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Abstract. Leader election is a critical and extensively studied problem
in distributed computing. This paper introduces the study of leader elec-
tion using mobile agents. Consider n agents initially placed arbitrarily on
the nodes of an arbitrary, n-node, m-edge graph G. These agents move
autonomously across the nodes of G and elect one agent as the leader
such that the leader is aware of its status as the leader, and the other
agents know they are not the leader. The goal is to minimize both time
and memory usage.

We study the leader election problem in a synchronous setting where
each agent performs operations simultaneously with the others, allowing
us to measure time complexity in terms of rounds. We assume that the
agents have prior knowledge of the number of nodes n and the maximum
degree of the graph Δ.

We first elect a leader deterministically in O(n log2 n + DΔ log n)
rounds with each agent using O(log n) bits of memory, where D is the
diameter of the graph. Leveraging this leader election result, we then
present a deterministic algorithm for constructing a minimum spanning
tree of G in O(m+n log n) rounds, with each agent using O(Δ log n) bits
of memory.

Finally, using the same leader election result, we improve time and
memory bounds for other key distributed graph problems, including
gathering, maximal independent set, and minimal dominating set. For all
the aforementioned problems, our algorithms remain memory-optimal.
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1 Introduction

Leader election is one of the fundamental and well-studied problems in dis-
tributed computing due to its significance in various applications, including
resource allocation, reliable replication, load balancing, synchronization, mem-
bership management, and crash recovery. It can also be viewed as a form of sym-
metry breaking, where a single designated process or node (the leader) is respon-
sible for making the critical decisions. In this paper, we explore the graph-level
task of leader election in a distributed network under the agent-based model. In
the agent-based model, the leader election problem involves a group of agents
operating within a distributed network, where the goal is for exactly one agent
to declare itself as the leader.

The agent-based model is particularly valuable in scenarios like private mil-
itary networks or sensor networks in remote areas, where direct access to the
network may be challenging, but small, battery-powered, relocatable devices can
traverse the environment to gather information about the network’s structure
for management purposes. Significant applications of the agent-based model in
network management can be found in areas such as underwater navigation [6],
network-centric warfare in military systems [15], social network modeling [25],
and the study of social epidemiology [8]. Moreover, limited storage capacity
reduces the risk of sensitive network information being exposed if a device is
compromised. Additionally, mobility in these devices enhances communication
security by mitigating concerns over message interception.

Recent applications of the agent-based model have emerged in various areas.
A notable example is the work by Martinkus et al. [16], which introduces
AgentNet-a graph neural network (GNN) architecture where a group of relocat-
able (neural) devices, referred to as neural agents, ‘walk’ across the graph and
collaboratively classify graph-level tasks such as detecting triangles, cliques, and
cycles. In this model, neural agents can gather information from the nodes they
occupy, neighboring nodes they visit, and other co-located devices. Moreover, a
recent study [4] demonstrated that a fundamental graph-level task can be solved
in the agent-based model using a deterministic algorithm within O(Δ log n)
rounds, with each device requiring only O(Δ log n) bits of storage.

We present a deterministic algorithm for leader election that offers provable
guarantees on two key performance metrics in the agent-based model: the solu-
tion’s time complexity and the storage requirements for each agent. We focus
specifically on deterministic algorithms, as they may be more appropriate for
relocatable devices. In the agent-based model, storage requirements are treated
as a primary performance metric alongside time complexity. The objective in
the agent-based model is to minimize storage usage, ideally keeping it as small
as the size of a device identifier, typically O(log n) bits per device. The limited
storage prevents relocatable devices from first traversing the graph to learn the
topology and then performing graph computation as a separate step. Our goal
is to develop an algorithm that is storage-optimal.

Building on our deterministic leader election algorithm, which guarantees
both time and storage efficiency, we present improved algorithms for several fun-
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Table 1. Summary of Our Results - Leader Election, MST, MIS, MDS and Gathering.

Summarizing Results of This Paper

Algorithm Knowledge Time Memory (optimal)

Leader Election n, Δ O(n log2 n + DΔ log n) O(log n)

MST Leader, Dispersed O(m + n log n) O(Δ log n)

MIS Leader, Dispersed O(n log Δ) O(log n)

MDS Leader, Dispersed O(n log Δ) O(log n)

Gathering Leader, Dispersed O(n log Δ) O(log n)

damental distributed graph problems, including minimum spanning tree (MST),
maximal independent set (MIS), minimal dominating set (MDS), and gathering.
A summary of these results, detailing their time and memory complexities along
with the required knowledge, is provided in Table 1. Our leader election algo-
rithm requires prior knowledge of the number of nodes/agents, denoted as n,
and the maximum degree of the graph, Δ. We assume that the number of agents
equals the number of nodes in the graph, which directly applies to graph prob-
lems such as MST, MIS, MDS, and gathering. Furthermore, the results presented
in Table 1, aside from the leader election algorithm, assume that the leader is
known-that is, each agent is aware of whether they are the leader. Addition-
ally, our leader election process disperses the agents, so we assume each agent
is positioned at a distinct node. The aforementioned problem has been stud-
ied by Kshemkalyani et al. [11], where no prior knowledge of global parameters
was assumed. In contrast, our approach, with prior knowledge of the number
of nodes and the maximum degree of the graph, achieves faster and memory-
optimal results [1]. A comparative analysis of our results is presented in Table 2.

1.1 Our Results

We examine the leader election problem in a synchronous setting where all
agents operate simultaneously, allowing us to measure time complexity in terms
of rounds. We assume that the agents have prior knowledge of both the number
of nodes n and the maximum degree Δ of the graph. We show the following
main results.

1. Leader Election - Given any configuration of n agents positioned initially
arbitrarily on the nodes of a n-node graph G, there is a deterministic algorithm
that elects a leader in O(n log2 n+DΔ log n) rounds with O(log n) bits of memory
per agent for a known value of n and Δ.

2. Minimum Spanning Tree (MST) - Given any configuration of n agents
positioned initially arbitrarily on the nodes of a n-node graph G, there is a
deterministic algorithm that finds an MST of G in O(m + n log2 n + DΔ log n)
rounds with O(Δ log n) bits per agent for a known value of n and Δ.
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3. Maximal Independent Set (MIS) - Given any configuration of n agents
positioned initially arbitrarily on the nodes of a n-node graph G, there is a
deterministic algorithm that finds an MIS of G in O(n log2 n+DΔ log n) rounds
with O(log n) bits per agent for a known value of n and Δ.

4. Minimal Dominating Set (MDS) - Given any configuration of n agents
positioned initially arbitrarily on the nodes of a n-node graph G, there is a
deterministic algorithm that finds an MDS of G in O(n log2 n+DΔ log n) rounds
with O(log n) bits per agent for a known value of n and Δ.

5. Gathering - Given any configuration of n agents positioned initially arbi-
trarily on the nodes of a n-node graph G, there is a deterministic algorithm that
collects all n agents to a node in G not fixed a priori in O(n log2 n + DΔ log n)
rounds with O(log n) bits per agent for a known value of n and Δ.
The rest of the paper is organized as follows.

Paper Organization: Sect. 2 states our distributed computing model. Section 3
discusses the closely related work. Section 4 presents the leader election algo-
rithm, which is the main contribution of the paper. Section 5 explores some
graph-related applications of the leader election with improved time/memory
complexity. Lastly, Sect. 6 concludes the paper with some interesting future work.

2 Computational Model

We model the network as a connected, undirected graph G = (V,E) with |V | = n
nodes and |E| = m edges. Each node vi ∈ V has δi ports corresponding to each
incident edge, labeled [1, . . . , δi]. We consider a set R = {r1, r2, . . . , rn} of n
agents, initially positioned on the nodes of G1. The agents have unique IDs
within the range [1, nc], for some constant, c and agents know the value of c.

Initially, a node may host zero, one, or multiple agents. An agent at a node
can communicate with other agents present at the same node but cannot com-
municate with agents at different nodes (this is the local communication model).
An agent can move from node v to a neighboring node u via the edge evu. Follow-
ing standard message-passing models, such as in [10], we assume that an agent
can traverse an edge within a single round, regardless of the edge’s weight, even
in weighted graphs. When an agent moves from v to u along port pvu, it learns
the corresponding port puv upon arrival at u. Furthermore, at any node v, the
agent is aware of the weight w(e) (if G is weighted) of the edge evu connecting v
to its neighbor u. We assume no correlation between the two port numbers of an
edge. Multiple agents can traverse an edge simultaneously, as the agent-based
model imposes no restrictions on how many agents may move across an edge at
the same time.

The agents operate in a synchronous setting, similar to the standard
CONGEST model: In each round, an agent ri at node vi can perform local
1 Certain graph problems may be solvable with k < n agents, but not all, such as the

Minimum Spanning Tree (MST), where computing the MST with k < n agents will
yield the MST of a subgraph of G.
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Table 2. Summary of previous and our results in the agent-based model. M is the
memory required for the Universal Exploration Sequence (UXS) [24] and γ is the
number of clusters of agents in the initial configuration. ‘−’ means no prior knowledge
of any parameter is required.

Comparative Analysis of the Closely Related Work

Algorithm Knowledge Time Memory

Leader Election

Sect. 4 n, Δ O(n log2 n + DΔ log n) O(log n)

Kshemkalyani et al. [11]− O(m) O(n log n)

MST

Sect. 5 n, Δ O(m + n log2 n + DΔ log n) O(Δ log n)

Kshemkalyani et al. [11]− O(m + n log n) O(n log n)

MIS

Sect. 5 n, Δ O(n log2 n + DΔ log n) O(log n)

Pattanayak et al. [19] n, Δ O(nΔ log n) O(log n)

Kshemkalyani et al. [11]− O(nΔ) O(n log n)

MDS

Sect. 5 n, Δ O(n log2 n + DΔ log n) O(log n)

Chand et al. [5] n, Δ, m, γ O(γΔ log n + nγ + m) O(log n)

Kshemkalyani et al. [11]− O(m) O(n log n)

Gathering

Sect. 5 n, Δ O(n log2 n + DΔ log n) O(log n)

Molla et al. [17] n O(n3) O(M + m log n)

Kshemkalyani et al. [11]− O(m) O(n log n)

computations based on its stored information and the (unique) port labels at
its current node, and then decide to either remain at the node or move to a
neighboring node via a port. Before leaving, the agent may write information to
the storage of another agent at the same node. An agent exiting a node always
reaches another node by the end of the round (agents are never positioned on
edges at the end of a round).

The agents are assumed to wake up simultaneously at the beginning of the
execution. The time complexity is measured in the number of rounds required
to reach a solution, while the memory complexity is the number of bits stored
by each agent during the execution.

At any round, the agent distribution on G may satisfy one of the following
configurations:



Faster Leader Election and Its Applications 113

– Dispersed: each of the n agents occupies a distinct node,
– Rooted: all n agents are gathered at a single node,
– General: the configuration is neither dispersed nor rooted.

3 Related Work

The leader election problem was first stated by Le Lann [14] in the context of
token ring networks, and since then it has been central to the theory of dis-
tributed computing. Gallager, Humblet, and Spira [9] provided a deterministic
algorithm for any n-node graph G with time complexity O(n log n) rounds and
message complexity O(m log n). Awerbuch [2] provided a deterministic algorithm
with time complexity O(n) and message complexity O(m + n log n). Peleg [20]
provided a deterministic algorithm with optimal time complexity O(D) and mes-
sage complexity O(mD). Recently, an algorithm is given in [12] with message
complexity O(m) but no bound on time complexity, and another algorithm with
O(D log n) time complexity and O(m log n) message complexity. Additionally, it
was shown in [12] the message complexity lower bound of Ω(m) and time com-
plexity lower bound of Ω(D) for deterministic leader election in graphs. Leader
election was not studied in the agent-based model before, except for [11]. See
Table 2.

For MST, the algorithm in Gallager, Humblet, and Spira [9] is the first deter-
ministic algorithm in the message-passing model with time complexity O(n log n)
and message complexity O(m log n). Time was improved to O(n) in [2] and to
O(

√
n log∗ n+D) in [10,13]. Furthermore, a time lower bound of Ω(

√
n/log n+D)

was given in [21]. MST was not studied in the agent-based model before, except
for [11]. See Table 2.

For MIS in the message-passing model, the best-known deterministic dis-
tributed algorithms have time complexity O(2

√
log n) [3,18]. For MDS, Deurer et

al. [7] gave two algorithms with an optimal approximation ratio of (1 + ε)(1 +
log(Δ+1)) running respectively in O(2O(

√
log(n) log(log(n))) and O(Δpolylog(Δ)+

polylog(Δ) log�(n)) rounds for ε > 1
polylog(Δ) . MIS and MDS were solved in the

agent-based model in [5,19] with time and memory complexities reported in
Table 2 assuming n,Δ (additionally m, γ for MDS) are known to agents a priori.
[11] improved these results w.r.t. time/memory complexities as well as lifted the
parameter assumptions, see Table 2.

Gathering is a very old problem and has been studied extensively in the
agent-based model. The recent results are [17,24] (detailed literature in [17]).
[24] provided a Õ(n5 log β) time solution to gather k ≤ n agents in arbitrary
graphs, where Õ hides polylog factors and β is the smallest label among agents.
Molla et al. [17] provided improved time bounds for large values of k assuming
n is known but not k: (i) O(n3) rounds, if k ≥

⌊
n
2

⌋
+ 1 (ii) Õ(n4) rounds, if⌊

n
2

⌋
+ 1 ≤ k <

⌊
n
3

⌋
+ 1, and (iii) Õ(n5) rounds, if

⌊
n
3

⌋
+ 1 > k. Each agent

requires O(M + m log n) bits of memory, where M is the memory required to
implement the universal traversal sequence (UXS) [24]. [11] lifted the assumption
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of known n and improved time bound for k = n case from O(n3) to O(m) and
additionally the memory bound.

Finally, there is a model, called whiteboard [22], related to the agent-based
model. The whiteboard model considers (limited) storage at the network nodes
in addition to (limited) storage per device. Other aspects remain the same as
in the agent-based model, for example, devices have identifiers, computation
ability, and communication through relocation. It is immediate that any solution
designed in the agent-based model works in the whiteboard model without any
change but the opposite may not be true.

4 Leader Election

In this section, we present our deterministic leader election algorithm which,
starting from any initial configuration (dispersed, rooted, or arbitrary) of n
agents on an n-node graph G, ensures that one agent is elected as a leader.
Initially, we disperse the agents on the graph with the help of the algorithm
discussed in [23]. After dispersing the agents, we elect the leader. The running
time of our algorithm depends on the starting configuration, increasing from the
dispersed configuration to the rooted configuration, and finally to the general
configuration. Our primary goal is to minimize the round complexity by keeping
the optimal memory (in bits) per agent.

4.1 Challenges and High-Level Idea for Leader Election

We are given a set R of n agents with unique IDs positioned initially arbitrarily
on the nodes of an n-node, m-edge graph G such that n and Δ is known to the
agents. We also assume that the range [1, nc] of the IDs is known to the agents for
any constant c > 1. We aim to elect a unique leader; the pseudocode is given in
Algorithm 1. Initially, we disperse all the agents (if not dispersed already) with
a well-known algorithm [23]. Then each agent iteratively passes the information
of a higher known ID to its neighbors, and finally, the agent with the highest
ID agent becomes the leader. The algorithm (after dispersion) uses O(DΔ log n)
rounds and O(log n) bits of memory per agent. Our leader election following dis-
persion presents three key challenges to the aforementioned complexity: (i) The
graph diameter is unknown, making it difficult to terminate the algorithm. (ii)
Since agents are mobile entities, therefore, meeting neighboring agents is chal-
lenging. (iii) The algorithm assumes each agent has only O(log n) bits of memory,
making it difficult to track all the information passed by neighboring agents.

On a high level, we deal with all the above challenges in the following ways
(in order): (i) Based on a voting mechanism, our algorithm ensures that the
agents have passed the information (about the highest ID) from one end of the
graph to another. (ii) Based on ID, our algorithm makes sure that each neighbor
meets all of its neighbors in a definite interval of time/rounds. (iii) Based on the
child-parent relationship, our algorithm makes sure only each child keeps track
of its parent rather than the parent keeps track of all its children which requires
Δ log n memory.
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4.2 Detailed Description of the Algorithm

We disperse the agents in O(n log2 n) rounds2 with the help of the dispersion
algorithm for the general configuration, given in [23]. Their algorithm does not
have the termination time, therefore, with the help of a known parameter of n
all the agents get to know the dispersion time. After dispersing all the agents,
the algorithm operates in phases of 2Δ log n rounds each. In a phase, each agent
meets all its neighbors in O(Δ log n) time. Each agent tries to figure out the

Algorithm 1: Leader Election
Input : A set R of n agents with unique IDs positioned initially arbitrarily on

the nodes of an n-node, m-edge graph G such that n and Δ is known
to the agnets.

Output: An agent in R is elected as a leader with status leader.

1 Disperse the agents in O(n log2 n) rounds with the help of an arbitrary
dispersion algorithm in [23]. � Takes O(n log2 n) rounds.

2 A phase consists of O(Δ log n) rounds, in which agent ru meets all its neighbors,
follows from Lemma 1.

3 Each agent ru does nothing for a phase of cΔ log n rounds.
4 while agent ru is unaware about the leader do
5 if agent ru has not sent its highest ID known from the previous phase then
6 Agent ru sends its highest known ID to all the neighbors

7 if ru receives higher ID from neighbour rv then
8 ru considers rv as its parent and becomes the child of rv
9 if rv remains parent of ru for next two phases then

10 ru sends “undecided” vote to rv for next two phases
// Initialization of ‘‘undecided’’ vote.

11 if ru received “yes” vote and did not receive the vote “undecided” from all its
children (if any), in the previous phase, after two phases of proposal then

12 ru sends the vote “yes” to its parent (if any)

13 else
14 ru sends the vote “undecided” to its parent (if any)

15 if ru does not have child then
16 ru keeps sending a vote “yes” to its parent until it gets to know about

the leader // ru did not receive a vote from any neighbor.

17 if ru received its own proposed ID from all its children with a “yes” vote in
the previous phase then

18 ru becomes the leader and informs its ID to all neighbors

19 if ru knows the leader ID from the previous phase then
20 ru informs the leader ID to all its neighbors

2 Our approach uses the algorithm as it is and considers the constant as in [23] through-
out the paper.
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highest ID agent—in phase k the highest ID in a k-hop neighborhood is identified.
The highest ID agent eventually becomes the leader.

Meeting with Neighboring Agents: The approach is based on the ID of
the agent, whose size is O(log n), i.e., c log n since the highest ID is nc (n is
known parameter for the Algorithm 1) and the known value of Δ. Each agent
ru keeps the ID length c log n; if ID is shortened by x bits then x number of
bits with value 0 is prepended as MSB (Most Significant Bit). Starting from the
LSB (Least Significant Bit) of an agent ru’s ID, each agent ru decides whether it
would visit its neighbor or not. If LSB is 1 then the agent ru visits its neighboring
nodes one by one based on port numbering (in increasing order) which takes 2δru

rounds (two rounds to visit a neighboring node—back and forth) to explore all
the neighbors, where δru

is the degree for the agent ru. If LSB is 0 for an agent
ru then agent ru waits for 2Δ rounds at its node. After 2Δ rounds, ru decides
based on the next bit in its ID whether it would explore its neighboring nodes
or would stay at its node. Notice that if δru

< Δ then ru completes visiting its
neighboring agents in less than 2Δ rounds for bit value 1 in its ID. Therefore,
ru stays at its node for the remaining rounds (2Δ − 2δru

). Lemma 1 shows that
agent ru meets with all its neighbors at least once in O(Δ log n) rounds.

Election of the Highest ID Agent as Leader: After dispersing every agent
such that each node possesses only one agent, each agent ru does nothing for
a phase of O(Δ log n) rounds. We consider Meeting with Neighboring Agents
as a phase that takes 2Δ log n rounds. In this phase, we keep our algorithm
deliberately ideal to simplify the flow of the algorithm, i.e., to pass the updated
information in the next phase that was received in the prior phase.

The following statements and conditions are executed by agent ru until ru

gets to know the leader and informs all its neighbors:
In the very first phase, each agent already has its own ID which would be

passed during the next phase. Each agent ru passes its ID to neighboring agents
if that is the highest ID known to ru. Therefore, if agent ru has not sent (earlier)
its highest ID known from the prior phase then agent ru sends its highest known
ID to all the neighbors.

If ru receives a higher ID from neighbor rv then ru considers rv as its parent
and becomes the child of rv. This is required since due to memory limitation
ru can not keep track of all its neighbors to whom it passes the higher ID.
Therefore, each receiving agent (child) keeps the track of sender (parent) which
is not more than 1 in numbers. In case of a tie—(i) more than one agent sends
the same ID which is not less than the earlier known ID, an agent ru gives
priority to the agent that was the parent in the prior phase. Notice that this
condition is more than breaking a tie since in another case—giving priority to
the latest sending agent, an agent might keep changing its parent forever. (ii)
If there is more than one agent that proposes the same ID in the same phase
then priority (to be considered as parent) is given to the higher ID proposer.
Additionally, if rv remains the parent of ru for the next two phases then ru sends
an “undecided” vote to rv for the next two phases. In this way, the initialization
of the “undecided” vote takes place. The vote “undecided” is sent to the parent
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by its child if it received the “undecided” vote from any of its children or rv

becomes the parent two phases before. In these two phases, ru’s children (if any)
receive the ID and send their vote. Therefore, ru sends an “undecided” vote in the
first two phases irrespective of its children’s vote. From the next phase onwards,
ru receives its children’s vote and considers them for voting to its parent.

In case, if ru received “yes” vote from all its children (if any) and did not
receive the vote “undecided”, in the previous phase, after two phases of the
proposal then ru sends the vote “yes” to its parent (if any). An agent ru considers
a neighbor its child only if it sends the vote either “yes” or “undecided”. An agent
ru sends a “yes” vote to its parent only if it has received a “yes” vote from all its
children (if any) and it has not received any “undecided” vote from its neighbors.
Otherwise, ru sends the vote “undecided” to its parent (if any). Notice that if
agent ru does not possess any child, in that case, ru does not receive any “yes” or
“undecided” vote. This implies that ru does not have any child and ru initiates
the vote “yes” to its parent after two phases of passing the highest ID known to
its neighbors. A child always responds with a vote of “yes” or “undecided”. If
ru does not have a child then ru keeps sending a vote “yes” to its parent until
it gets to know about the leader.

Whenever ru receives its own proposed ID from all its children with a “yes”
vote in the prior phase then ru becomes the leader and informs its ID to all
neighbors. If ru knows the leader ID from the prior phase, in that case, ru

informs the leader ID to all its neighbors.
Now, we present the above claims formally. In Lemma 1, we show the num-

ber of rounds required to meet any two neighbors. Lemma 2 shows the time
and memory complexity required by Algorithm 1. Further, Lemma 3 shows the
correctness of the Algorithm 1 such that it elects a unique leader.

Lemma 1. After dispersion, every agent requires at most O(Δ log n) rounds to
meet all its neighbors.

Proof. To prove our lemma, we prove the results for agent ru and any neighboring
agent rv. Each agent ru has a unique ID with length O(log n) bits. Therefore,
there exists at least one index between ru and any neighboring agent rv such
that their bits are different. Furthermore, each agent explores its neighboring
nodes in the interval of 2Δ rounds based on the next bit (starting from the
LSB). This implies during the different bit for a certain index either ru would
visit rv or vice versa. Henceforth, each ru meets all its neighbors in O(Δ log n)
rounds. Hence, the lemma. ��

Lemma 2. Algorithm 1 takes O(n log2 n+DΔ log n) rounds and O(log n) mem-
ory to elect the leader.

Proof. For round complexity, Line 1 takes O(n log2 n) rounds to disperse all
the n agents [23]. Furthermore, Lemma 1 takes O(Δ log n) rounds to meet its
neighbor. Therefore, to pass the information one hop away takes O(Δ log n)
rounds. The farthest agent is D hops away from any other agent which takes
overall O(DΔ log n) rounds to know the highest ID agent in the graph. Then it
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takes O(DΔ log n) rounds for the “yes” votes to propagate back to the highest
ID agent. After that, it takes O(DΔ log n) rounds required to inform all the
agents in the graph about the highest ID agent, i.e., the leader. This shows
the overall round complexity for leader election is O(n log2 n + DΔ log n). In
case of memory complexity, Line 1 takes O(log n) memory [23]. On the other
hand, after dispersion, knowing the highest ID also takes O(log n) bits to store
the information of ID, parent, highest ID known, and Leader ID. Hence, the
lemma. ��

Lemma 3. Algorithm 1 correctly elects a unique agent as the leader.

Proof. For the sake of contradiction, let us suppose Algorithm 1 elects more than
one leader, namely, �1 and �2 such that �1 > �2, i.e., �1’s ID is higher than �2.
In such case, �2’s children voted “yes” for �2 and so did their children and their
children’s children, and so on. Therefore, �1 which is an agent situated at the
graph also voted for �2 which is not possible. Hence, there exists a unique leader
with the highest ID. ��

From the above discussion, we have the following result.

Theorem 1. Given any configuration of n agents positioned initially arbitrarily
on the nodes of a n-node graph G, there is a deterministic algorithm that elects a
leader in O(n log2 n + DΔ log n) rounds with O(log n) bits of memory per agent
for a known value of n and Δ.

Remark 1. For the rooted configuration, dispersion takes O(n log n) rounds in
Line 1 of Algorithm 1 as shown in [23]. Therefore, round complexity becomes
O(n log n+DΔ log n). On the other hand, for the case of already dispersed con-
figuration, round complexity is O(DΔ log n). Furthermore, memory complexity
remains unchanged in both configurations, i.e., O(log n) bits per agent.

5 Applications to Additional Graph Problems

We leverage the leader election result (Theorem 1) to enhance existing solutions
for MST, MIS, MDS, and Gathering problems in the agent-based model. The
improvements over previous results (discussed in Table 2) are achieved either by
optimizing time or memory. All our solutions are memory-optimal, with most
offering significant reductions in round complexity as well.

5.1 Minimum Spanning Tree

A Minimum Spanning Tree (MST) of a graph G = (V,E) with n nodes is
a subgraph T = (V,E′) such that w(e) represents the weight of an edge e and
for the MST T :

T = arg min
T ′⊆G

∑

e∈T ′
w(e)
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subject to the constraints that T ′ is connected, acyclic, and spans all n nodes
in G.

Kshemkalyani et al. [11] constructed the MST in O(m + n log n) rounds and
O(Δ log n) bits per agent from a given dispersed configuration in the presence
of a leader. From Sudo et al. [23], we can disperse all the n agents in O(n log2 n)
rounds and O(log n) memory. Their protocol does not have termination [23],
therefore, knowledge of n provides the dispersed configuration in O(n log2 n)
rounds. From the above discussion and Theorem 1, we have the following result.

Theorem 2 (MST). Given any configuration of n agents positioned initially
arbitrarily on the nodes of a n-node graph G, there is a deterministic algorithm
that finds an MST of G in O(m + n log2 n + DΔ log n) rounds with O(Δ log n)
bits per agent.

Remark 2. In an MST, an agent might have to track all its neighboring edges as
the MST edge that requires O(Δ log n) bits of memory. Therefore, Theorem 2 is
memory optimal.

5.2 Maximal Independent Set (MIS)

Suppose n agents are initially located arbitrarily on the nodes of an n-node
anonymous graph G = (V,E). The goal in the maximal independent set (MIS)
problem is to relocate the agents autonomously to find a subset S ⊂ V of nodes
such that S forms an MIS of G.

Description of the MIS Algorithm: We construct the MIS from a dispersed
configuration and known leader in Algorithm 2. In this, the leader becomes
the MIS agent and converts all its neighbors non-MIS in O(log Δ) rounds with
the help of the Helping-Each-Other (HEO) technique introduced by [23]. In
this, each agent ru having the token visits its neighbor by port 1 and comes
back with the agent situated across port 1. Now, these two agents visit ports 2
and 3 individually and come back with one agent each. Similarly, after every 2
rounds the number of agents becomes double, and for the degree δru

, it takes
2 log δru

rounds to gather all the neighboring agents at ru’s node. During the MIS
algorithm, we run a variant of Depth-First-Search (DFS) with the help of a token.
We run the MIS algorithm until some neighbor of agent ru remains unexplored.
We call an agent ru as unexplored if it never held the token. Specifically, if
the leader’s neighbor remains unexplored, we run the following protocol for any
agent ru. If agent ru has the token and it is neither an MIS nor a non-MIS agent,
in that case, ru collects all the agents using HEO technique and figures out the
status of all other agents. If none of the neighboring agents is an MIS agent only
then ru becomes the MIS agent. Otherwise, ru becomes a non-MIS agent. If agent
ru has the token and it is either an MIS or a non-MIS agent and there exists
any unexplored port then ru passes the token to the next unexplored port (in
increasing order) and becomes the parent of the node across the port. Otherwise,
ru sends the token to the parent node. In this protocol, each agent stores its own
ID and parent’s port number. It requires O(log n) memory. Furthermore, the
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token reaches all the n nodes and takes at most O(log Δ) rounds to run HEO.
Therefore, the overall time complexity to run the MIS algorithm is O(n log Δ)
rounds and O(log n) memory.

Below, we show the correctness of Algorithm 2.

Lemma 4. Algorithm 2 generates an MIS.

Proof. We prove the lemma by considering two cases: (i) The token is passed to
each agent ru. (ii) Either the agent ru is part of the MIS or one of its neighbors is.

We prove both cases by contradiction. For case (i), let us assume the token is
not passed to agent ru. Then, it is also not passed to ru’s parent, grandparent,
and so forth, due to Line 13 of Algorithm 2. This implies that the token was not
passed by the leader, contradicting Line 2. For case (ii), given that the token
reaches all agents, suppose there exists an agent at a node that is neither part
of the MIS nor has any neighbors in the MIS. This would mean that Line 8 in
Algorithm 2 was not executed, contradicting the assumption. ��
From the above discussion and Theorem 1 of leader election, we have the follow-
ing result.

Algorithm 2: Maximal Independent Set

Input : A set R of n agents with unique IDs dispersed on a graph of n nodes
with known leader’s ID.

Output: MIS configuration.

1 Helping-Each-Other (HEO) technique to gather all the neighboring agents at a
node as discussed in [23]. A HEO phase consists of O(log Δ) rounds, in which,
agent ru meets all its neighbors.

2 The leader becomes the MIS agent and converts all its neighbors in non-MIS in
log Δ rounds with the help of HEO, passes the token via port 1, and becomes
the parent of the across-the-port node.

3 while agent ru’s neighbors are unexplored do
4 if agent ru has the token then
5 if ru is neither an MIS nor a non-MIS agent then
6 ru collects all the agents using HEO technique and figures out the

status of all other agents
7 if none of the neighboring agents is an MIS agent then
8 ru becomes the MIS agent

9 else
10 ru becomes a non-MIS agent

11 if ru is either MIS or Non-MIS then
12 if any unexplored port exists then
13 ru passes the token to the next unexplored port (in increasing

order) and becomes the parent of the node across the port

14 else
15 ru sends the token to the parent node
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Theorem 3 (MIS). Given any configuration of n agents positioned initially
arbitrarily on the nodes of a n-node graph G, there is a deterministic algorithm
that finds an MIS of G in O(n log2 n + DΔ log n) rounds with O(log n) bits per
agent.

5.3 Minimal Dominating Set (MDS)

Suppose n agents are initially located arbitrarily on the nodes of an n-node
anonymous graph G = (V,E). A dominating set of G is a subset DS ⊂ V of
nodes such that for any v /∈ DS, v has a neighbor in DS.

For the sake of completeness, we prove the following lemma to show every
MIS is an MDS. Therefore, the result of MIS holds for MDS as it is.

Lemma 5. Every MIS is an MDS.

Proof. We prove this by contradiction. Let us suppose there exists a neighbor in
MIS that is not covered by any of the MIS agents then there exists an agent ru

which is neither MIS nor its neighbor which contradicts the assumption that it
is an MIS. Hence, the proof. ��

From the Lemma 5 and Theorem 3, we have the following result.

Theorem 4 (MDS). Given any configuration of n agents positioned initially
arbitrarily on the nodes of a n-node graph G, there is a deterministic algorithm
that finds an MDS of G in O(n log2 n + DΔ log n) rounds with O(log n) bits per
agent.

5.4 Gathering

Suppose n agents are initially located arbitrarily on the nodes of an n-node
anonymous graph G = (V,E). The goal of the gathering problem is to relocate
the agents autonomously to position all of them to a node in G not fixed a priori
(n agents at a node of G).

Algorithm 2 can be adapted to gather all the agents at the leader’s node. In
Algorithm 2 (Line 15), when an agent passes the token to its parent, the parent
agent keeps the account of the number of children. Therefore, after O(n log Δ)
rounds all the agents are traversed, and MIS is formed. The agent without chil-
dren gathers at its parent node. When the parent finds all its children in its
place, the parent moves to its parent with all of its children. This process occurs
recursively and eventually all the agents are gathered at the leader’s node. In
the worst case, an agent can be at most n hop away from its leader. Therefore,
it takes at most O(n) rounds to gather all the agents. Notice that an agent only
counts its number of children other than the memory used for MIS, therefore,
the memory complexity remains unchanged, i.e., O(log n).

From the above discussion and Leader Election Algorithm 1, we have the
following result.
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Theorem 5 (Gathering). Given any configuration of n agents positioned
initially arbitrarily on the nodes of a n-node graph G, there is a determinis-
tic algorithm that collects all n agents to a node in G not fixed a priori in
O(n log2 n + DΔ log n) rounds with O(log n) bits per agent.

6 Conclusions

We solved leader election in the agent-based model in O(n log2 n + DΔ log n)
time with optimal memory of O(log n) bits per agent for general initial configu-
rations. Furthermore, the memory complexities of the existing results on MST,
MIS, MDS, and Gathering on the agent-based model were improved using the
leader election result, and we achieved the optimal memory complexity bits per
agent for all the aforementioned problems. Our result also solved near-linear
time complexity for MIS, MDS, and Gathering problems after leader election in
a dispersed setting in O(n log Δ) rounds (see Table 1). It would be interesting to
improve the time complexity of our leader election, which would directly help
to improve the complexity of the other graph-related problems. It would also
be interesting to see whether these results can be achieved without any prior
knowledge of the parameter.
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