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Abstract—Sensor-actuator networks and interactive ubiqui-
tous environments are distributed systems in which the sensor-
actuators communicate with each other by message-passing.
This paper makes three contributions. First, it gives a general
system and execution model for such sensor-actuator networks
in pervasive environments. Second, it examines the range of
time models that are useful for specifying properties, and
for implementation, in such distributed networks, and places
approaches and limitations in perspective. Third, it shows that
although the partial order time model has not been seen to be
useful as a specification tool in real applications of sensornets, yet,
it is useful for real applications in pervasive sensornets because
(under certain conditions) it can serve as a viable alternative to
physically synchronized clocks that provide the linear order time
model.

I. INTRODUCTION

A pervasive environment can be thought of as a collection
of networked autonomous embedded systems that interact
with the physical world through sensors and actuators. Such
systems aim to sense-monitor-control the physical world. The
monitoring is achieved via tracking a time-dependent map or
mirror of the spatio-temporal activities in the physical world
[19]. The system can be thought of as a “bridge to the physical
world” [11] or its most approximate instrumentation [12].

In the sensing and monitoring phases, a central issue is that
of creating and monitoring the time-varying global map of the
physical world, and evaluating predicates on that map. In the
most general case, the predicate is on a pattern of events in
the map and has two components – a spatial component and
a temporal component, on the monitored variables [6]. The
temporal component specifies various timing relations on the
observed values of the variables/system attributes that need
to be satisfied by the predicate. The most common of these
is the “instantaneous” snapshot of the variables, for example,
assumed in pervasive systems [4], [5], [16], [30], [36], [37].
More complex timing relations exist, and can be specified
using logical time or physical time or a combination of both.
In fact, there are many temporal algebras and temporal logics
(*TL*) for reasoning with distributed system executions, that
have been proposed over the past three decades and which can
be used to specify the timing relations. Several have also been
proposed for sensor networks and pervasive environments; see
any recent paper such as [6] for a survey of these frameworks.
But at the core, these diverse specifications assume either
(i) a single time axis model or the total order model, or

(ii) a multiple time axis model or the partial order model.
Assembling snapshots satisfying various timing specifications
under these two time models has been well-studied in the
distributed computing literature [23]. However, this has not
received enough attention in sensornets, with their features
such as limited energy sources, mobility patterns, and the
inability to trace communication in the physical world. Further,
pervasive environments use sensed properties to determine
context and adapt their behavior. The sensed properties are
application dependent and the application’s demands are dif-
ferent from those in traditional distributed systems.

In this paper, we make the following contributions.
1) We give a general system model and execution model

for sensornets in pervasive environments in Section II.
2) We chart out a time model space for specifying proper-

ties to be detected in Section III-A, and a time model
space for realizing (implementing) the specifications is
described in Section III-B. Section III also serves as
a survey of time models, covering the background and
related works.

3) We examine the applicability of the single time axis
and the multiple time axis models for pervasive environ-
ments containing embedded sensors/actuators, and place
approaches and limitations in perspective in Section IV.
We conclude that presently, the partial order time model
for specification of predicates has not found adequate
uses in pervasive sensor-actuator networks. Rather, the
single axis time model continues to be widely used.
On the other hand, we also explore the options of
implementing the single axis time model. While physical
clock synchronization protocols are clearly a desirable
option to provide the single time axis, we make a
case that that in some applications (characterized by
the unavailability and or the high cost of such clock
synchronization protocols), logical time strobe clocks
[25] that provide a partial order of time are a viable
alternative.

Section V gives a concluding discussion and lists open
problems.

II. SYSTEM AND EXECUTION MODEL

A. System Model
Sensor-actuator networks and pervasive environments are

distributed systems that interact with the physical world in
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a sense-and-respond manner. A primary function is sensing
the activities in the physical world and responding to them;
thus, monitoring and collecting the global state, evaluating
it for some time-related predicates, and responding back to
the environment forms a generic loop. Pervasive systems
additionally use the sensed properties to determine context
and adapt their behavior.

A sensor-actuator network or a pervasive environment
can be modeled at the application layer as a quadruple
〈P,L,O,C〉, where:

• P is a set of sensor/actuator processes which have access
to some form of clock,

• L is a logical network overlay over which the processes in
P can communicate with each other in an asynchronous
message-passing manner,

• O is a set of external world objects, each with a set of
attributes, that can be sensed and/or controlled by the
sensor/actuator processes, and

• C is a logical network overlay in the physical world over
which the objects in O communicate (in a synchronous
or asynchronous manner).

〈P,L〉 forms the network plane or the observation-and-
control plane. The processes in P may be static or mobile (e.g.,
hand-held sensing devices or robots) and may communicate
over wired or wireless media with one another over L. A
process in P can also sense and actuate the objects in its
range. (In a common configuration, a distinguished process
P0 acts as a root or back-end server that processes the sensed
information.) L is a dynamically changing graph.
〈O,C〉 forms the world or physical plane. The objects in

O may be static or mobile (e.g., objects with RFID tags,
animals with embedded chips, humans). These objects can be
sensed by and/or can receive actuator signals from processes
in P , but have no independent access to a synchronized clock.
The objects in O can communicate with one another over the
physical world overlay C; such communication may or may
not be sensed by the processes in P and hence may not be
replicable in L. Such channels in C have been termed as covert
or hidden channels [2], [18]. C is also a dynamically changing
graph.

Distinguishing features of p ∈ P versus o ∈ O are:
1) p is an active network entity whereas o is not;
2) p has access to an independent clock whereas o does

not;
3) p (usually) exhibits deterministic behavior whereas o as

part of the real-world need not behave deterministically
or predictably.

In some cases, an entity may play a dual role of p and o, as
in a zebra with an embedded sensor in a zoo, or a smart pen
in an intelligent office.

B. Execution Model

A traditional message-passing distributed execution operates
on the “network plane”. To adapt the network plane model
〈P,L〉 to sensor/actuator networks, we enhance the standard

model of an asynchronous message-passing distributed exe-
cution (see [23]) as follows. At each process Pi ∈ P , the
local execution is a sequence of alternating states and state
transitions caused by events. An event e is one of three types:

• An internal event, which is of type: compute (c), sense
(n), or actuate (a). Although the n and a types of
events are communication events, this communication
is between the passive environment object in O (which
does not have access to a synchronized clock) and the
active process(es) in the sensor/actuator network, which
has access to some form of synchronized clock.

• A send event (s), at which a message is sent by a
process in P to another process in P . The sent message
is timestamped by the sender’s clock value (whether
physical or logical, scalar or vector). A send event is
semantically determined by the program logic. Note that
if a communication send event over a covert channel
between two objects in the 〈O,C〉 plane can be detected
(which current technology cannot), the event can also be
mirrored in 〈P,L〉.

• A receive event (r), at which a message is received by
a process in P from another process in P . The received
message is timestamped by the sender’s clock value, and
standard rules from the distributed computing literature
[13], [26], [27] can be used for updating the receiver’s
clock. A receive event is semantically determined by the
program logic. If a communication receive event over a
covert channel at an object in the 〈O,C〉 plane can be
detected (which current technology cannot), the event can
also be mirrored in P .

Whenever a significant change in the value of an attribute
of an object is sensed by a sensor/actuator process, it records
a sense event n. A message send event s is triggered at a
sensor/actuator process to communicate information about a
relevant sensed event to other sensor/actuator processes (or as
a special case, to a distinguished root process P0) so as to
enable on-line detection of a global predicate on the attributes
of sensed values of objects across the system. If the predicate is
satisfied, a message send event is also triggered to actuate one
or multiple sensor/actuator nodes to output to the environment
objects. It is important to note, however, that the two types
of send events described above and also the corresponding
receive events belong to the control computation that monitors
the state of the system. They cannot track true causality of the
world plane. These control messages are inherently artificial,
but they implement cause-and-effect in the system by the
interaction of the 〈O,C〉 plane with the 〈P,L〉 plane.

Variables are of two kinds: each object oi ∈ O has an
attribute oi.a (this can be generalized to multiple attributes
per object). This variable can be tracked by multiple sensors/
actuators. In addition, each sensor/ actuator process pi ∈ P
has local variables to track object attributes and maintain state.

We have used an event-driven execution model. An event
occurs whenever a monitored value, whether discrete or con-
tinuous, changes significantly. The time duration between two
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successive events at a process identifies an interval. We model
the event-driven activity at processes in terms of intervals. The
application seeks to detect a predicate φ that is (i) explicitly
defined on attribute values during intervals, that are (ii) im-
plicitly related using certain timing relationships. The most
popular timing relationship, “concurrent” among the intervals,
captures the notion of Instantaneously or the instantaneous
observation of the physical environment. However, note that
more complex timing relationships are possible, as discussed
in Section III.

III. TIME MODEL FOR SENSORNETS

Traditional asynchronous message-passing distributed sys-
tems use two common time models [23]: (i) the single time
axis model that loosely corresponds to the event interleaving
model of the distributed execution, and (ii) the vector time
model, that loosely corresponds to the partial order model of
events in the distributed execution.

To better understand the design space for specification of
timing properties, and the design space for implementing
timing mechanisms, specific to sensor/actuator networks, we
identify these two design spaces next. The specification design
space is driven by the application needs and depends on the
〈O,C〉 world plane. However, as no object in O has access to
any clocks, the implementation design space depends on the
〈P,L〉 observation plane and how it interacts with the 〈O,C〉
plane.

A. Design Space for Specifying Timing Properties

1) Specification of time modality on predicate:
a) Single time axis (interleaved model):

i) Instantaneous: This is the most popular and
relevant specification in the literature for ob-
serving the world plane events that occurred at
the same instant in physical time. Applications
in pervasive systems aim to observe the instan-
taneous system state and draw inferences about
it, e.g., raise alarm and context determination
and context switch [4], [5], [16], [30], [36],
[37].
In the traditional distributed computing liter-
ature, Mayo and Kearns gave an algorithm
to detect distributed predicates that held at
some instant in time in a system using ap-
proximately synchronized physical clocks [28].
Stoller [34] likewise gives an algorithm to de-
tect global state predicates with approximately-
synchronized real-time clocks. In both ap-
proaches, predicates specified using the Instan-
taneously modality on the execution events are
detected using a physical time reference.

ii) Relative timing relations: Some attempts have
been made at specifying such constraints for
real-world observation [22], [29], using the
theory developed for uniprocessor systems [1],
[15]. Examples are: X before Y , or X overlaps

Y , or X before Y by real-time greater than 5
seconds. An example from secure banking is
[22]: a biometric key is presented remotely after
a password is entered across the network.

iii) Physical time reference: Real-time applications
may use such wall-clock specifications, e.g.,
after 7 o’clock.

iv) Temporal logic (*TL*) based: see [6] for a
recent survey.

Combinations of the above can also be constructed.
b) Multiple time axis (partial order model):

i) Causality based relations: In traditional dis-
tributed systems literature, there is a vast body
of work on modalities based on causality-
based relations. The Possibly and Definitely
modalities [10] have been the most widely
used. Refining these further, a complete suite of
40 orthogonal relationships among time inter-
vals at two different physical locations (see [7],
[8], [20], [21]) was used to specify causality-
based relationships among the local values that
held during the local time intervals. Then, given
a system with n processes, a specification space
of size (240 − 1)Cn

2 for fine-grained relation-
ships was identified.
In the context of sensornet applications, these
modalities are currently being investigated. An
application that requires simple concurrency
detection is given in [17]; here, the Definitely
modality on a conjunctive predicate was de-
tected using the partial order model. Consider a
smart office environment where a person enters
a room and temp > 30◦C. Temperature can
be automatically lowered depending on the rule
base. However, no compelling applications that
require such partial order specifications have
yet been built.

ii) Physical time reference: A partial order model
of time using a physical time reference for each
location can also be used, e.g., to represent the
physical time of the latest update to the versions
of a file. However, physical time reference for a
multiple time axis model is not popularly used
in traditional distributed systems, and not so in
sensor networks either.

iii) Temporal logic (*TL*) based: convincing ap-
plication specifications to observe world plane
executions using temporal logic are under study
[6].

2) Predicate type: Though there exist many classes of
predicates [9], [23], two interesting classes for observing
world plane executions are listed here.

a) Conjunctive: Each conjunct φi in the predicate φ =∧
i φi can be locally evaluated by a process using

local variables [14]. The subscript on a variable
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denotes the location where the variable is sensed.
For example, ψ =def (xi = 5) ∧ (yj > 7), where
xi and yj are the number of objects in rooms i
and j, respectively; and χ =def (tempi = 20C ∧
person in roomi), are conjunctive.

b) Relational: In contrast, a relational predicate φ is
an arbitrary expression on the system-wide sensed
variables [10]. For example, φ = xi + yj > 7,
where xi and yj are as defined above.

B. Design Space for Implementing Time
1) Clocks:

a) The single time axis (interleaved model) using
which predicates are specified (Section III.A.1.a)
can be implemented in the following ways.
i) Perfectly synchronized physical scalar clocks.

This is the ideal case, assumed by most of the
pervasive computing community [4], [5], [16],
[30], [36], [37] (except [17]), but not practical.

ii) Imperfectly synchronized (with skew/offsets)
physical scalar clocks: There is a vast literature
in the last decade for implementing tightly
synchronized clocks at low cost in wireless
sensor networks; see [31], or a comprehensive
survey in [35]. We note two important points
here. (1) This service does not come for free
to the application; the lower layers pay the
cost. (2) The issues of drift/skew minimize but
cannot eliminate the uncertainty in the face of
race conditions when events happen very close
in time in the physical plane.

iii) Logical (asynchronous) scalar clocks: These
are of the Lamport flavor [26] for traditional
distributed systems, and defined formally for
sensor networks in [25]; Though widely used
in distributed systems, they have been used in
[25] for observing the world plane events. In
[25], it was shown how to use logical asyn-
chronous scalar clocks to simulate the single
time axis model for a physical time modality,
Instantaneously.

iv) Logical (asynchronous) vector clocks: These
are of the Mattern flavor [27] in traditional
distributed systems, and have been used in
in sensor networks [24] to track intervals at
various processes to simulate the single time
axis model. Further, in [25], it was shown
how to use logical asynchronous vector clocks
to simulate the single time axis model for a
physical time modality, Instantaneously.

We compare the methods in III.B.1.a(ii)-(iv) to
implement the single time axis model below in
Section III-C.

b) The multiple time axis (partial order model) using
which predicates are specified (Section III.A.1.b)
can be implemented in the following ways:

i) Logical (asynchronous) vector clocks: These
are of the Mattern [27] and Fidge [13] flavor to
track causality and capture the partial order of
network plane events. The strobe vector clock
given in [25] showed how to use vector time
for sensing physical world events in the partial
order time model. The strobe vector clock is
limited to observing world plane events.
Vector clocks were also used for concurrency
detection of world plane events using the partial
order model of time [17] to determine contex-
tual properties.

ii) Physical (asynchronous) vector clocks: These
vectors use the monotonic physical (local) un-
synchronized clocks of the processes as the
vector components. These seem an overkill to
track causality, but are useful when relating
the locally observed wall times at different
locations, in the application predicate.

2) Message (transmission and propagation) delay:
a) Instantaneous or synchronous: Ideal case.
b) Asynchronous ∆-bounded: The ∆-bounded trans-

mission delays can often be assumed in practical
asynchronous wireless networks because although
there is variability in scheduling for energy con-
servation, the delay is bounded due to the bounded
number of attempts at retransmissions. This model
is practical in many cases in sensor-actuator net-
works and a good approximation to the ideal case
when ∆ is small relative to the rate of occurrence
of events in the world plane [25], [24]. The ∆-
bound has been used for quantifying errors here.

c) Asynchronous unbounded: Good for a worst-case
analysis.

C. Options to Implement Single Time Axis Model

We now compare the trade-offs among the options in
III.B.1.a.(i)-(iv) to implement the single time axis model.
Perfectly synchronized physical clocks, as assumed by the per-
vasive computing literature [4], [5], [16], [30], [36], [37], are
impractical. Clearly, imperfectly synchronized physical clocks
are desirable because clock synchronization is quite accurate.
Skews of the order of nanosec are achievable. For sensor
networks, there are many protocols tailored for the resource-
constrained environments, e.g., RBS, TPSN, TinySync, TSync,
that achieve skews of the order of microsecs to millisecs [35].
However, we note some limitations of this option.

1) Observe that no physically synchronized clock service
may be available from a lower layer. This might be the
case for very resource-constrained embedded sensors or
those in remote environments in the wild. Furthermore,
even if it is available, it may not be affordable (in
terms of energy consumption), e.g., consider the wild
or remote terrain. We stress that such service is not for
free.
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2) Physically synchronized clock service also has a skew ε
and drift bounds, which leads to imprecision in detecting
predicates in physical time. Predicate detection is prone
to false negatives and false positives when there are
“races” in sensing different physical world properties.
It has been shown that when the overlap period of the
local intervals, during which the global predicate is true,
is less than 2ε, false negatives occur [28].

3) Physically synchronized clock service imposes cross-
layer dependence.

In a scenario where the above limitations come into play,
resulting in the absence of a synchronized physical time scale
from a lower layer, how do we simulate a single time axis
model? Here, to re-create a linear order time base in order
to timestamp events, the application is forced to implement
either

• an application-layer software to synchronize the physical
clocks of sensors/ actuators, or

• synchronized logical clocks – either scalar (for single
time axis model) or vector (for multiple time axis model).

The first option is not appealing because it is essentially in-
curring the overheads of the lower layer clock synchronization
– which may not even be possible. Therefore, we advocate
the latter option. Earlier in [25], we explored the option of
using lightweight middleware protocols using strobe clocks
[25], without accessing physically synchronized clock service,
to detect global predicates. We showed that the accuracy of
detecting predicates is affected, resulting in false negatives,
and possibly false positives, when races occur within a period
of ∆ [24], [25]. Logical vector clocks provide more accuracy
than logical scalar clocks. In particular, the use of logical
vectors may result in some false negatives, whereas the use of
logical scalars may also result in some false positives. Strobe
clocks are reviewed and discussed further in Section IV-B.

∆, that determines the accuracy of the algorithms [24],
[25], is of the order of hundreds of millisecs to secs in
small-scale networks, such as smart offices and smart homes.
Even though ∆ is much larger than the ε skew (microsecs to
millisecs) that determines the accuracy of predicate detection
using synchronized physical clocks, ∆ may be adequate when
(a) the number of processes is low and/or (b) the rate of
occurrence of sensed events is comparatively low. The latter
is the case for several environments in the urban setting (such
as office, home, and structure monitoring) and in the wild
(such as in habitat, wildlife, nature monitoring). Lifeform and
physical object movements are typically much slower than ∆.
In the above identified urban settings, and in the wild, remote
terrain, nature monitoring, events are often rare, compared
to ∆. Thus, we may not need the precision of synchronized
physical clocks (both, in urban settings or in the wild) nor
may we be able to afford the associated cost of synchronized
physical clocks (in the wild). Simulations in related work [17]
to detect Definitely(φ) for a conjunctive φ in a realistic
model of a smart office showed that despite increasing the
average message delay over a wide range, the probability of

correct detection is quite high. The simulations were backed
by an analytical model with supporting numerical results.
Example: As an example of formalizing a specific problem
using the design space for specification of timing properties,
and the design space for implementing time, we consider the
problem of detecting a relational predicate of observed world
properties, that held at some instant in physical time.
Problem Specification: Detect each occurrence of a predicate
φ on sensed attribute values of the world plane, where:

• Time modality of predicate: is Single time axis – Instan-
taneous

• Predicate type: is Relational
• Message delay: is asynchronous ∆-bounded
• Clocks: may be either single time axis (interleaved

model) with logical (asynchronous) scalar clocks, or
multiple time axis (partial order model) with logical or
physical (asynchronous) vector clocks.

This problem specification was addressed and solved in [25].
In Section IV, we examine the suitability of the single time

axis model versus the multiple time axis model for pervasive
environments with sensor-actuator networks.

IV. TIME MODELS FOR PERVASIVE SYSTEMS

The single axis time model is useful for specifying timing
properties in sensor-actuator pervasive networks, as shown in
Section III.A.1.a. In Section IV-A, we examine the validity of
the partial order model of time in specifying timing properties
in sensor-actuator pervasive networks.

A. Partial Order Model as a Specification Tool

The partial order of time, captured by vector clocks, is
necessary, even if synchronized physical clocks are present,
to capture the cause-effect dependency relationships among
events. This is the first use of modeling the partial order
of time and events. The partial order of the traditional dis-
tributed program execution in the network plane induced by
the causality relation is isomorphic to and captured by the
causality-based Mattern/Fidge clocks [13], [27]. The notion
of “alternate global states that could have occurred in an
equivalent execution (due to the asynchrony in process execu-
tion and message communication)” leads to the notion of the
lattice of possible global states and its sublattice of consistent
global states [10], [27]. Reasoning about repeated runs of
deterministic distributed executions in terms of the state lattice
is the second use of modeling the partial order of time and
events.

In state-of-the-art pervasive systems, there are major
differences from in-network distributed program execu-
tions. Consider world events a@t1@li and b@t2@lj (us-
ing event label@global time@location format). Is there a
causal dependence from a to b (a la Lamport [26])? If we
could track the “hidden channel” communication between the
events and the semantics of this communication occurring in
the 〈O,C〉 plane, we can answer this and simulate it exactly
in the 〈P,L〉 network plane to maintain our evolving “map”
of the world plane.
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Consider a smart office, where each object has embedded
intelligence. When Bob gives a pen to Tom, Tom then moves
to another room, and leaves the pen there, the physical handoff
and transport of the pen can be detected by all the sensors/
badge readers. The causality from event pen@t1@li −→ event
pen@t2@lj in the world plane can be tracked in the network
plane. We can mirror the physical world causal chain in our
virtual map of it. But one could argue, if the pen is intelligent
and not just embedded with a RFID tag, it is part of the
network plane also, not just of the world plane. If the pen were
dumb, sophisticated motion detectors and pattern recognition
software could rebuild the entire causal chain in the physical
world at great cost, but this does not seem practical in a more
general setting. Thus, presently, technology does not allow
tracking of the hidden channels and causality chains in the
general case.

Some other examples are: (1) wind spreading a forest fire,
(2) Bob posting a letter in the red postbox on the road, Tom in
another city receiving the letter two days later and acting on
it. This limitation has been expressed earlier, see [18], [32],
[33]. We cannot always determine concurrency among world
plane events because we cannot always monitor (due to current
limitations) the communication in the covert channels. Thus,
if we could track this causality exactly, it would make sense to
use the partial order model in the specification of the physical
world map. If the partial order is defined by the causal relation
(as defined by Lamport [26]), it can be used (i.e., implemented)
if an application predicate is specified using it. The authors are
presently unaware of deployed applications that use the partial
order to track true causality/concurrency in the world plane.
So on this count, there is no case yet for using the partial
order model of time as a specification tool for predicates in
sensornets.

Note that in distributed programs, there is a second use of
the partial order of time – to create the partial order lattice of
the states of the execution. As noted above, the global state
lattice constructed based on the causality-based partial order
of time, is useful to reason about properties of global states.
This reasoning is across all runs of the same deterministic
distributed program; not just for one run. In a re-run, con-
current events may be reordered (due to the asynchrony in
message transmission times and process scheduling), leading
to a different path in the state lattice. However, in a pervasive
environment, the physical world does not admit re-runs, and
there are many non-deterministic factors such as human will
and nature. Further, usually most applications need to observe
the actual states in the actual execution as time unfolded.
Therefore, the state lattice seems not needed; in fact, the
state lattice is the lattice of pn states that admits all possible
concurrent states, because the network plane cannot capture
the dependencies of the world plane. Thus, the state lattice
becomes effectively meaningless unless the network plane can
capture the true causal dependencies of world events, that set
in through the hidden channels in the world plane, and that
need to be simulated in the network plane. Therefore, there
is no case yet for using the partial order model of time as a

specification tool for a distributed predicate.
The only communication through the network plane that

effects causality in the world is a sequence like: e1@l1 −→
sense@l1 −→ actuate@l2 −→ e2@l2. We still need to
answer whether there was true causality between e1 and e2
in the same sense that there is causality between statements
x := 5 and z := f(y) in this distributed program:
P1 : . . . x := 5; send(x, P2); . . .
P2 : . . . receive(y, P1); z := f(y); . . .
The moot point is: Can the lower network plane 〈P,L〉 be
interlocked or meshed in with the upper plane 〈O,C〉, not just
have a “bridge” to it? That is to say, how successfully can the
lower plane not just observe but also actuate and control the
upper plane? A robotic network in a warehouse (a confined
setting) is an example of such a real system that attempts to
intermesh with the world plane.

The partial order time model thus has not been seen to be
useful as a specification tool in real applications of sensornets.
Yet, as we show now in Section IV-B, to simulate the linear
order time model, the partial order time model is useful for
real applications in pervasive sensornets.

B. Partial Order Model as a Implementation Tool

Logical time need not be based strictly on causality as
defined by message-passing at the application layer. A need
for building a partial order of time that is useful for observing
the world plane events under the Instantaneously modality of
physical time was shown in [25]. In this section, we review this
need and the proposed strobe clocks [25] to address this need.
In the absence of physically synchronized clock service, some
time base is needed. The idea is that logical time can simply
be used to provide a base of linear order/ partial order time
when physical clocks are not required (due to cost or layer
independence or over-accuracy) or not available. Observe that
lower network layer physical clock synchronization protocols
[35] periodically bring multiple hardware clocks (scalars) “in
sync” after some drift. Similarly, the application layer strobe
clock can periodically bring “in sync” the drifting scalars or
vectors at each process. In the absence of a strobe, logical
clocks drift, simply ticking asynchronously at each relevant lo-
cal event. Each process maintains a local clock component that
ticks asynchronously. The strobe clock is a logical (scalar or
vector) clock synchronization service to synchronize the local
clocks at “critical events”. The strobe clock needs to guarantee
monotonicity of logical time. The strobe by a process can
synchronize at any time. However, this synchronization need
not happen any more frequently than the local sensing of
relevant events.

A typical protocol for physical clock synchronization that
operates in this manner is [3]. The protocol performs on-
demand clock synchronization and messages required for
continuous synchronization are avoided. Nodes do not share
the same time basis. For example, nodes only need to start
a common task at a certain point in time, but do not need
a common time basis apart from that. The network stays
unsynchronized most of the time but collaborates shortly
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before the common event. An application is the collaborative
sensing of highly dynamic effects, e.g., locating the source
of an audio signal, or simultaneous playback of music by the
sensor/actuator network.

Vector clocks were used in [17] to implement predicate
detection in the partial order model of time in pervasive
sensornets to determine context.

Strobe clock messages [25] are control messages and induce
a partial order that is arbitrarily determined at run-time and
hence artificial. This is in contrast to the case for distributed
programs, where the partial order is induced explicitly by in-
network semantic send and receive events of the programs.
Note, if our map of the physical world is also tracking causal-
ity, that clock should necessarily be different from the strobe
clock. If it is not, it will introduce false causality induced by
the strobes. This will lead to inferring fake causal dependency
relationships among computation and actuator events (e and
a events) in our model given in Section II-B. This will also
eliminate possible equivalent consistent global states.

1) Strobe Vector Clocks: A strobe vector clock Ci[1..n] at
process i consists of n integers. The protocol is given by rules
SVC1 and SVC2.

SVC1. When process i executes (senses) a relevant event:
Ci[i] = Ci[i] + 1
System-wide Broadcast (Ci)

SVC2. When process i receives a strobe T :
(k ∈ N) Ci[k] = max(Ci[k], T [k])

In contrast, a causality-based Mattern/Fidge vector clock
Ci[1..n] at process i consists of n integers. The protocol is
given by rules VC1 – VC3.

VC1. When process i executes (senses) a relevant internal
event:
Ci[i] = Ci[i] + 1

VC2. When process i executes a send event to send
message M :
Ci[i] = Ci[i] + 1
Send M(Ci)

VC3. When process i receives a vector T piggybacked on
a message:
(k ∈ N) Ci[k] = max(Ci[k], T [k])
Ci[i] = Ci[i] + 1

Note that the Mattern/Fidge vector clock protocol has no
occasion to send an execution message M , and invoke rules
VC2 or VC3 when observing world plane events.

2) Strobe Scalar Clocks: A strobe scalar clock Ci is
maintained by each process i. The protocol is given by rules
SSC1 and SSC2.

SSC1. When process i executes (senses) a relevant event:
Ci = Ci + 1
System-wide Broadcast (C)

SSC2. When process i receives a strobe T :
Ci = max(Ci, T )

It is weaker than the strobe vector clock but is lightweight
(strobe size is O(1), not O(n)).

In contrast, a logical scalar Lamport clock Ci is maintained
by each process i. The protocol is given by rules SC1 – SC3.

SC1. When process i executes (senses) a relevant event:
Ci = Ci + 1

SC2. When process i executes a send event to send
message M :
Ci = Ci + 1
Send M(Ci)

SC3. When process i receives a scalar timestamp T
piggybacked on a message:
Ci = max(Ci, T )
Ci = Ci + 1

Again, note that the Lamport clock protocol has no occasion
to send an execution message M , and invoke rules SC2 or
SC3 when observing world plane events.

Strobe clock protocols, whether scalar or vector, use broad-
casts. A message loss may result in the wrong detection of
the predicate in the temporal vicinity of the lost message.
However, there will be no long-term ripple effects of the
message loss on later detection.

3) Comparing Strobe Clocks with Causality-based Clocks:
The logical strobe clocks (vector and scalar) differ from the
traditional causality-based Mattern/Fidge vector clocks and
Lamport scalar clocks in the following ways.

1) Strobe clocks track the progress of the local logical time
counter at each process by catching up or synchronizing
on the latest known time of other processes. They do not
track the causality induced by message communication.
Causality-based clocks track the causality induced by the
〈N,L〉 -plane in-network message sends and receives.

2) On receiving a strobe, the receiver updates its clock
but does not tick locally; in causality-based clocks, the
receiver ticks on receiving a message.

3) All strobes are control messages. In causality-based
clocks, timestamps are piggybacked only on all com-
putation messages.

4) The strobe clock protocol broadcasts its clock no more
frequently than at each relevant event (after ticking its
local component). In causality-based clocks, the clock
value is piggybacked only on all computation messages.
For vector clocks, this creates an isomorphism of the
partial order of events.

5) When synchronous communication is used, i.e., when
∆ = 0, and the protocol strobes at each relevant event,
strobe vectors can be replaced by strobe scalars without
sacrificing correctness or accuracy. This is not so for
the causality-based clocks even if ∆ = 0; Mattern/Fidge
clocks are still more powerful than Lamport clocks when
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reasoning about the partial order of distributed program
executions.

4) Simulating Linear Time Model: The physical world
〈O,C〉 plane execution traces one path through np of the
O(pn) states in the state lattice. Ideally, the states in this path
should be identified so that the predicate can be evaluated in
each of them. Although the control messages for the strobe
clock create artificial causal dependencies, these are useful
because they help to approximate instantaneous observation
by eliminating many of the O(pn) states in which the cor-
responding intervals did not overlap. However, the number
of possible consistent states in the sub-lattice induced by the
strobes is still O(pn). The faster the strobe transmissions, the
leaner is the lattice. When ∆ = 0, the result is a linear order of
np states. Observe that in executions of distributed programs,
program-determined semantic messages may not get sent for
long durations, resulting in fat lattices. In contrast, clock
strobes get sent each time a sensed value changes. This gives
the “slim lattice postulate” [25] for consistent global states in
sensornet observations. Algorithms using vector strobes and
scalar strobes to detect global predicates based on sensed
world properties are given in [24] and [25].

V. DISCUSSION

We proposed a general system model and an execution
model for sensor-actuator networks in distributed pervasive
environments. We charted out a time model space for spec-
ifying properties to be detected, and a time model space
for implementing the specifications. Next, we examined the
range of time models that are useful for such distributed
sensor networks, and placed approaches and limitations in
perspective.

We conclude that presently, the partial order time model
for specification of predicates has not found adequate uses
in pervasive sensor-actuator networks. Rather, the single axis
time model continues to be widely used. On the other hand,
we also explored the options of implementing the single axis
time model. While physical clock synchronization protocols
are clearly a desirable option to provide the single time axis,
we showed that in some applications (characterized by the
unavailability and or the high cost of such clock synchroniza-
tion protocols), logical time strobe vector clocks that provide a
partial order of time are a viable alternative, particularly when:
(i) the s (sensing) event occurrence rate is low with respect to
∆, or (ii) physical synchronized clocks are too expensive or
not available or needed. The ultimate test for this depends on
their incorporation in useful pervasive sensornet applications.

We identify two directions for further investigation.
• The use of the partial order model of time as a specifica-

tion tool seems to be limited due to the inability to track
causality in the world plane due to the hidden channels.
However, there are likely to be some applications where
the world plane communications can be tracked by the
network plane. Such applications should be investigated.
The partial order time model will be a natural fit for such
distributed applications, e.g., a secure banking application

where the use of concurrent biometric passwords from
remote locations is used for authentication [22].

• The use of the linear order model of time as a spec-
ification tool can be addressed naturally by using the
linear order of time as a implementation tool, viz., using
physically synchronized clocks. However, the conditions
described in Section III-C seem to make the strobe clocks,
i.e., partial order of time as an implementation tool, a
viable alternative to simulate the linear order of time. A
study of real sensornet applications is required to evaluate
the viability.
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