A Basic Unit of Computation in Distributed Systems

Mohan Ahuja and Ajay D. Kshemkalyani

Timothy Carlson

Dept. of Computer and Information Science Dept. of Mathematics

The Ohio State University, Columbus, OH 43210

ABSTRACT

A ground state in a distributed system is a global state in
which there are no messages in transit. In this paper, we
define basic units of computation in distributed systems,
whether communicating synchronously or asynchronously,
as comprising of indivisible logical units of computation
that take the system from one ground state to another.
We analyse their properties. This definition helps in un-
derstanding the nature of the communication pattern in a
computation and how the communication pattern is related
to the concurrency in the system. The basic unit of com-
putation is potentially useful in checkpointing, distributed
debugging and asserting about attainment of stable prop-
erties.

1 Introduction

It is widely accepted that an event on a node is the unit of
computation on the node. Even though there is no singly
accepted definition of an event, it is commonly agreed upon
that an event is an action local to a node in the distributed
system (DS). Though the notion of an event is very useful,
as a unit of computation it does not capture the dynamics
of a distributed computation. We identify a distributed
basic unit of computation and explore its properties.

The evolution of our basic unit has been guided by the
pragmatics of a “basic unit” in any system. We view a “ba-
sic unit” as an entity that is “indivisible” and has minimal
dependence on external agents, in the context in which it
is defined in a system. It should also preserve some useful
invariant properties in the system. Our system is a DS and
the context is one in which we can get a better understand-
ing of the interactions in a DS.

For any computation in a DS, the initial global state [3]
and the final global state (if the computation terminates)
do not have any messages in transit. A global state in which
there are no messages in transit is called a ground state.
This has also been referred to as a synchronized global
state [11]. The importance of the groynd state has been

CH2878-7/90/0000/0012$01.00 © 1990 IEEE

recognized long ago in [16] which created a strong type of
ground state through the use of “conversations” for domino-
free rollback recovery. [5] created ground states for check-
pointing in a distributed transaction system. A ground
state is a meaningful observation point for the DS because
the future computation depends only on the state of each
node in that ground state. A computation takes a DS from
an initial global state through a succession of global states
[3]. We propose that during the computation, the DS may
naturally pass through some possible global states which
are ground states. This observation is true of any DS, ir-
respective of any parameters such as the communication
synchrony and any program run on the DS. The sub-parts
of a computation that take the DS from one possible ground
state to another possible ground state are each units of the
computation, which we call molecules. A molecule does
not interact with the rest of the computation but could be
divisible into more than one molecules. A basic unit of com-
putation which we call an atom, is a molecule such that no
smaller part of it is itself a molecule, i.e., an atom is indi-
visible. The basic units are distributed across the nodes of
the system and are formed at run-time. A computation can
be seen as a partial order over all the atoms, the state of
the DS after any prefix of this partial order being a ground
state.

The contribution of this work is the understanding
it provides of the communication patterns in a computation
and how the communication patterns need to be controlled
for achieving power of reasoning in a DS. The structure
of the basic units of computation reflects the communica-
tion patterns. The allowed concurrency depends on fac-
tors like the nature of communication channels, topology
of the DS, communication synchrony and the program it-
self and determines the richness of possible scenarios in a
computation. When concurrency is controlled, some possi-
ble scenarios in the computation are prevented, leading to
simplified reasoning about the DS. This is reflected in the
simplified structure of the basic units of computation.

In Section 2, we define our distributed system model.
Section 3 defines the basic unit of computation and gives
its properties. Section 4 explains how a computation can
be viewed as a partial order over the basic units of the
computation. Section 5 considers the problem of detecting
the basic units. Detecting them as they naturally occur in

Authorized lic imi 2 Uni i inoi i i
ensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictio I
:48: . ns apply.

a computation is (comparatively) difficult, detecting them
even in retrospect is not easy. But because the ground
states at the boundaries of these units have useful proper-
ties, it is useful to create them artificially. Even this is seen
to have high overheads. One algorithm to create ground
states during a computation in an asynchronously commu-
nicating system with FIFO channels is given, and an ex-
isting algorithm [2] that implicitly creates ground states in
a synchronously communicating system is referenced. Sec-
tion 6 explains the significance of the basic unit and gives
its applications. Section 7 gives the conclusions.

2 A Distributed System Model

The system consists of a set of nodes N, communicating
through a set of reliable unidirectional channels that in-
terconnect them. A node involved in a computation does
internal processing and communicates with other nodes.
States of each node are modelled such that a state tran-
sition occurs only on the sending(receipt) of a message
to(from) another node. An event at a node is either a
send or a receive of a message at the node and is an atomic
action at that node. An event is defined by the node num-
ber on which it occurs, the logical sequence number of the
event on that node, the source and the destination of the
message corresponding to the event and the message body.
An event, denoted as e;j, is the j* event on node i. We
define |N| dummy events e;o Vi € N that represent the
initial events, one on each node, and are useful in the char-
acterization of the basic unit of computation.

The model given above pertains to a distributed sys-
tem as a whole. States could be modelled differently from
the above, internally at a node, i.e., each node may have
internal events which could figure in the state transitions
internal to that node. However, any such modelling is at
a level lower than that of the proposed model and hence
is transparent. This approach is easily justified. In a DS,
the transitions at a node between any consecutive pair of
communications are not relevant to the system as a single
unit since they are not visible to the other nodes. By mod-
elling in this manner, no knowledge is lost as explained by
the Knowledge Transfer Theorem [4]. Since events in the
proposed model do not include internal events at all, the
number of events and states in the system is reduced. This
reduces the possible-world space [6] for a given computation
without losing reasoning power.

The model is general and includes all possible DSs. It
does not make the distinction between synchronous and
asynchronous communication, and does not consider wheth-
er channels are FIFO in the latter case. Thus, the results
about the basic unit of computation are valid in all dis-
tributed computations.

The definitions of the causality (happens before) rela-
tion among events in a computation [10], the global snap-
shot/global state |1, 3], and the consistent cut [15] will be
used extensively and are reproduced here.

13

Definition 1 Define “happens before” or the dependence
relation e;, — e, between two events €is and ej, if (1) i
=jandt> s or; (2)i#] and e;, is a send and e;, is the
corresponding receive, or; (3) Jep uleis — exu Ak, — €5y

Definition 2 A global state (3] is a set of states (1) one
for each node, such that every message that a node receives
before it reaches its state would have been sent by the sender
of that message before it reached its state; (2) one for each
channel, as a set [1] (sequence for a FIFO channel [3]) of
messages sent along that channel before the sender node
reached its state less the messages received by the receiver
node before it reached its state.

A global snapshot is a recorded global state.

The set of instants of recording the node states is termed a
consistent cut [15].

3 Units Of Computation

Here we give a definition of a basic unit and explore its
properties. The definitions and theorems are illustrated
by timing diagrams (which use horizontal lines represent-
ing time lines of nodes) for a six node DS communicat-
ing asynchronously over non-FIFO channels. Systems with
asynchronous communication over FIFO channels and with
synchronous communication are special cases of the above
and are considered in Sections 5 and 6.

Definition 3 A ground state of a DS is a global state in
which all channels are empty.

Let C' be the possibly infinite set of all the events in a
computation, plus the |N| dummy events €;,0, one on each
node: € N.

Definition 4 M(e, ;) is a one-to-one function from C to
C that maps M(eio) = eio and for j > 0, M(e;;) = exy
where ex; is a send(receive) corresponding to €ij-

Definition 5 A set S is a dipole set if S = {e;;|ei; €
S = M(ei;) € S}.
Dipole sets are closed under : set union, intersection, dif-
ference and complementation.

Definition 6 A wave W is a set of events ¢, ; in C such
that

(I)Vi € NEe.-,j e w

(2) W is a dipole set.

(3)ei; EW = ((j=0) V(eijo1 € W))

Wo = {eioVi € N} is the dummy initial wave.

Waves are closed under union and intersection. A wave is
a pre-fix of a computation such that every send and receive
in the wave has the corresponding receive and send in the
wave. The term “wave” captures the manner in which the
computation progresses. The system is in a ground state
after the execution of a wave. Wy, W, and W, in Figure 1

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Some examples of waves and wavefronts in an asyn-
chronous computation. Horizontal lines represent time lines of
nodes.

are examples of waves in the computation shown. Clearly,
C is a wave, and if C is finite, all waves in C are finite. An
infinite wave represents a non-terminating computation.

Definition 7 A wavefront of a wave W, denoted by F(W),
is defined by following condition : e;; € F(W)iff ((ei; €
WY ANVELE > 7, eix € W)).

F(Wo) = {eioVi € N} is the initial wavefront.

A wavefront is the set of last events of the wave on each
node. For a finite wave, the wavefront has |N| events and
the global state after the execution of each event on the
wavefront represents a ground state. The wavefronts of the
waves of Figure 1 are easily observed in Figure 1. It can
be shown that the waves in a computation form a lattice.
The proof of the following theorem is left as an exercise.
[8] shows a similar result for the set of all the system states
in a computation.

Theorem 1 Waves of a computation form a lattice.

Definition 8 The arity of a set of events S is the number
of distinct i | ei; € S.

The arity of any wave is |N|. The arity of any wavefront is
the number of nodes on which the events of the wave are
finite in number and is in the range [0,|N]].

Definition 8 A molecule L is a non-empty set of events
such that

(Des; € L= j>0

(2) L is a dipole set.

(3)3W |Veis € L, ((eij1 € D) V(eij1 € F(W)))

L is said to begin on wavefront F(W).

These requirements mean that a molecule is any set of
events such that every send/receive in it has its correspond-
ing receive/send in the molecule, and if two events on a

14

1 oo AN
P

AN
JANY

YAV

Figure 2: Some molecules in the computation of Figure 1. Hor-
izontal lines represent time lines of nodes.

node belong to the same molecule, all intervening events on
that node also belong to it. In addition, the molecule must
begin on a wavefront. Thus, the only way the rest of the
computation affects the molecule is in the determination of
the node states at the start of the molecule execution. The
only way the molecule affects the rest of the computation
is in the determination of the node states at the end of the
molecule execution. From Definitions 6 and 9, it follows
that every wave without its dummy events is a molecule.
Note that a molecule is never a wave. Figure 2 shows some
molecules in the computation of Figure 1.

Lemma 1 For any wave W, W = C — W is a molecule

GfW C C).

Proof : We prove that C — W satisfies the three properties
of a molecule.

C — W never contains any e;; | j = 0. This satisfies
(1). W and C are dipole sets. So C — W is also a dipole
set. This satisfies property (2). Consider any e;; € W.
€ j-1 € WV €ij-1 € w. €;j-1 € W = €ij-1 € F(W)
In either case, property (3) is satisfied. =]

From the definition of a molecule, it follows that it is
independent of the rest of the computation in the following
sense.

1. No messages sent within the molecule are received
outside it and no messages sent outside it are received
within it. (property (2))

9. Once a node stops executing events in a molecule, it
may not resume executing events in the same molecule
at any later time. (property (3))

Definition 10 An atom [is a molecule(Definition 9) such
that AS|S C land S is a molecule.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Atoms and molecules can be infinite sets. From Defini-
tions 9 and 10, it is evident that every atom is a molecule
but not vice-versa. An atom is any molecule that does not
have a proper subset that is a molecule, and thus possesses
indivisibility. The atom has minimal arity and minimal
size among molecules containing any subset of the events
contained in the atom.

We now prove several other properties of the atom and
then establish that each event in a computation belongs to
a unique atom.

Definition 11 The pre-cut of an atom I, R(l) is a set de-
fined by the condition : e;; € R(1) iff (e;; € I A €ijp1 €1).

The pre-cut of an atom is a subset of some wavefront and
has arity-of-l events.

Lemma 2 If L is a molecule and W is a wave such that L
begins on F(W), then W U L is a wave.

Proof: Weshow that W/ = W (J L satisfies the definition
of a wave.
(1) is satisfied as W is a wave and we are doing a set union.
(2) is satisfied as W and L are dipole sets and their union
is also a dipole set.
(3) is satisfied by the following reasoning. Since L begins
on F(W), by Definitions 6 and 9, W (| L = ¢. For any
eij € W', e; € W V e; € L. In the first case,
property (3) holds because W satisfies the property. In the
second case, €;;_; € L V €;;_; € W. Whichever be true,
€ij-1 € W' and property (3) is satisfied. m]
Lemma 2 indicates that when the execution of a molecule
is suffixed to the execution of the wave on which it begins,
the resulting execution is an execution of a wave. Thus,
the execution of a molecule transforms the global state of
the DS from one ground state to another. Lemma 2 in
conjunction with properties (2) and (3) of molecules shows
that the molecule can qualify as a unit of computation.

Lemma 3 Given an atom ! and a wave W, (I ¢ W) V
(INW = ¢), i.e., an atom is either contained fully within
a wave or the intersection of the two is the null set.

Proof : Givenland W,let S = I W # ¢ We show
that S satisfies the properties of a molecule.

Vi € N,eio & Il. Hence, Vi € N, e;o0 € S. So S
satisfies property (1).

l'and W are dipole sets. So S is also a dipole set. So §
satisfies property (2).

Now consider any e;;|e;; € S. (ei; € W A e €
) = ej1 € WA (eij-1 € 1V eij-1 € R(1)),
where R(!) C F for some pre-determined wavefront. So S
satisfies property (3).

But by the definition of an atom, no proper subset of /
can be a molecule. So S = I and hence, ! C W. a

Lemma 4 For any two atoms [and Iy, Iy N1, = ¢, i.e.,
no two atoms overlap.

s P O R R A A R
~ AN
N ~
~ ~

~

. 2

Figure 3: Five atoms in the computation of Figure 1. Horizon-
tal lines represent time lines of nodes.

Proof : Let R(l;) C F(W)).
W) V(LN W = ¢).

If 12 g Wl, then 11 n 12 = ¢.

fl,NW, = ¢, thenlet Wy UL = W, By Lemma 3,
(. CW) V(I NWy = ¢). HLNAW, = ¢, thenli N1y = ¢
because iy C W,. Ifl, C Wo, thenly C W2—Wy = 1).
This is not possible by definition. u]

A node can be executing within at most one atom at
any real-time.

By Lemma 3, (I; C

Lemma 5 ¢;; is in an atom if j # 0.

Proof : Definel = N{L]e;; € L}. Notice that there
is at least one such L, namely, C — W (recall that W, is
the initial wavefront). For each molecule L with ¢;; € L,
let W1, be a wave such that L begins on Wy,

We now show that / is a molecule. Clearly, ! is a dipole
set. Define W = U {Wp, |e;; € L}. We want to show
that begins on W. Suppose e, , € I. We must show that
either ey n_1 €l or epnny € F(W). Suppose epn-1 &
l. By definition of I, there exists a molecule L' | (e;; €
L) A(emn-1 & L'). Since emy € I C L', we must have
emn-1 € F(Wy,). Therefore, eyn_y € Wi, € W implying
€m,n—~1 € F(W)

Now to see that ! is an atom, suppose L” is a molecule
and L” C . We must show that I C L”. Let W” be a
wave such that L” begins on F(W"). Note that e;; cannot
be in W, otherwise W” — W, is a molecule containing e; ;,
implying L” € 1 € W” — W, C W”. Similarly, e; ; cannot
be in the molecule C' — (W" U L”). Therefore, e;; € L".
By the definition of I, 1 C L". m]

Theorem 2 Each non-dummy event belongs to a unique
atom.

Proof: Follows from Lemmas 4 and 5. O
Figure 3 shows all the atoms in the computation of Fig-
ure 1.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Atoms in G’ corresponding to Figure 3.

4 Ordering of Basic Units

The ordering among the non-dummy events in C is a DAG
G = (V,E) where V.= C — {eio|i € N} and
E = {(eijrex)) | €ij — exa}. E conveys causality within
the computation. Analogous to the “happens before” re-
lationship among events, we can define a relationship that
conveys causality among atoms in the computation. G can
be transformed to a DAG G’ in which the nodes are atoms
and the edges represent the causality relationship among
these atoms. Define lo = {e;oVi € N}, the dummy initial
atom for the purpose of defining G'. G' = (V', E') where
()V' = {lg} U {atoms in the computation}.
(2)E' = {(h, 1) |(h,la € V') A(R() N i # 9)}.
Figure 4 shows the graph G’ for the atoms in Figure 3.
There is an edge (I1,12) in G’ iff 3i € Nlei; € hAeijy € 1.
Note that YW |l; C W, we havel; C W; using an inductive
argument, if there is a path from /i to I, every wave that
contains l; contains ly.

A wavefront in G can be characterized as follows : Par-
tition V' into two sets S; and S such that lp € Si A
(V(h,l) € E'\l; € §; = &1 € 51). Any ground state
of the computation is a state along such a partition. This
dependence is captured by the “occurs before” relation.

Definition 12 For two atoms I, and Iy, Iy “occurs before”
1y, denoted by Iy — 1y if either R(I2) N1 # ¢or3lslly—
Is A RL) NIz # ¢.

Theorem 3 The “occurs before” relation is a strict partial
ordering (transitive, irreflezive and anti-symmetric).

Proof : Transitivity follows from definition.

“Occurs before” is irreflexive because (a) R(h) Nh = ¢
and (b) Al | L — & A R(L) N L # ¢. To prove (b),
assume that such a I, exists. Let R(l;) € W,. Note that
LOAW, = ¢ Sincel, N R(l}) # ¢, N W1 # ¢ By
Lemma 3, I; C W;. However, if we let I, — Iy, then by
applying the definition of — recursively and using Lemma 3
each time, we see that I; C W;. Hence, l; cannot exist.

To show anti-symmetry, let us presume the contrary. If
I, — I Al — [, then using transitivity, i — L

16

which cannot be since “occurs before” is irreflexive. So —
is anti-symmetric. 0

An atom is executed in a computation only after all the
atoms that occur before it have begun execution. Thus,
the computation induces a partial order over all its atoms.
From Lemma 2, it follows that the state of the DS after a
prefix of this partial order is a ground state.

5 Detecting Ground States in a
Computation

For any computation, we would ideally like to detect the
atoms as they occur without disturbing the underlying com-
putation, so that we can use the properties of the cor-
responding ground states. Detecting atoms (and hence
ground states) as they occur involves high overhead of sys-
tem resources and messages because it involves detecting
a state over an undetermined subset of the system nodes
without interfering with the underlying computation. How-
ever, we can create ground states by creating artificial mole-
cules in the computation. It has been realized in [11] that
to create a ground state for a distributed database, the
computation would have to be affected or else parts of the
database would need to be replicated. The conversation
scheme [16] requires complete synchronization among par-
ticipating nodes to create a ground state. It creates an
instantaneous ground state at the cost of restricted inter-
process communication. Instead of freezing the nodes, the
transaction model of [5] uses a non-intrusive scheme to cre-
ate a ground state of a distributed database. A copy of the
database is created whenever a ground state is required.
This copy can be discarded when the ground state has been
computed.

A distributed algorithm that creates and records arti-
ficial ground states in an asynchronously communicating
system with FIFO channels is given below. It assumes that
one process is running on each node and that the network
topology is such that there is a path from the initiator
process to every other process. It can be spontaneously in-
voked by any process when the latest wavefront is needed.
It freezes the computation to the extent that once a pro-
cess receives a marker due to the algorithm, then until it
sends markers and records its state, it does not send any
messages. It is based on Chandy-Lamport’s snapshot al-
gorithm [3] and differs in two ways. (1) A process records
its state when it has received a marker on each channel in-
cident on and directed towards itself. (2) A process sends
a marker on each channel incident on and directed away
from itself and then records its state, and between the two,
it does not send any messages.

e To initiate the algorithm, process p follows the Marker-
Sending Rule when it is not already executing the
algorithm.

e Marker-Sending Rule: For each channel incident
on and directed away from p, p sends a marker. It

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply

does not send any messages till the Recording Rule
is executed.

Marker-Receiving Rule: If a marker received is
the first marker on any channel, p follows the Marker-
Sending Rule. p does not accept a message on a chan-

nel on which a marker is received until the Recording
Rule is followed.

¢ Recording Rule : p records the local state when a
marker has been received on each channel incident on
and directed towards p.

Theorem 4 The above algorithm gives a ground state.

Proof :

(Correctness) For the two process states recorded by pro-
cesses across the ends of a channel, the channel state record-
ed is). Let ¢ be a channel from process p to process q.
p sends a marker to ¢ and does not send any message to
q until p records its state. Due to FIFO channels, when
q receives the marker from p, it has received all messages
sent by p before p sent the marker. q records its state af-
ter it receives the marker from p and before receiving more
messages from p. Thus, state of ¢ is § for process states
recorded by p and g. This holds for every (p, ¢) pair. The
rest of the proof is similar to the correctness of the algo-
rithm in [3] and is left as an exercise.

(Termination) Each process eventually records its state. A
process follows the Sending Rule when it gets its first marker.
Hence, as long as there is a path from the initiator to ev-
ery other node, each process follows the Sending Rule and
a marker is sent on each channel. Because markers are
not Jost, they eventually reach and all processes follow the
Recording Rule. a

The algorithm requires P messages where P is the num-
ber of edges in the graph of the DS topology. This al-
gorithm can be extended to non-FIFO systems by using
counters or “flush” messages [1].

A system with synchronous communication is a restricted
case of an asynchronously communicating system. The al-
gorithm of Bougé (2] is a CSP implementation that detects
ground states in a synchronous system.

6 Significance of the Basic Unit

The basic unit of computation exists inherently in all com-
putations. A computation which is a particular run of a dis-
tributed program is broken down into unique basic units at
run-time based on the happens before relation of the events
of the computation. All computations that are isomorphic
[4] to each other with respect to all the system nodes can
be broken down into the same unique atoms with the same
occurs before relation because they exhibit the same hap-
pens before relation among their events. At the completion
of execution of each basic unit, there is a wavefront. The
global state of the system corresponding to this wavefront
is a ground state. There is always a latest ground state in

17

Node 1 \
Node 2 \ i
cc1 CC2
Figure 5(a)
Node 1 y y
Channel 1-2—Y
Channel 2-1 y y
Node 2 A
CC1
Figure 5(b)
CC1 CcC2
!
Node 1 * y y
4
Node 2 \ (f
Figure 5(c)

Figure 5: (a) CC1 and CC2 are consistent cuts in an asyn-
chronous computation. (b) If the above computation is repre-
sented with each channel as a node, only CC1 can be repre-
sented as a wavefront. (c)If each message is represented by a
node, CC1 and CC2 can be represented as wavefronts.

the system. It advances each time the execution of a basic
unit is completed. All the ground states through which a
computation takes the DS are totally ordered in real-time
in that computation.

Two possible computations of a program need not have
the same C, but even if they do, they may comprise of dif-
ferent sets of basic units. Even if the two possible computa-
tions comprise of the same set of basic units, they may lead
to different orderings in real-time among the occurrence of
the same set of ground states. All these observations point
to the richness of possible scenarios that are possible in
a distributed computation. To detect the basic units in
a computation as it unfolds necessarily requires observing
the computation (so far) a posteori. This can have high
overheads depending on the diversity of possible scenarios.
As seen in the last section, it is even difficult to create the
basic units artificially.

We would like to observe the system at points on the
nodes where each node has finished computing some basic
unit because all the channels are empty in the resulting
state. Any wavefront (except Wp) is exactly such a set of
observation points which identify a ground state. A ground
state “isolates the past from the future”. The cut identified
by a ground state is stronger than a consistent cut [3, 15] in

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

an asynchronous system because the consistent cut allows
message sends to be included in the cut even if the corre-
sponding receives are not. A DS with synchronous commu-
nication [7, 12] restricts the concurrency as compared to
a DS with asynchronous communication and allows each
channel to have only one message in transit at any time.
A computation that is isomorphic to a given computation
with synchronous communication will have all communica-
tions represented as vertical lines in a timing diagram. Due
to the semantics of synchronous communication, any global
state that includes a send (receive) would also include its
corresponding receive (send). Hence, every consistent cut
in such a system corresponds to a wavefront and a global
state is always a ground state.

Our approach to analysing a DS can capture the con-
sistent cut [15] and the global state [3] in an asynchronous
system also. A ground state is a restricted global state.
We can represent a global state with possibly non-empty
channels as the global state along a wavefront as follows :
Represent each channel as a “channel” node. An event on
a “channel” node takes place whenever a processor node
sends or receives a message associated with that channel.
For a message send, we have an instantaneous “message”
transmission from a source processor node to the corre-
sponding “channel” node. For a message receive, there is
an instantaneous “message” transmission from the corre-
sponding “channel” node to the destination processor node.
The representation is similar to the one obtained using the
I/0 automata model [12]. Every wavefront in this repre-
sentation denotes a global state with possibly non-empty
channels in the DS. Every global state in the DS in which
each channel has (not surprisingly) at most one message
in transit can be represented as a wavefront in this rep-
resentation. Figure 5(b) illustrates this representation for
an asynchronous computation of Figure 5(a). To represent
every global state as a wavefront, treat each channel as a
number of “channel” nodes, one for each message sent on
the channel. Figure 5(c) shows this representation for the
computation in Figure 5(a). Each wavefront in this ex-
tended representation denotes a consistent cut across pro-
cessor nodes and vice-versa.

Observe from Section 4 that any wavefront in a compu-
tation denotes some “consistent” cut in the graph G’ and
vice-versa if each node in G’ is treated as an event and each
edge in G’ is treated as a message. Thus, we are directly
supporting the concept of the consistent cut at a different
level of atomicity.

The structure of the basic units depends on the con-
currency in the DS. A DS with asynchronous communica-
tion over non-FIFO channels offers more concurrency than
does the same system over FIFO channels. The increased
concurrency permits more communication patterns and a
greater variety of basic units are possible. In a synchronously
communicating DS, the restrictions imposed by the syn-
chronous nature of the computation reduce the multiplic-
ity in communication patterns in the DS (from what it was
under asynchronous communication) and the basic units of

o~

Node 2

Node 1 a— T
s

3
7\

Node 3 7

Ll

Figure 6: Atoms in a synchronously communicating sytem.

computation are simplified in terms of their composition.
In such a system, each send and its receive form an atom as
shown in Figure 6. Special topologies that serve to restrict
the communication pattern also constrain the composition
of the basic units in the computation. For a unidirectional
token-passing ring topology with asynchronous communi-
cation over FIFO channels, each atom comprises of a send
and its receive.

Reasoning about a general DS (with asynchronous com-
munication over non-FIFO channels) is difficult because the
reasoning has to be correct in spite of the vast number of
possible scenarios. We see that by imposing restrictions
such as having synchronous communication, FIFO chan-
nels, a special topology and a locking protocol, we restrict
the possible concurrency in the DS. This introduces some
discipline in the structure of the basic units and prevents
some of the scenarios that would have been possible other-
wise. This achieves simpler reasoning about the DS.

The ground state that exists along a wavefront is dif-
ferent from the global state at global termination [13]. For
global termination, the following predicates should be true
for the system : (a) there are no messages in transit, (b)
each node has finished execution, (c) each node will not
initiate communication. Along a wavefront, only (a) needs
to be true.

6.1 Applications
6.1.1 Reasoning about Stable Properties

If all the computation messages are about a predicate z,
then z takes a value on a stable basis only at a wavefront,
e.g., termination can occur only on a wavefront. This is
because on any other consistent cut, messages about z are
still in transit. Knowledge of z attained along a wavefront
is stronger than concurrent knowledge [15] because no infor-
mation is in transit; each node knows everything intended
for it to know.

If only some of the computation messages are about
predicate z, then z takes a value on a stable basis only on
a wavefront with respect to messages pertaining to z. To
create such a wavefront, only the computation with respect
to z need be affected. This concept needs to be developed.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

6.1.2 Distributed Program Debugging

By observing the DS in a ground state, debugging [14] can
be simplified. Monitoring the values of concerned predi-
cates at snapshots along wavefronts gives knowledge about
the concerned predicates in ground states. To draw an
analogy to a uniprocessor system, it is reasonable to see
the state of variables after each high-level instruction and
not, say, between the micro-code instructions that execute
the high-level instruction. Similarly it makes sense to know
the values of variables at the boundary of (and not midway
through) some basic unit in a distributed system. This
boundary is always along a wavefront.

6.1.3 Checkpointing and Recovery in Distributed
Databases

Nodes can recover independently from failure using pes-
simistic logging. If optimistic logging is performed and
checkpoints are taken along a consistent cut [8, 9], roll-
back/redoing of events even before the checkpoints may be
needed because such checkpoints have message sends with-
out the corresponding receives. However, when checkpoints
are taken at a wavefront, no node ever has to rollback/redo
events before the checkpoint. This was first realized in the
conversation scheme [16] and used in [5]. The latest check-
point for the DS can be found by forcing a ground state.
Alternatively, if it is feasible to detect individual molecules,
only the nodes concerned in executing the molecule can ad-
vance their local checkpoints and do not have to coordinate
with the rest of the nodes. The nodes can perform opti-
mistic logging or none at all, and do not have to retain any
log before the latest checkpoint.

7 Conclusions

We have identified a basic unit of computation in a DS.
The phenomenon of basic units occurs naturally in all com-
putations and is independent of the system model or the
synchrony in communication. The structure of the basic
units depends on the concurrency permitted in the system.
The basic units in a computation are formed at run-time
and are not easy to detect.

This work provides an understanding of the richness of
possible scenarios that are possible in a distributed compu-
tation and the dependence of this richness on the structure
of the basic units. It shows that the complexity of the struc-
ture of basic units depends on the level of concurrency in
the DS which clearly determines the level of difficulty of
reasoning. Thus the prevention of certain possible scenar-
ios provides simplicity of reasoning in DSs.

The global state of the system after the execution of a
unit of computation has been shown to have useful prop-
erties. Hence it is worthwhile to artificially create units of
computation. We proposed a way of doing so.

19

References

[1] M. Ahuja. Flush Primitives for Asynchronous Dis-
tributed Systems. Information Processing Letters, 5-12,
34(1), 1990.

L. Bougé. Repeated Snapshots in Distributed Systems
with Synchronous Communications and their Imple-
mentations in CSP. Theoretical Computer Science, 145-
169, 49, 1987.

[3] M. Chandy, L. Lamport. Distributed Snapshots : De-
termining Global States Of Distributed Systems. ACM
Transactions on Distributed Systems, 63-75, 3(1), Feb.
1985.

M. Chandy, J. Misra. How Processes Learn. Distributed
Computing, 40-52, 1, 1986.

[5] M. Fischer, N. Griffeth, N. Lynch. Global States in a
Distributed System. IEEE Trans. Software Engineering,
8(3), 198-202, May 1982.

[6] J. Hintikka. Knowledge and Belief. Cornell University
Press, 1962.

2

=

[7] C. A. R. Hoare. Communicating Sequential Processes.
Communications of the ACM,666-677, 21(8), August
1978.

[8] D. Johnson, W. Zwaenepoel. Recovery in Distributed
Systems Using Optimistic Message Logging and Check-
pointing. Proceedings of the 7th ACM Symposium on
Principles of Distributed Computing, 171-181, 1988.

[9] R. Koo, S. Toueg. Checkpointing and Rollback-Recovery
for Distributed Systems. IEEE Transactions on Software
Engineering, 23-31, 13(1), Jan. 1987.

[10] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. CACM, 558-565, 21(7), July
1978.

(11] H. F. Li, K. Venkatesh, T. Radhakrishnan. Global
States of Distributed Systems. Tech. Report, Concordia
University, Montreal, Canada, 1986.

[12] N. Lynch, M. Tuttle. An Introduction to Input/Output
Automata. MIT /LCS/TM-373, Nov. 1988.

[13] F. Mattern. Algorithms for Distributed Termination
Detection. Distributed Computing, 2:161-175, 1987.

[14] B. Miller, J. Choi. Breakpointing and Halting in Dis-
tributed Programming. Proc. of the 8th Intl. Conference
on Distributed Computing Systems, 316-323, 1988.

[15] P. Panengaden, K. Taylor. Concurrent Common
Knowledge: A New Definition Of Agreement for Asyn-
chronous Systems. TR 88-915, Computer Science, Cor-
nell University, 1988.

[16] B. Randell. System Structure for Software Fault Toler-
ance. IEEE Transactions on Software Engineering, 1(2),
220-232, June 1975.

Authorized licensed use limited to: University of lllinois at Chicago Library. Downloaded on June 22,2020 at 22:48:42 UTC from IEEE Xplore. Restrictions apply.

