sender ps �= p j , pi sets V i[j, s] to T [s] (i.e., V [s, s]) of the corresponding send event (lines 19-20). The

current value of V [s, s] is not used because more send events could have occurred at ps since the corresponding
send event. (If j = s, pi should not do this step as the corresponding send event may have an older value of T [s]
(i.e., V [s, s]) that would overwrite V i[j, j] updated in line 18.)

(c) Further, for each p j , for each pa(�= ps, p j), pi sets V i[j, a] to the maximum of its current value and V _previous[s, a]
to update its local knowledge of V i[j, a] with the sender ps ’s knowledge of V i[s, a] dated at the end of the previous
meta-round (lines 21-22). That value reflects the most recent value of V i [s, a] as of the sending of the message
Cm . The current value of V i[s, a] is not used because it may reflect updates due to receive events in the current
meta-round.
13

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Because of non-deterministic receives and because the BRB protocol running the Dolev-Strong authenticated agreement
under the covers does not inherently maintain total order or even source order, two correct processes pi and pi′ may
order the send event of the same message m differently (thus V i[s, s] �= V i′ [s, s]), and they may also order the deliver
event of the same message at a particular process p j ∈ Gidm differently (thus V i[j, j] �= V i′ [j, j]). Thus, pi and pi′ may have
different values of V [s, s] for the same multicast send event and different values for V [j, j] for the receive event of the
same message at p j . To prevent this from happening, all messages 〈Cm, Gidm , s, qs〉 that are BRB_delivered in round r, r
mod (β + 1) = β − 1, are processed in lexicographic order based on 〈s, qs〉. In the lexicographic ordering, the qs is a local
counter value that is incremented by the sender of BRB_broadcast at each such broadcast. As the same set of messages
have been BRB_delivered, all correct processes process the messages in the same order and assign the same timestamps
to all send events and all deliver events. A Byzantine process may not follow this rule. Yet this does not matter because
all BRB_broadcasts sent in a round are based on the same state of the sender which is the state at the end of the previous
meta-round.

The algorithm processes all the BRB_broadcast send events before all the BRB_deliver events in a meta-round. This is
achieved by first enqueuing all the send event timestamps in a queue Q sent , and then enqueuing all the deliver event
timestamps in a queue Q rcvd in round r, r mod (β + 1) = β − 1, on BRB_delivery. In the next round, these events are
dequeued from Q sent and then from Q rcvd and appended to the respective sender process ps ’s Fs and receiver processes
p j ’s F j , respectively. Q sh is a temporary queue that enqueues the decryption shares of the messages on BRB_delivery and
sends them to the corresponding destinations of the multicast in the next round, viz., round r, r mod (β + 1) = β .

Algorithm 3 allows any correct process pc to determine whether ex
h → e y

i . For this, firstly ex
h ∈ Fh and e y

i ∈ Fi at pc . pc
adds a receive event at p j in pc ’s F j and updates its V with the receive event’s timestamp when the corresponding message
is BRB_delivered to pc . But p j may be Byzantine or may have crashed before the BRM_deliver occurred at it. So there is a
need to verify whether the event added to pc ’s F j actually occurred at p j . Thus, pc needs to check (verify) whether such
events entered in its local F actually occurred in the causal past indicated by the V matrix. We adapt Definition 2 of the
causal past for Algorithm 2.

Definition 16. The causal past at the end of a meta-round at a (correct) process pc is defined as all the events ev
h ∈ T (E)

such that v ≤ w , where w is such that:

• if c �= h, ew
h is the latest BRM_multicast send event such that its ensuing BRB_deliver has occurred at pc up to that

meta-round, and
• if c = h, w = V c[h, h].

The causal past check in line 2 of Algorithm 3 is implemented by the C P V vector, where C P V [j] (j �= c) at pc gives
the scalar timestamp of the latest send event at p j witnessed by pc . The jth entry is updated in lines 29-30 and 33-34 of
Algorithm 2 after BRB_delivery processing.

5.3. Correctness proof

Algorithm 2 satisfies BRM-Validity, BRM-Termination-1, BRM-Agreement, and BRM-Integrity due to the corresponding
properties of BRB. This gives the following theorem, see the Appendix for the proof.

Theorem 3. Algorithm 2 satisfies the properties of Byzantine Reliable Multicast (Definition 13) as it performs multicast mode of com-
munication.

Definition 17. A send event of message m at ps to Gidm is said to have occurred in E if and only if m is received (after
having been BRB_delivered and subsequently double-decrypted) at all correct processes in Gidm .

Definition 18. A receive event of message m to Gidm is said to have occurred at p j ∈ Gidm in E if and only if m is received
(after having been BRB_delivered and subsequently double-decrypted) at all correct processes in Gidm .

We solve the following version of Definition 3 for the causality detection problem. This version differs in that it deals
only with communication events but allows an arbitrary correct process pc and not just pi to detect ex

h → e y
i ; Algorithm 2

can achieve this without incurring any extra message, space, or time complexity due to (i) the use of BRB under the covers,
and (ii) pc assigning vector timestamps to ex

h, e∗
i , and all events at other processes based on its local matrix clock without

having the algorithm broadcast those vector timestamps.

Definition 19. For send or receive events ex
h and e y

i , the causality detection problem C D(E, F , ex
h, e

y
i) is to devise an algo-

rithm to collect the execution history E as F at a correct process pc such that valid(F) = 1, where

valid(F) =
{

1 if ex
h → e y

i |E = ex
h → e y

i |F

0 otherwise
14

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Theorem 4. The application-layer set of (multicast send and receive) events of the execution E up to a meta-round equals the set
of events recorded in F at any correct process up to the same meta-round (with the no out-of-band communication (no OOBC)
assumption).

Proof. A message m sent by a correct process ps via BRB_broadcast is necessarily BRB_delivered to all correct processes and
the send event is said to have occurred in E . If m is sent by a Byzantine process ps , it is either BRB_delivered to all correct
processes or to none (follows from the BRB-Agreement property of BRB_broadcast) and only in the former case is the send
event said to have occurred in E . If m is BRB_delivered to all correct processes in round r, where r mod (β + 1) = β − 1
(lines 6-23), then only all processes in Gidm will receive the required number of decryption shares, decrypt the message
(lines 35-38) and then double-decrypt using the group key KGidm

(lines 39-43) in the next round and thus they will have
the receive event for m. When m was BRB_delivered at correct processes (lines 6-23), then and only then do those processes
add a send event in Fs (lines 15, 27-28) as well as add a receive event for each destination p j in Gidm in F j (lines 23, 31-32).

Thus, if and only if m is BRB_delivered to a correct process does the correct process record the corresponding send event
at ps in its F and the corresponding receive event at each destination p j ∈ Gidm in its F , and only then are the corresponding
application-level send and receive events said to occur in E (as defined by Definitions 17 and 18, respectively). Note that
the receive event for m at p j ∈ Gidm may not actually have occurred if p j has crashed or is Byzantine; however Algorithm 3
checks in the causality test whether the receive event indeed belongs to the causal past. �

Using Theorem 4 and reasoning with the updation of the V data structure and setting of the vector timestamp eγ
k .Tc

associated with each event eγ
k entered in the local Fk at a correct process pc , the following theorem follows. The proof is

given in the Appendix.

Theorem 5. For (application-level) multicast send and receive events ex
h and e y

i , ex
h → e y

i |E = 1 if and only if e y
i .Tc[h] ≥ ex

h.Tc[h] at
any correct process pc in Algorithm 2 (with the no out-of-band communication (no OOBC) assumption).

Therefore a causality relation ex
h → e y

i is inferred from F , viz., from the timestamps recorded by the algorithm, if and
only if the relation actually exists in E .

Corollary 3. There are neither false negatives nor false positives in solving causality detection as per Algorithm 2 for the multicast
mode of communication in synchronous systems under the Byzantine failure model (with the no out-of-band communication (no
OOBC) assumption).

As unicast and broadcast are special cases of multicast, we also have the following results.

Corollary 4. There are neither false negatives nor false positives in solving causality detection as per Algorithm 2 for the unicast mode
of communication in synchronous systems under the Byzantine failure model (with the no out-of-band communication (no OOBC)
assumption).

Corollary 5. There are neither false negatives nor false positives in solving causality detection as per Algorithm 2 for the broadcast
mode of communication in synchronous systems under the Byzantine failure model (with the no out-of-band communication (no
OOBC) assumption).

Theorem 6. There are no false positives but false negatives may occur in solving causality detection as per Algorithm 2 for the multicast
mode of communication in synchronous systems under the Byzantine failure model.

Proof. In addition to the application-layer send and receive events, with OOBC there may be out-of-band communication
events. Consider such a send-receive event pair (ex

h , e y
i). This dependency is not captured by our algorithm because this

communication takes place without following the protocol, viz., without sending and receiving by using BRM_multicast and
BRM_deliver via BRB_broadcast and BRB_deliver. Therefore false negatives may occur. In more detail, consider the following.
Let eu

g → eu′
h due to a message sent via BRM_multicast following the algorithm, and let ez′

i → ez
j due to another message

sent via BRM_multicast following the algorithm. Further, let eu′
h → ex

h and let e y
i → ez′

i . Then we have eu
g → eu′

h → ex
h → e y

i →
ez′

i → ez
j . However eu

g → ez
j will not be detectable by the algorithm as ez

j .Tc[g] �≥ eu
g .Tc[g] because the OOBC (ex

h → e y
i) did

not allow eu
g .T [g] to propagate to ez

j .Tc[g]. This results in a false negative.

However, for every causal relation for an application-layer send-receive event pair, as (ex
h, e y

i) sent and received using
BRM_multicast and BRM_deliver, it is observed/detected by the algorithm at correct process pc , the events (with their times-
tamps) would have been inserted in Fh and Fi , respectively at pc on BRB_delivery of the message at pc , and it is a real
dependency. OOBC does not result in the removal of such dependencies. Hence there will not be any false positives. �
15

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
The same logic as in Theorem 6 holds for unicast and broadcast modes of communication. This leads to the following
corollaries.

Corollary 6. There are no false positives but false negatives may occur in solving causality detection as per Algorithm 2 for the unicast
mode of communication in synchronous systems under the Byzantine failure model.

Corollary 7. There are no false positives but false negatives may occur in solving causality detection as per Algorithm 2 for the broadcast
mode of communication in synchronous systems under the Byzantine failure model.

5.4. Complexity

Barring the unbounded space complexity of the history F , Algorithm 2 requires O (n2) space for the arrays, and the
queues should be large enough to hold the send and deliver events for messages sent in a meta-round. The message and
time complexities are that of implementing BRB and of sending decryption shares. The message complexity is n2 + nf
messages (nf messages for Dolev-Strong authenticated broadcast to implement BRB and n2 for sending decryption shares)
per multicast message. The time complexity is f + 2 rounds in a meta-round (f + 1 rounds for Dolev-Strong authenticated
broadcast to implement BRB and one round for sending decryption shares), common to all messages multicast in that
meta-round. The algorithm has optimal n > f + 1 fault-tolerance.

6. Discussion and conclusions

We proved that the causality detection problem is solvable deterministically in a synchronous message-passing dis-
tributed system subject to Byzantine failures by proposing two algorithms that provide different trade-offs. These trade-offs
were presented in Section 1.2.

As deterministic RSM implementations also work in partially synchronous systems [28], Algorithm 1 works in partially
synchronous systems. This gives the following result.

Theorem 7. There are neither false negatives nor false positives in solving causality detection as per Algorithm 1 for the multicast,
broadcast, and unicast modes of communication in partially synchronous systems under the Byzantine failure model.

Detecting causality between a pair of events is a fundamental problem [2]. Other problems that use this problem as a
building block include the following:

• detecting the interaction type between a pair of intervals at different processes [41],
• detecting the fine-grained modality of a distributed predicate [42,43], and data-stream based global event monitoring

using pairwise interactions between processes [44],
• detecting causality relation between two “meta-events” [45–47], each of which spans multiple events across multiple

processes [48].

It can be shown that these problems in Byzantine failure-prone synchronous systems are solvable because they are reducible
to causality detection in the presence of Byzantine processes in synchronous systems.

CRediT authorship contribution statement

Anshuman Misra: Formal analysis, Investigation, Methodology, Writing – original draft. Ajay D. Kshemkalyani: Concep-
tualization, Formal analysis, Investigation, Methodology, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Proofs of Theorem 3 and Theorem 5

Theorem 3. Algorithm 2 satisfies the properties of Byzantine Reliable Multicast (Definition 13) as it performs multicast mode of
communication.

Proof. We show that BRM-Validity, BRM-Termination-1, BRM-Agreement, and BRM-Integrity are satisfied.
16

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
1. BRM-Validity: On BRM_deliver(m, Gidm) in line 43, the message must have been decrypted with the group key (lines 41-
42) after receiving t + 1 valid decryption shares and having been decrypted with them (lines 35-38), after BRB_deliver-
(Cm, Gidm) in line 6, all in the same-meta-round. By BRB-Validity, BRB_broadcast(Cm, Gidm) must have occurred. From
the algorithm code, this is possible only after double-encryption via a BRM_multicast(m, Gidm) invocation in that same
meta-round. BRM-Validity follows.

2. BRM-Termination-1: On BRM_multicast(m, Gidm) by a correct process, BRB_broadcast(Cm, Gidm) occurs after double-
encryption in round r, r mod (β + 1) = 0 (lines 2-5). BRB_delivery occurs and all correct processes p j in Gidm enqueue
Cm in Q in round r, r mod (β + 1) = β − 1 (lines 8-11). At least all the correct processes send valid decryption
shares to p j ∈ Gidm in round r, r mod (β + 1) = β (lines 12-13 and 25-26) and these are received by the correct
processes p j ∈ Gidm , which double-decrypt (lines 35-38 and 41-42) and dequeue and execute BRM_deliver(m, Gidm)
(lines 39-43), all in the same round. This happens along with BRM_delivery of other messages sent in that meta-round.
BRM-Termination-1 follows.

3. BRM-Agreement: On BRM_deliver(m, Gidm) in line 43 at any correct process, the message must have been decrypted
with the group key (lines 41-42) after receiving t + 1 valid decryption shares and having been decrypted with them
(lines 35-38), after BRB_deliver(Cm, Gidm) in line 6, all in the same-meta-round. By BRB-Agreement, the BRB_delivery
must have occurred at all correct processes. They would have sent their decryption shares to all p j ∈ Gidm (lines 12-13
and 25-26). All these p j (which would also have enqueued Cm in Q on BRB_delivery (lines 10-11)) would receive at
least t + 1 valid decryption shares, double-decrypt Cm and BRM_deliver(m, Gidm) (lines 35-38, 39-43). BRM-Agreement
follows.

4. BRM-Integrity: BRM_delivery occurs only if BRB_delivery of that message occurs at a correct process. By BRB-Integrity,
a message is delivered at most once. Thus that BRM_delivery of that message occurs at most once at a correct process.
BRM-Integrity follows. �

Theorem 5. For (application-level) multicast send and receive events ex
h and e y

i , ex
h → e y

i |E = 1 if and only if e y
i .Tc[h] ≥ ex

h.Tc[h] at
any correct process pc in Algorithm 2 (with the no out-of-band communication (no OOBC) assumption).

Proof. We prove each direction separately. For both directions, we first note from Theorem 4 that the set of send and
receive events in E equals the set of send and receive events in F up to any meta-round mr. (Recall from the proof of that
theorem that this is subject to the check of belonging in the causal past as implemented in line 2 of Algorithm 3.)

(=⇒:) Let ex
h → e y

i |E = 1. We show that e y
i .Tc[h] ≥ ex

h.Tc[h].
If h = i, then in the causality graph there is a program order path from ex

h to e y
i where ex

h.mr ≤ e y
i .mr. From Theorem 4,

both events will be in Fh at any correct process pc . Further, from Algorithm 2, ex
h will precede e y

i in Fh(=i) at pc as events
are processed/appended to Fh in lexicographic order of 〈s, qs〉 with send events being processed/appended before receive
events, in a meta-round, and successive meta-round events are processed/appended serially. (Refer lines 27-28 for send and
lines 31-32 for receive.) At each next event processed/appended, V c[h, h] is incremented by one (refer line 14 for send and
lines 17-18 for receive). Hence e y

i .Tc[h] ≥ ex
h.Tc[h].

If h �= i, then in the causality graph there are alternating program order paths and message order edges from ex
h to e y

i
satisfying the following.

1. There exist messages mq, q ∈ [1, l] where mq is sent by paq−1 at e′
aq−1

and received by paq at e′′
aq

, and e′
aq−1

.mr = e′′
aq

.mr,
2. a0 = h, and ex

h → e′
a0

or e′
a0

= ex
h ,

3. al = i, and e′′
al

→ e y
i or e′′

al
= e y

i .

From Algorithm 2, we have the following.

1. From the reasoning for the h = i case above, if ex
h → e′

a0
or ex

h = e′
a0

then ex
h.Tc[h] ≤ e′

a0
.Tc[h].

2. In the causality graph, for the program order edge at paq (q ∈ [1, l − 1]) from e′′
aq

to e′
aq

, we have e′′
aq

.mr < e′
aq

.mr. Then
e′′

aq
.Tc[h] ≤ e′

aq
.Tc[h] as V c[aq, h] is a non-decreasing function at any process.

Observe that e′′
aq

(receive event) → e′
aq

(send event) and as mq−1 is double-decrypted by paq only in round β of meta-

round e′′
aq

.mr, a send event ê′ that depends on the decrypted content of m must be in a later meta-round as it could
not have been sent in the first β rounds (i.e., rounds 0 to β − 1) of e′′

aq
.mr. If ê′ is sent by a Byzantine process in round

β of the meta-round, it will not get processed by the correct processes as part of the BRB protocol and will not be
BRB_delivered. This prevents false negatives.

3. In the causality graph, for the message order edge (e′
aq−1

, e′′
aq

) (q ∈ [1, l]) where e′
aq−1

.mr = e′′
aq

.mr, we have e′
aq−1

.Tc[h] ≤
e′′

aq
.Tc[h] because of lines 18, 19-20, and 21-22 (where j = aq, a = h, s = aq−1) and line 23.

4. If e′′
al

→ e y
i or e′′

al
= e y

i then e′′
aq

.Tc[h] ≤ e y
i .Tc[h] because of lines 14 and/or 17-18. Refer to the reasoning for the h = i

case above.
17

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
Applying transitivity to the program order edges and message order edges from ex
h to e y

i and from the above relations, we
have e y

i .Tc[h] ≥ ex
h.Tc[h] at a correct process pc .

(⇐=:) We first identify a sequence of processes having indices aq from a0, a1, . . .aqmax , where qmax ≤ n −1 and events eaq

at these processes such that eaq is the earliest event at paq having eaq .T [h] ≥ ex
h.T [h]. We then show that ex

h → eaqmax −1 →
eaqmax −2 → . . . ea0 → e y

i .
Let a0 = i and let e′

a0
= e y

i . Initialize q = 0. There are two cases for aq .

1. Case aq = h. Trace backwards in Faq to event e such that eaq .T [h] = ex
h.T [h]. Then ex

h
=−→ e′

aq
. This is the base termination

case of the proof.
2. Case aq �= h. Let eaq be the earliest event at paq (by tracing backwards in Faq) such that eaq .T [h] ≥ ex

h.T [h]. Then
eaq

=−→ e′
aq

.
From Algorithm 2, eaq must be a receive event and eaq .T [h] must have been set in line 23 to the value set in line 20
(with j = aq , s = h, where V [aq, h] was set to T [h] of the corresponding send event by s) or line 22 (with j = aq , a = h,
where V [aq, h] was assigned V [s, h]). Set aq+1 to s, the sender of the message. Thus eaq is a receive event at paq and
the message was sent by paq+1 at an event e′

aq+1
such that e′

aq+1
.T [h] = eaq .T [h] ≥ ex

h.T [h]. We also have e′
aq+1

→ eaq .
We also identified aq+1. If aq+1 = h, then we apply case 1 to aq+1, i.e., invoke case 1 setting q to q + 1, and the logic
terminates in that case. Otherwise either (a) q + 1 ≤ qmax , or (b) q + 1 > qmax .
(a) If q + 1 ≤ qmax , we set q to q + 1. Now, as aq �= h, apply the logic of case 2 which is the applicable case. The case 2a

will get invoked qmax ≤ n times after which case 1 must get invoked and the invocations terminate.
(b) q + 1 > qmax = n − 1 can never occur because by the pigeonhole principle, there are n processes and each process

paq has its event eaq uniquely identified as the earliest event such that eaq .T [h] ≥ ex
h.T [h]. Further, eaq+z → eaq for

z > 0. Therefore there cannot be a z, with z > 0, such that paq = paq+z .

We then have ex
h → e y

i as ex
h

=−→ e′
aqmax

→ eaqmax −1 → e′
aqmax −1 → eaqmax −2 → e′

aqmax −2 → . . . e′
a1

→ ea0

=−→ e y
i . �

References

[1] A. Misra, A.D. Kshemkalyani, Detecting causality in the presence of Byzantine processes: the synchronous systems case, in: 30th International Sympo-
sium on Temporal Representation and Reasoning, (TIME), in: LIPIcs, vol. 278, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, pp. 11:1–11:14,
https://doi .org /10 .4230 /LIPICS .TIME .2023 .11.

[2] R. Schwarz, F. Mattern, Detecting causal relationships in distributed computations: in search of the holy grail, Distrib. Comput. 7 (3) (1994) 149–174,
https://doi .org /10 .1007 /BF02277859.

[3] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM 21 (7) (1978) 558–565, https://doi .org /10 .1145 /359545 .
359563.

[4] A.D. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Algorithms, and Systems, Cambridge University Press, 2011, https://doi .org /10 .1017 /
CBO9780511805318.

[5] E. Elnozahy, Manetho: Fault tolerance in distributed systems using rollback-recovery and process replication, Phd thesis, Tech. Rep., Tech. Report 93-212,
Computer Science Department, Rice University, 1993.

[6] C.J. Fidge, Logical time in distributed computing systems, IEEE Comput. 24 (8) (1991) 28–33, https://doi .org /10 .1109 /2 .84874.
[7] F. Mattern, Virtual time and global states of distributed systems, in: Parallel and Distributed Algorithms, North-Holland, 1988, pp. 215–226.
[8] B. Charron-Bost, Concerning the size of logical clocks in distributed systems, Inf. Process. Lett. 39 (1) (1991) 11–16, https://doi .org /10 .1016 /0020 -

0190(91)90055 -M.
[9] G.T.J. Wuu, A.J. Bernstein, Efficient solutions to the replicated log and dictionary problems, in: Proceedings of the Third Annual ACM Symposium on

Principles of Distributed Computing, ACM, 1984, pp. 233–242, https://doi .org /10 .1145 /800222 .806750.
[10] A.D. Kshemkalyani, The power of logical clock abstractions, Distrib. Comput. 17 (2) (2004) 131–150, https://doi .org /10 .1007 /s00446 -003 -0105 -9.
[11] P.A.S. Ward, D.J. Taylor, A hierarchical cluster algorithm for dynamic, centralized timestamps, in: Proceedings of the 21st International Conference on

Distributed Computing Systems (ICDCS 2001), 2001, pp. 585–593, https://doi .org /10 .1109 /ICDSC .2001.918989.
[12] F.J. Torres-Rojas, M. Ahamad, Plausible clocks: constant size logical clocks for distributed systems, Distrib. Comput. 12 (4) (1999) 179–195, https://

doi .org /10 .1007 /s004460050065.
[13] N.M. Preguiça, C. Baquero, P.S. Almeida, V. Fonte, R. Gonçalves, Brief announcement: efficient causality tracking in distributed storage systems with dot-

ted version vectors, in: ACM Symposium on Principles of Distributed Computing, PODC, 2012, pp. 335–336, https://doi .org /10 .1145 /2332432 .2332497.
[14] P.S. Almeida, C. Baquero, V. Fonte, Interval tree clocks, in: Proc. 12th International Conference on Principles of Distributed Systems, OPODIS, 2008,

pp. 259–274, https://doi .org /10 .1007 /978 -3 -540 -92221 -6 _18.
[15] S.S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, M. Leone, Logical physical clocks, in: Proc. 18th International Conference on Principles of Distributed

Systems, OPODIS, 2014, pp. 17–32, https://doi .org /10 .1007 /978 -3 -319 -14472 -6 _2.
[16] A. Misra, A.D. Kshemkalyani, The bloom clock for causality testing, in: D. Goswami, T.A. Hoang (Eds.), Proc. 17th International Conference on Distributed

Computing and Internet Technology, in: Lecture Notes in Computer Science, vol. 12582, Springer, 2021, pp. 3–23, https://doi .org /10 .1007 /978 -3 -030 -
65621 -8 _1.

[17] A.D. Kshemkalyani, A. Misra, The bloom clock to characterize causality in distributed systems, in: The 23rd International Conference on Network-Based
Information Systems, NBiS 2020, in: Advances in Intelligent Systems and Computing, vol. 1264, Springer, 2020, pp. 269–279, https://doi .org /10 .1007 /
978 -3 -030 -57811 -4 _25.

[18] M. Singhal, A.D. Kshemkalyani, An efficient implementation of vector clocks, Inf. Process. Lett. 43 (1) (1992) 47–52, https://doi .org /10 .1016 /0020 -
0190(92)90028 -T.

[19] A.D. Kshemkalyani, M. Shen, B. Voleti, Prime clock: encoded vector clock to characterize causality in distributed systems, J. Parallel Distrib. Comput.
140 (2020) 37–51, https://doi .org /10 .1016 /j .jpdc .2020 .02 .008.

[20] T. Pozzetti, A.D. Kshemkalyani, Resettable encoded vector clock for causality analysis with an application to dynamic race detection, IEEE Trans. Parallel
Distrib. Syst. 32 (4) (2021) 772–785, https://doi .org /10 .1109 /TPDS .2020 .3032293.
18

https://doi.org/10.4230/LIPICS.TIME.2023.11
https://doi.org/10.1007/BF02277859
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1017/CBO9780511805318
https://doi.org/10.1017/CBO9780511805318
http://refhub.elsevier.com/S0890-5401(24)00077-4/bib653C42BB09F0C391DF8CCED7FA39B20Fs1
http://refhub.elsevier.com/S0890-5401(24)00077-4/bib653C42BB09F0C391DF8CCED7FA39B20Fs1
https://doi.org/10.1109/2.84874
http://refhub.elsevier.com/S0890-5401(24)00077-4/bibE7585F7B7875908777124C1E2A798024s1
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1145/800222.806750
https://doi.org/10.1007/s00446-003-0105-9
https://doi.org/10.1109/ICDSC.2001.918989
https://doi.org/10.1007/s004460050065
https://doi.org/10.1007/s004460050065
https://doi.org/10.1145/2332432.2332497
https://doi.org/10.1007/978-3-540-92221-6_18
https://doi.org/10.1007/978-3-319-14472-6_2
https://doi.org/10.1007/978-3-030-65621-8_1
https://doi.org/10.1007/978-3-030-65621-8_1
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1007/978-3-030-57811-4_25
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1016/0020-0190(92)90028-T
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1109/TPDS.2020.3032293

A. Misra and A.D. Kshemkalyani Information and Computation 301 (2024) 105212
[21] A. Misra, A.D. Kshemkalyani, Detecting causality in the presence of Byzantine processes: there is no holy grail, in: 21st IEEE International Symposium
on Network Computing and Applications (NCA), 2022, pp. 73–80, https://doi .org /10 .1109 /NCA57778 .2022 .10013644.

[22] K.P. Birman, T.A. Joseph, Reliable communication in the presence of failures, ACM Trans. Comput. Syst. 5 (1) (1987) 47–76, https://doi .org /10 .1145 /
7351.7478.

[23] A. Misra, A.D. Kshemkalyani, Solvability of Byzantine fault-tolerant causal ordering problems, in: M.-A. Koulali, M. Mezini (Eds.), Networked Systems,
Springer International Publishing, Cham, 2022, pp. 87–103, https://doi .org /10 .1007 /978 -3 -031 -17436 -0 _7.

[24] A. Misra, A.D. Kshemkalyani, Byzantine fault-tolerant causal ordering, in: 24th International Conference on Distributed Computing and Networking
(ICDCN), 2023, pp. 100–109, https://doi .org /10 .1145 /3571306 .3571395.

[25] A. Misra, A.D. Kshemkalyani, Causal ordering in the presence of Byzantine processes, in: 28th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2022, pp. 130–138, https://doi .org /10 .1109 /ICPADS56603 .2022 .00025.

[26] A. Misra, A.D. Kshemkalyani, Byzantine-tolerant causal ordering for unicasts, multicasts, and broadcasts, IEEE Trans. Parallel Distrib. Syst. 35 (5) (2024)
814–828, https://doi .org /10 .1109 /TPDS .2024 .3368280.

[27] F.B. Schneider, Implementing fault-tolerant services using the state machine approach: a tutorial, ACM Comput. Surv. 22 (4) (1990) 299–319, https://
doi .org /10 .1145 /98163 .98167.

[28] T. Freitas, J. Soares, M.E. Correia, R. Martins, Deterministic or probabilistic? - A survey on Byzantine fault tolerant state machine replication, Comput.
Secur. 129 (2023) 103200, https://doi .org /10 .1016 /J .COSE .2023 .103200.

[29] G. Bracha, S. Toueg, Asynchronous consensus and broadcast protocols, J. ACM 32 (4) (1985) 824–840, https://doi .org /10 .1145 /4221.214134.
[30] G. Bracha, Asynchronous Byzantine agreement protocols, Inf. Comput. 75 (2) (1987) 130–143, https://doi .org /10 .1016 /0890 -5401(87)90054 -X.
[31] D. Dolev, H.R. Strong, Authenticated algorithms for Byzantine agreement, SIAM J. Comput. 12 (4) (1983) 656–666, https://doi .org /10 .1137 /0212045.
[32] M.C. Pease, R.E. Shostak, L. Lamport, Reaching agreement in the presence of faults, J. ACM 27 (2) (1980) 228–234, https://doi .org /10 .1145 /322186 .

322188.
[33] L. Lamport, R.E. Shostak, M.C. Pease, The Byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (3) (1982) 382–401, https://doi .org /10 .1145 /

357172 .357176.
[34] C. Dwork, N.A. Lynch, L.J. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35 (2) (1988) 288–323, https://doi .org /10 .1145 /42282 .

42283.
[35] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382, https://doi .org /

10 .1145 /3149 .214121.
[36] M. Castro, B. Liskov, Practical Byzantine fault tolerance, in: M.I. Seltzer, P.J. Leach (Eds.), Proceedings of the Third USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 1999, pp. 173–186, https://dl .acm .org /citation .cfm ?id =296824.
[37] V. Shoup, R. Gennaro, Securing threshold cryptosystems against chosen ciphertext attack, J. Cryptol. 15 (2) (2002) 75–96, https://doi .org /10 .1007 /

s00145 -001 -0020 -9.
[38] D. Imbs, M. Raynal, Trading off t-resilience for efficiency in asynchronous Byzantine reliable broadcast, Parallel Process. Lett. 26 (04) (2016) 1650017,

https://doi .org /10 .1142 /S0129626416500171.
[39] A. Misra, A.D. Kshemkalyani, Solvability of Byzantine fault-tolerant causal ordering: synchronous systems case, in: Proceedings of the 39th ACM/SIGAPP

Symposium on Applied Computing, ACM, 2024, pp. 251–256, https://doi .org /10 .1145 /3605098 .3636063.
[40] A. Misra, A.D. Kshemkalyani, Towards stronger blockchains: security against front-running attacks, in: Networked Systems, Springer International Pub-

lishing, Cham, 2024, https://doi .org /10 .48550 /arXiv.2311.10253.
[41] A.D. Kshemkalyani, Temporal interactions of intervals in distributed systems, J. Comput. Syst. Sci. 52 (2) (1996) 287–298, https://doi .org /10 .1006 /jcss .

1996 .0022.
[42] A.D. Kshemkalyani, A fine-grained modality classification for global predicates, IEEE Trans. Parallel Distrib. Syst. 14 (8) (2003) 807–816, https://doi .org /

10 .1109 /TPDS .2003 .1225059.
[43] P. Chandra, A.D. Kshemkalyani, Causality-based predicate detection across space and time, IEEE Trans. Comput. 54 (11) (2005) 1438–1453, https://

doi .org /10 .1109 /TC .2005 .176.
[44] P. Chandra, A.D. Kshemkalyani, Data-stream-based global event monitoring using pairwise interactions, J. Parallel Distrib. Comput. 68 (6) (2008)

729–751, https://doi .org /10 .1016 /j .jpdc .2008 .01.006.
[45] A.D. Kshemkalyani, A framework for viewing atomic events in distributed computations, Theor. Comput. Sci. 196 (1–2) (1998) 45–70, https://doi .org /

10 .1016 /S0304 -3975(97)00195 -3.
[46] A.D. Kshemkalyani, Reasoning about causality between distributed nonatomic events, Artif. Intell. 92 (1–2) (1997) 301–315, https://doi .org /10 .1016 /

S0004 -3702(97)00004 -0.
[47] A.D. Kshemkalyani, R. Kamath, Orthogonal relations for reasoning about posets, Int. J. Intell. Syst. 17 (12) (2002) 1101–1110, https://doi .org /10 .1002 /

int .10062.
[48] A.D. Kshemkalyani, Causality and atomicity in distributed computations, Distrib. Comput. 11 (4) (1998) 169–189, https://doi .org /10 .1007 /

s004460050048.
19

https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1007/978-3-031-17436-0_7
https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1109/TPDS.2024.3368280
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1016/J.COSE.2023.103200
https://doi.org/10.1145/4221.214134
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1137/0212045
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1142/S0129626416500171
https://doi.org/10.1145/3605098.3636063
https://doi.org/10.48550/arXiv.2311.10253
https://doi.org/10.1006/jcss.1996.0022
https://doi.org/10.1006/jcss.1996.0022
https://doi.org/10.1109/TPDS.2003.1225059
https://doi.org/10.1109/TPDS.2003.1225059
https://doi.org/10.1109/TC.2005.176
https://doi.org/10.1109/TC.2005.176
https://doi.org/10.1016/j.jpdc.2008.01.006
https://doi.org/10.1016/S0304-3975(97)00195-3
https://doi.org/10.1016/S0304-3975(97)00195-3
https://doi.org/10.1016/S0004-3702(97)00004-0
https://doi.org/10.1016/S0004-3702(97)00004-0
https://doi.org/10.1002/int.10062
https://doi.org/10.1002/int.10062
https://doi.org/10.1007/s004460050048
https://doi.org/10.1007/s004460050048

	Detecting causality in the presence of Byzantine processes: The case of synchronous systems
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 System model
	3 Problem formulation
	4 Solution based on replicated state machines (RSMs)
	4.1 Background on RSMs
	4.2 Adapting RSMs to our solution
	4.3 Data structures and algorithm
	4.4 Correctness proof
	4.5 Complexity

	5 A round-based algorithm in a synchronous system
	5.1 Background
	5.1.1 Some cryptographic basics
	5.1.2 Reliable multicast via Byzantine reliable broadcast

	5.2 Basic idea and algorithm
	5.2.1 Need for threshold encryption
	5.2.2 Algorithm with description

	5.3 Correctness proof
	5.4 Complexity

	6 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Proofs of Theorem 3 and Theorem 5
	References

