
Journal of Computer and System Sciences 152 (2025) 103656

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Near-optimal dispersion on arbitrary anonymous graphs ✩

Ajay D. Kshemkalyani a, Gokarna Sharma b,∗
a Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
b Department of Computer Science, Kent State University, Kent, OH, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2022
Received in revised form 13 February 2025
Accepted 6 March 2025
Available online 22 March 2025

Keywords:
Distributed algorithms
Multi-agent systems
Mobile robots
Local communication
Dispersion
Exploration
Time and memory complexity

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges,
and degree Δ, we consider the problem of dispersing k ≤ n robots (or tokens) positioned
initially arbitrarily on the nodes of the graph to exactly k different nodes, one on each
node. The objective is to simultaneously minimize time and memory requirement at each
robot. The best previously known algorithm solves this problem in O (min{m,kΔ} · log�)

time storing O (log(k + Δ)) bits at each robot, where � ≤ k/2 is the number of nodes with
multiple robots positioned on them in the initial configuration. In this paper, we present
a novel multi-source DFS traversal algorithm solving this problem in O (min{m,kΔ}) time
with O (log(k + Δ)) bits at each robot. The memory complexity of our algorithm is already
asymptotically optimal and the time complexity is asymptotically optimal for the graphs
of constant degree Δ = O (1). The result holds in both synchronous and asynchronous
settings.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Given an undirected, anonymous, port-labeled graph of n memory-less nodes, m edges, and (maximum) degree Δ, we
consider the problem of dispersing k ≤ n robots (or tokens) positioned initially arbitrarily on one or more nodes of the graph
to exactly k different nodes of the graph, one on each node (which we call the Dispersion problem). This problem has many
practical applications, for example, in relocating self-driven electric cars (robots) to recharge stations (nodes), assuming that
the cars have smart devices to communicate with each other to find a free/empty charging station [2,3]. This problem is also
important because it has the flavor of many other well-studied robot coordination problems, such as exploration, scattering,
load balancing, covering, and self-deployment [2--4].

One of the key aspects of mobile-robot research is to understand how to use the resource-limited robots to accomplish
some large task in a distributed manner [5,6]. Along these lines, in this paper, we study the trade-off between time and
memory complexities to solve Dispersion by the resource-limited robots on arbitrary anonymous graphs. Time complexity
is measured as the time duration to achieve dispersion and memory complexity is measured as the number of bits stored
in persistent memory at each robot. The literature typically traded memory (or time) to obtain better time (or memory)
bounds in arbitrary anonymous graphs (for example, compare memory and time bounds of the two algorithms from [3]
given in Table 1).

✩ A preliminary version of this article appears in the Proceedings of OPODIS’21 [1].

* Corresponding author.
E-mail addresses: ajay@uic.edu (A.D. Kshemkalyani), gsharma2@kent.edu (G. Sharma).

https://doi.org/10.1016/j.jcss.2025.103656
0022-0000/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.1016/j.jcss.2025.103656
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2025.103656&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:ajay@uic.edu
mailto:gsharma2@kent.edu
https://doi.org/10.1016/j.jcss.2025.103656
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Table 1
Algorithms solving Dispersion for k ≤ n robots on undirected, anonymous, port-labeled graphs
of n memory-less nodes, m edges, and (maximum) degree Δ. � ≤ k/2 is the number of nodes
in the graph with multiple robots positioned on them in the initial configuration (we call such
nodes as multiplicity nodes); Dispersion is already solved if there is no multiplicity node. †This
time bound was obtained assuming m,k, and Δ are known to the algorithm a priori. ‡This time
bound was obtained assuming only k and Δ are known to the algorithm a priori (but not m),
which provides a different time-memory trade-off, i.e., with known m, the memory becomes sub
optimal O (logn) bits and time becomes O (min{m,kΔ} · log�) but without known m, memory
becomes optimal Θ(log(k +Δ)) bits but time becomes O (kΔ · log�) which is worse compared to
O (min{m,kΔ} · log�) when m < kΔ.

Algorithm Memory/robot Time Single-source/ Setting
(in bits) (in rounds/epochs) Multi-source

Lower bound Ω(log(k + Δ)) Ω(k) both Asynchronous
DFS Θ(log(k + Δ)) O (min{m,kΔ}) Single-source Asynchronous
[3] O (k logΔ) O (min{m,kΔ}) Multi-source Asynchronous
[3] Θ(log(k + Δ)) O (min{m,kΔ} · �) Multi-source Asynchronous
[7] O (logn) O (min{m,kΔ} · log�)† Multi-source Synchronous
[7] Θ(log(k + Δ)) O (kΔ · log�)‡ Multi-source Synchronous
[8] Θ(log(k + Δ)) O (min{m,kΔ} · log�) Multi-source Synchronous
Theorem 1 Θ(log(k + Δ)) O (min{m,kΔ}) Multi-source Synchronous
Theorem 2 Θ(log(k + Δ)) O (min{m,kΔ}) Multi-source Asynchronous

Recent studies [7,8] focused on minimizing time and memory complexities simultaneously. More precisely, they tried to
answer the following question: Can the time bound of O (min{m,kΔ}) be obtained keeping memory optimal Θ(log(k + Δ)) bits at
each robot? This question can be easily answered in the single-source case of all k ≤ n robots initially co-located on a node.
The idea is to run a depth first search (DFS) traversal starting from the node where all k robots are initially positioned, leaving
a robot on each new node visited by the traversal. It can be shown that this procedure finishes in O (min{m,kΔ}) time with
O (log(k + Δ)) bits at each robot. The challenge is how to answer it in the multi-source case of the robots initially on two
or more nodes of the graph. For the multi-source case, the algorithms in [7,8] were successful in obtaining memory bounds
either optimal or very close to optimal and time bounds at O (log �) factor away from O (min{m,kΔ}), where � ≤ k/2 is the
number of nodes in the graph with multiple robots positioned on them in the initial configuration (we call them multiplicity
nodes throughout the paper). Specifically, Kshemkalyani et al. [7] obtained two results. In the first result, they obtained a
time bound of O (min{m,kΔ} · log�) and a memory bound of O (log n) bits, and in the second result, they obtained a time
bound of O (kΔ · log �) and a memory bound of Θ(log(k + Δ)) bits. In the first result, they assumed parameters m,k, and Δ
are known to the robots a priori and in the second result, only k and Δ are assumed to be known to the robots. The first
result is an improvement of �/ log � factor compared to the O (min{m,kΔ} · �) time bound of [3] with sub-optimal memory.
The second result is optimal in memory but the time bound has a O (kΔ) factor instead of a O (min{m,kΔ}) factor in the
first result, which is worse when m < kΔ. Shintaku et al. [8] obtained the optimal memory bound of Θ(log(k +Δ)) bits and
the time bound O (min{m,kΔ} · log �) without robots knowing m,k, and Δ a priori.

In this paper, we present a new deterministic algorithm for Dispersion that settles the question completely, i.e., it obtains
the time bound of O (min{m,kΔ}) keeping memory optimal at Θ(log(k+Δ)) bits at each robot, which is the first such result
for the multi-source case. The time bound is an improvement of a O (log �) factor compared to the best previously known
algorithms [7,8]. In fact, the result is obtained without knowing any of the parameters m,k, and Δ by robots a priori.
Additionally, the result shows that the time bound is independent of the number of multiplicity nodes �. Furthermore, the
time and memory bounds match the respective bounds for the single-source case. Additionally, the memory complexity of
our algorithm is already asymptotically optimal and time complexity is within O (Δ) factor from the asymptotically optimal
time bound of Ω(k) for any arbitrary graph of arbitrary degree Δ < n [3]. If the graph happens to be of constant degree
Δ = O (1) (which of course does not need to be known beforehand), then the time complexity also becomes asymptotically
optimal, i.e., our algorithm becomes simultaneously optimal in time and memory requirement, the first such result.

1.1. Overview of the model and results

We consider k ≤ n robots operating on an undirected, anonymous (no node IDs), port-labeled graph G of n memory
less nodes, m edges, and degree Δ. The ports (leading to incident edges) at each node have unique labels from [0, δ − 1],
where δ is the degree of that node. (Δ is the maximum over δ’s of all n nodes.) The robots have unique IDs in the range
[1,kO (1)]. In contrast to graph nodes which are memory-less, the robots have memory to store information (otherwise
the problem becomes unsolvable because the co-located robots cannot distinguish each other and cannot decide on which
would leave the node and which would settle at the node). Finally, we consider the local communication model where, at any
time, the robots co-located at the same node of G can communicate and exchange information, if needed, but they cannot
communicate and exchange any information when located on different nodes. We call an initial configuration single-source
if all k robots are initially positioned on a single node of G , otherwise we call it multi-source. Even in the multi-source
initial configurations, the robots can only be on 1 < k′ < k nodes, since for the case of k′ = k, the initial configuration is

2

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

already a configuration that solves Dispersion. Furthermore, there can be only at most � ≤ k/2 multiplicity nodes in any
initial configuration, since for a node to be designated multiplicity node, it must have at least 2 robots positioned on it, and
there are altogether k robots.

In this article, we establish the following theorem in the synchronous setting, in which all robots are activated in a round
and they perform their operations simultaneously in synchronized rounds. In the synchronous setting, the time complexity
(of the algorithm) is measured in rounds (or steps).

Theorem 1. Given any initial configuration of k ≤ n mobile robots positioned on the nodes of an undirected, anonymous, port-labeled
graph G of n memory-less nodes, m edges, and degree Δ, Dispersion can be solved deterministically in O (min{m,kΔ}) rounds in the
synchronous setting storing O (log(k + Δ)) bits at each robot.

Theorem 1 improves the time bound O (min{m,kΔ} · log�) of the best previously known algorithms [7,8] by a factor of
O (log �) keeping the memory optimal. Interestingly, both time and memory bounds of Theorem 1 match asymptotically the
O (min{m,kΔ}) time and O (log(k + Δ)) memory bounds for the single-source case, which is inherent for any DFS traversal
based algorithm for Dispersion. Finally, if the considered graph is of degree constant (of course the degree does not need to
be known beforehand), i.e., Δ = O (1), then our algorithm becomes asymptotically optimal with respect to time in addition
to memory, which is the first such result for Dispersion (Theorem 1). Notice that the memory is asymptotically optimal
irrespective of the graph degree and time is asymptotically optimal within O (Δ) for any graph with any degree since there
is a time lower bound of Ω(k) [3].

Furthermore, we extend Theorem 1 to the asynchronous setting where robots become active and perform their operations
at an arbitrary speed, keeping the same time and memory bounds. Here we measure time in epochs (instead of rounds),
which represents the time interval of each robot becoming active at least once.

Theorem 2. Given the setting as in Theorem 1, Dispersion can be solved deterministically in O (min{m,kΔ}) epochs in the asyn
chronous setting storing O (log(k + Δ)) bits per robot.

1.2. Challenges

The single-source Dispersion can be solved in min{4m − 2n + 2, 4kΔ} rounds in any anonymous graph G having n
memory-less nodes using the well-known DFS traversal [9] storing O (log(k + Δ)) bits at each robot. The multi-source
Dispersion with the number of sources equal to k finishes in a single round, since k robots are already on k different nodes,
a solution configuration for Dispersion. Therefore, the challenging case is the multi-source Dispersion with the number of
sources k′ satisfying 1 < k′ < k. Note here that � ≤ k′ since � only counts the number of sources with at least two robots
positioned on them and k′ considers all the nodes with at least a robot positioned on them.

The early papers obtained better bounds on either time or memory, trading one for another. The first algorithm of
[3] obtained O (min{m,kΔ}) time bound with memory O (k log Δ) bits at each robot. The second algorithm of [3] kept
memory optimal at O (log(k + Δ)) bits at each robot and established time O (min{m,kΔ} · �), where � ≤ k/2 is the number
of multiplicity nodes in the initial configuration. Their algorithm starts � different single-source DFS traversals in parallel
from � multiplicity sources. Each DFS traversal is given a unique ID, which is the smallest robot ID present on that source.
Each DFS traversal leaves a robot on each new node it visits. If no DFS traversals meet, then k robots are on k different
nodes and Dispersion is solved in time and memory bounds akin to the single-source DFS bounds. In case that two (or
more) DFS traversals meet, the higher ID DFS traversal subsumes the lower ID DFS traversal. The problem here is that if the
lower ID DFS traversal meets the higher ID DFS traversal, in the subsumption process, the higher ID DFS traversal may again
visit all the nodes that the lower ID DFS traversal has already visited. Therefore, in the worst-case, the time becomes the
multiplication of O (min{m,kΔ}) rounds for the single-source DFS traversal times � parallel traversals, i.e., O (min{m,kΔ} · �)
rounds.

Recent studies [7,8] reduced the O (�) factor in the time bound to O (log�). Providing the m,k, and Δ parameters to
the algorithm beforehand, Kshemkalyani et al. [7] ran �-source DFS traversals in passes of O (min{m,kΔ}) rounds. After
each pass, they guaranteed that the �-source DFS traversal reduces to a �/2-source DFS traversal. Therefore, in a total of
�log �� passes, the �-source DFS traversal reduces to a single-source DFS traversal, which then finishes in an additional
O (min{m,kΔ}) rounds, giving in the worst-case, O (min{m,kΔ} · log �) rounds. The memory requirement is O (log n) bits
at each robot, due to the memory to store m(≤ n2) which dominates the memory to store k(≤ n) and Δ(< n). With only
knowing the k and Δ parameters beforehand (and not m), the algorithm of Kshemkalyani et al. [7] can run the �-source
DFS traversals in passes of O (kΔ) rounds, solving Dispersion in O (kΔ · log �) rounds. The memory requirement becomes
the optimal Θ(log(k + Δ)) bits at each robot, improving on the O (log n) bits. The problem is that the time bound is worse
when m < kΔ. Recently, Shintaku et al. [8] established the time bound of O (min{m,kΔ} · log �) rounds and memory bound
of optimal Θ(log(k + Δ)) bits at each robot, without the algorithm knowing m,k, and Δ beforehand.

Observing the techniques of [7,8], the algorithms developed there subsume different DFS traversals pairwise which helps
in improving the sequential subsumption of the different DFS traversals in the algorithm of [3]. The implication of the
pairwise subsumption is that only a O (log �) factor more cost is needed to subsume all � parallel DFS traversals to obtain a

3

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

single DFS traversal. This O (log �) factor is significantly better compared to the O (�) factor obtained due to the sequential
subsumption. Recall that since � can be O (k), O (log �) becomes O (log k) which is a significant improvement compared to
an O (�) = O (k) factor.

Despite these benefits, the time bound due to the pairwise subsumption does not match the single-source DFS traversal
time bound and, more importantly, it is not clear whether the O (log �) factor arising in the pairwise subsumption technique
in [7,8] can be removed from the time bound. Therefore, a new set of ideas are needed, which we develop in this paper
and they constitute our main contribution.

1.3. Techniques

We use parallel multi-source DFS traversals as in [7,8] but devise a novel subsumption technique, leading to
O (min{m,kΔ}) time with optimal O (log(k + Δ)) bits at each robot, removing the O (log�) factor from the time bound
of the best previously known algorithms [7,8] and matching the time and memory bounds for the single-source DFS traver
sal. Each DFS traversal constructs a DFS tree. Our technique executes subsumption on the two DFS traversals that meet based
on the size of the DFS traversal measured as the number of settled robots with the same DFS tree ID. In fact, the larger size
DFS traversal subsumes the smaller size DFS traversal. The subsumed DFS traversal is collapsed to a single node, collecting
all the robots on that traversal at that node, and those robots are given to the subsuming DFS traversal allowing it to extend
its DFS traversal. The benefit is two-fold: (i) the size of the subsumed traversal is smaller than the size of the subsuming
traversal and hence the collapse of the subsumed traversal can be done in time proportional to the size of the subsumed
traversal, and (ii) it avoids the need by the subsuming traversal of revisiting the nodes of the subsumed traversal more
than once after the subsumption, a crucial aspect in removing the O (log �) factor from the time bound. The subsuming
traversal may visit the nodes of the subsumed traversal at most once more. Thus the subsuming traversal visits all nodes
at most once. Furthermore, one traversal always remains subsuming and continues to grow throughout the execution of
the algorithm. The strength of our technique is that it does not use well-separated passes and the algorithm does a more
careful bookkeeping of the time.

This is in contrast to the technique used in the best previously known algorithms [7,8] that uses IDs of the DFS traver
sals (larger ID DFS traversal subsumes smaller ID DFS traversal). The drawback of the subsumption based on DFS ID is
that the algorithm cannot limit/avoid the repeating traversal of the already built DFS tree, adding a O (log �) factor in the
subsumption process, and hence leading to a O (min{m,kΔ} · log�) time bound.

We particularly tackle two major challenges: (i) how to execute the size-based subsumption, and (ii) what to do when
more than two DFS traversals meet at different nodes forming a transitive chain, or more generally, what we define as a
meeting graph (Definition 1). The first challenge is due to the fact that the exact size of the DFS traversal is only known by
its head node which is either the current node that has all not-yet-settled robots (if any) belonging to that DFS traversal, or
else the node on which the last robot belonging to that DFS traversal has settled. Therefore, it requires for the meeting DFS
traversal to traverse the met DFS tree to reach its head node to find its size. We show that the DFS tree can be correctly
traversed, the size can be correctly determined, and the DFS tree can be correctly collapsed. Our technique of collapsing the
subsumed traversal successfully fulfills this requirement in time proportional to the size of the smaller size DFS traversal.

The second challenge is due to the fact that if not synchronized carefully, different DFS traversals in the transitive chain
or meeting graph might run into a deadlock situation. We devise a technique that partitions the DFS traversals in the
meeting graph such that in each partition, one DFS traversal subsumes the others without introducing any deadlock and in
time proportional to the size of the DFS traversals (or the DFS trees) that were subsumed and collapsed.

Through these techniques, we finally show that one DFS traversal (among those that meet in the meeting graph) always
grows bigger and the total cost remains proportional to the total size of the DFS traversals that are subsumed by the DFS
traversal, giving our claimed time bound. Interestingly, the process is executed keeping the memory at an (asymptotically)
optimal Θ(log(k + Δ)) number of bits per robot.

1.4. Related work

Augustine and Moses Jr. [2] proved a memory lower bound of Ω(log n) bits at each robot and a time lower bound of
Ω(D) (Ω(n) in arbitrary graphs) for any deterministic algorithm for Dispersion on graphs. They then provided deterministic
algorithms using O (log n) bits at each robot to solve Dispersion on lines, rings, and trees in O (n) time. For arbitrary graphs,
they gave one algorithm using O (log n) bits at each robot with O (mn) time and another using O (n log n) bits at each robot
with O (m) time. All the upper and lower bound results of Augustine and Moses Jr. [2] assume k = n.

Kshemkalyani and Ali [3] and subsequent papers [7,8] considered the cases of k ≤ n. Kshemkalyani and Ali [3] provided
an Ω(k) time lower bound for arbitrary graphs and a memory lower bound of Θ(log(k+Δ)) bits at each robot. Kshemkalyani
and Ali [3] then provided three deterministic algorithms for Dispersion on arbitrary graphs: (i) The first algorithm using
O (k log Δ) bits at each robot with O (min{m,kΔ}) time, (ii) The second algorithm using O (D log Δ) bits at each robot
with O (ΔD) time (D is the diameter of graph), and (iii) The third algorithm using O (log(k + Δ)) bits at each robot with
O (min{m,kΔ} · �) time. As outlined in Table 1, the � factor in [3] is improved to log � in Kshemkalyani et al. [7] assuming
m,k, and Δ are known beforehand. The knowledge on m,k, and Δ in [7] is removed in Shintaku et al. [8]. For grid graphs,
Kshemkalyani et al. [10] provided an algorithm that runs in O (min{k,

√
n}) time using Θ(log k) bits memory at each robot,

4

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

which is optimal for k = n/c, for some constant c ≥ 1. Randomized algorithms were presented in [11,12] mainly to reduce
the memory requirement at each robot. These algorithms typically considered the case of single-source Dispersion.

Recently, Kshemkalyani et al. [13] provided an algorithm for arbitrary graphs with time O (min{m,kΔ}) when all robots
can communicate and exchange information in every round (that is, even the non-co-located robots can communicate and
exchange information, which is called the global communication model). The global model comes handy while dealing with
subsuming the multiple DFS traversals that meet in the transient chain or meeting graph. The information each robot can
have allows the head node of the highest ID DFS traversal (satisfying a certain property) in the transient chain/meeting
graph to ask the head nodes of the rest of the DFS traversals to stop growing their DFS tree. This makes sure that one DFS
traversal always grows and others stop as soon as they find that they were met by the DFS traversal that is of higher ID
then theirs. The result presented in this paper is different since only the co-located robots can communicate and it is called
the local communication model. In the local communication model, it is not possible to extend the idea that is developed for
the global communication model. For grid graphs in the global communication model, Kshemkalyani et al. [10] provided a
time and memory optimal Θ(

√
k) time algorithm with Θ(log k) bits at each robot.

Dispersion in anonymous dynamic (undirected) graphs was considered in [4] where the authors provided some impos
sibility, lower, and upper bound results. Dispersion under crash faults was considered in [14] and under Byzantine faults
was considered in [15,16] establishing a spectrum of interesting results. Recently, Dispersion was considered in directed
anonymous graphs, where the authors [17] provided some impossibility, time and memory lower and upper bound results.

The related problem of exploration has been quite heavily studied in the literature for specific graphs such as grids
and rings as well as arbitrary graphs, e.g., [18--24]. It was shown that a robot can explore an arbitrary anonymous graph
using Θ(D log Δ)-bits memory; the runtime of the algorithm is O (ΔD+1) [21]. In the model where graph nodes also have
memory, Cohen et al. [19] gave two algorithms: The first algorithm uses O (1)-bits at the robot and 2 bits at each node,
and the second algorithm uses O (log Δ) bits at the robot and 1 bit at each node. The runtime of both algorithms is O (m)

with preprocessing time of O (mD). The trade-off between exploration time and number of robots is studied in [24]. The
collective exploration by a team of robots is studied in [22] for trees. The dual of the Dispersion problem is gathering, which
has been extensively studied, e.g., [25,26]. Another problem related to Dispersion is the scattering of k robots on graphs. This
problem has been mainly studied for rings [27,28] and grids [29]. Recently, Poudel and Sharma [30,31] provided improved
time algorithms for uniform scattering on grids. Furthermore, Dispersion is related to the load balancing problem, where a
given load at the nodes has to be (re-)distributed among several processors (nodes). This problem has been studied quite
heavily in graphs, e.g., see [32,33]. We refer readers to these two excellent books [5,6] for many other recent developments
in these topics.

1.5. Roadmap

We discuss model details in Section 2. The single-source DFS traversal is reviewed in Section 3. We then present our
(synchronous) multi-source DFS traversal algorithm in Section 4, and prove its correctness, time, and memory complexities
in Section 5, which establishes Theorem 1. We then discuss the extensions to the asynchronous setting, which establishes
Theorem 2. Finally, we conclude in Section 6 with a short discussion.

2. Model

Graph. Let G = (V , E) be a connected, unweighted, and undirected graph of n nodes, m edges, and maximum degree Δ. G
is anonymous -- nodes do not have identifiers but, at any node, its incident edges are uniquely identified by a port number
in the range [0, δ − 1], where δ is the degree of that node. (Δ is the maximum among the degree δ of the nodes in G .)
We assume that there is no correlation between two port numbers of an edge. Any number of robots are allowed to move
along an edge at any time (i.e., unlimited edge bandwidth). The graph nodes are memory-less (do not have memory).

Robots. Let R = {r1, r2, . . . , rk} be the set of k ≤ n robots residing on the nodes of G . No robot can reside on the edges of
G , but one or more robots can occupy the same node of G , which we call co-located robots. In the initial configuration,
we assume that all k robots in R can be in one or more nodes of G but in the final configuration there must be exactly
one robot on k different nodes of G . Suppose robots are on k′ ≤ k nodes of G in the initial configuration. We denote by
� ≤ k′ the number of nodes in the initial configuration which have at least two robots co-located on them, i.e., there are �
multiplicity nodes.

Each robot has a unique �log k�-bit ID taken from the range [1,kO (1)]. When a robot moves from node u to node v in
G , it is aware of the port of u it used to leave u and the port of v it used to enter v . We do not restrict the time duration
of the local computation of the robots. The only guarantee is that all this happens in a finite cycle of ``Communicate
Compute-Move'' (defined below) and we measure time with respect to the number of cycles until Dispersion is achieved.
Furthermore, it is assumed that each robot is equipped with memory (the goal is to use as less memory as possible). The
robots work correctly at all times, i.e., they do not experience faults (neither crash nor Byzantine).

Communication Model. This paper considers the local communication model where only co-located robots at a graph node
can communicate and exchange information. This model is in contrast to the global communication model where co-located
as well as non-co-located robots (i.e., at different graph nodes) can communicate and exchange information.

5

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Time Cycle. An active robot ri performs the ``Communicate-Compute-Move'' (CCM) cycle as follows.

• Communicate: Let ri be on node vi . Since we consider the local communication model, for each robot r j ∈ R that is
co-located at vi , ri can observe the memory of r j , including its own memory;

• Compute: ri may perform an arbitrary computation using the information observed during the ``communicate'' portion
of that cycle. This includes determination of a (possibly) port to use to exit vi , the information to carry while exiting,
and the information to store in the robot(s) r j that stays at vi ;

• Move: ri writes new information (if any) in the memory of a robot r j at vi , and exits vi using the computed port to
reach a neighbor node of vi .

Robot Activation. In the synchronous setting, every robot is active in every CCM cycle. In the asynchronous setting, there is
no common notion of time and no assumption is made on the number, duration, and frequency of CCM cycles in which a
robot can be active. The only guarantee is that each robot is active infinitely often.

Time and Memory Complexity. For the synchronous setting, time is measured in rounds. Since a robot in the asynchronous
setting could stay inactive for an indeterminate but finite time, we bound a robot’s inactivity introducing the idea of an
epoch. An epoch is the smallest interval of time within which each robot is guaranteed to be active at least once [34]. Let ti
be the time at which a robot ri ∈ R starts its CCM cycle. Let t j be the time at which the last robot finishes its CCM cycle.
The time interval t j − ti is an epoch. Memory complexity is measured as the number of bits stored in persistent memory at
each robot. The algorithm we present does not require more memory in the Compute phase of the CCM cycle.

Our goal is to solve Dispersion minimizing both time (measured in rounds/epochs) and memory complexities (measured
in bits stored per robot).

3. Single-source DFS traversal algorithm

We describe here a single-source DFS traversal algorithm, D F S(k), that disperses all k robots in the set R(v) situated
initially at a node v to exactly k nodes of G , solving Dispersion. D F S(k) will be heavily used in Section 4 as a basic building
block for the multi-source DFS traversal algorithm.

Each robot ri stores in its memory five variables.

(i) parent (initially assigned ⊥), for a settled robot, denotes the port through which it first entered the node it is settled
at;

(ii) child (initially assigned −1), for an unsettled robot, stores the port that it has last taken (while entering/exiting the
node). For a settled robot, it indicates the port through which the other robots last left the node except when they
entered the node in forward mode for the second or subsequent time;

(iii) treelabel (initially assigned min{R(v)}) stores the ID of the smallest ID robot the tree is associated with;
(iv) state ∈ { f orward,backtrack, settled} (initially assigned f orward). D F S(k) executes in two phases, f orward and

backtrack [9];
(v) rank (initialized to 0), for a settled robot indicates the serial number of the order in which it settled in its DFS tree.

The algorithm pseudo-code is shown in Algorithm 1. The robots in R(v) move together in a DFS, leaving behind the
highest ID robot at each newly discovered node. They all adopt the ID of the lowest ID robot in R(v) which is the last to
settle, as their treelabel. The algorithm executes in forward and backtrack modes.

Theorem 3 ([7]). The single-source DFS traversal algorithm D F S(k) solves Dispersion for k ≤ n robots initially positioned on a single
node of an arbitrary anonymous graph G of n memory-less nodes, m edges, and degree Δ in min{4m − 2n + 2,4kΔ} rounds using
O (log(k + Δ)) bits at each robot.

Proof. We include the proof to make the article self-contained. We first show that Dispersion is achieved by D F S(k).
Because every robot starts at the same node and follows the same path as other not-yet-settled robots until it is assigned
to a node, D F S(k) resembles the DFS traversal of an anonymous port-numbered graph [2] with all robots starting from the
same node. Therefore, D F S(k) visits k different nodes, where each robot is settled.

We now prove the time and memory bounds. The DFS traversal may take up to 4m − 2n + 2 rounds, which is derived as
follows. First consider the worst case where k = n. Define a forward edge as an edge which when traversed in the forward
phase of the DFS traversal leads to the placement of a robot and define a backward edge as an edge which when traversed
in the forward phase leads to a node where a robot has already been placed. There are n − 1 forward edges and each is
traversed twice, once in the forward phase and once in the backward phase. There are m − (n − 1) backward edges and each
is traversed four times, once in both directions in the forward phase and once in both directions in the backward phase.
This leads to 4m − 2n + 2 edge traversals and as many rounds. Second, observe that in 4kΔ rounds, D F S(k) is guaranteed to
visit at least k different nodes of G because in the DFS, each edge can be traversed at most 4 times and hence at most 4Δ

traversals can visit a particular node [3]. If 4m − 2n + 2 < 4kΔ, D F S(k) visits all n nodes of G . Therefore, it is clear that the

6

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Algorithm 1: Algorithm DFS(k) for DFS traversal of a graph by k robots from a rooted initial configuration. Code for
robot i. r is robot settled at the current node.
1 Initialize: child ← −1, parent ←⊥, state ← f orward, treelabel ← min{R(v)}, rank ← 0
2 for round = 1 to min{4m − 2n + 2,4kΔ} do
3 child ← port through which node is entered
4 if state = f orward then
5 if node is free then
6 rank ← rank + 1
7 if i is the highest ID robot on the node then
8 state ← settled, i settles at the node (does not move henceforth), parent ← child, treelabel ← lowest ID robot at the node,

child ← (child + 1) mod δ

9 else
10 child ← (child + 1) mod δ

11 if child = parent of robot settled at node then
12 state ← backtrack

13 else
14 state ← backtrack

15 else if state=backtrack then
16 child ← (child + 1) mod δ, r.child ← child
17 if child �= parent of robot settled at node then
18 state ← f orward

19 move out through child

runtime of D F S(k) is min{4m − 2n + 2,4kΔ} rounds. Regarding memory, variable treelabel takes O (log k) bits, state takes
O (1) bits, and parent and child take O (log Δ) bits. The k robots can be distinguished through O (log k) bits since their IDs
are in the range [1,kO (1)]. Thus, each robot requires O (log(k + Δ)) bits. �
4. Multi-source DFS traversal algorithm

4.1. Idea and algorithm

We now discuss the multi-source DFS traversal algorithm, which is the main contribution of this article.
The root of a DFS i (which equals the identifier (treelabel)) is the node where the first robot settles. This is the settled

robot having rank = 1. The head of a DFS i is the node where the unsettled robots (if any) of that DFS are currently located
at, or else it is the node where the last robot of that DFS settled. Node root(i) is reachable by following parent pointers;
node head(i) is reachable by following child pointers.

In the initial configuration, if robots are at k′ < k nodes (k′ = k solves Dispersion in the first round without any robot
moving), k′ DFS traversals are initiated in parallel. If there is a single robot on a node, then it settles at that node and does
not do anything. A DFS i meets DFS j if the robots of DFS i arrive at a node x where a robot from DFS j is settled. Node x
is called a junction node of head(i). If robots from multiple DFSs/nodes arrive at a node where there is no settled robot, a
robot from the DFS with the highest ID settles in that round and the other DFSs are said to meet this DFS. If DFS i has met
DFS j, we define head(i) to be blocked, else we define head(i) to be free.

The size di of a DFS i is the number of settled robots in that DFS. We first consider the isolated case where one DFS i
meets one DFS j. When DFS i meets DFS j, the first task is to determine whether di > d j or d j > di , where we define a
total order (>) by using the DFS IDs as tiebreakers if the number of settled robots is the same. Size di is known to robots
of DFS i at head(i) by reading rank of DFS tree i. The unsettled robots at head(i) traverse DFS j to head(j) in an exploration
to determine d j . If they reach head(j) without encountering a node with rank greater than di , then di > d j . The junction of
head(j) is defined to be locked by i if DFS i’s robots are the first to reach head(j) in such an exploration (and at this time, j’s
exploratory robots that went on exploration because head(j) was blocked have yet to return to head(j)). If head(j) is locked
by i then head(j) has not been locked yet by any other k. However, if the exploratory robots of DFS i encounter a node
with rank greater than di before reaching head(j), they return to head(i) as d j > di . A key advantage of this mechanism is
that di > d j can be determined in time proportional to min{di,d j}.

Knowing the sizes, the general idea is that if di is greater, DFS j is subsumed by DFS i and DFS j collapses by having all its
robots collected to the head(i) to continue DFS i. This collapse however cannot begin immediately because j’s robots may be
exploring some DFS l that DFS j has met and they must return to head(j) before j starts its collapse. (The algorithm ensures
there are no such cyclic waits to prevent deadlocks.) However, if d j is greater, DFS i gets subsumed, i.e., DFS j subsumes DFS
i. The free robots of i exploring j return to head(i), DFS i collapses by having all its robots collected to head(i), and then
they all move to head(j) to continue DFS j. Now, these above policies regarding which DFS collapses and gets subsumed
by which other have to be adapted to the following fact -- due to concurrent actions in different parts of G , a DFS j may

7

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Algorithm 2: Algorithm Exploration to explore parent(i) component on reaching junction of head(i) by DFS of com
ponent i.
1 explorers move to root(parent(i)) leaving retrace pointers for return path. Then they follow child pointers from root(parent(i)) to head(parent(i)).

There are 4 possibilities.
2 if dparent(i) > di , i.e., rank > di is encountered, implying explorers do not reach head(parent(i)) (possibly the next junction) then
3 return to head(i) junction
4 if head(i) is not locked then
5 Collapse_Into_Parent(i)

6 else if head(i) is locked by j then
7 Collapse_Into_Child(i, j)

8 else if dparent(i) < di , implying head(parent(i)) is reached (possibly next junction) then
9 lock head(parent(i)) if it is a junction node

10 traverse parent(i) informing each node (a) that parent(i) will be collapsing (and whether it is locked), and also (b) value of dparent(i), and
return to head(parent(i))

11 wait until parent(i)’s explorers (if head(parent(i)) is junction) return from parent(parent(i))
12 if head(parent(i)) is junction node then
13 follow action (Collapse_Into_Child(parent(i), i)) which will be determined on their return

14 else if head(parent(i)) is not junction node then
15 execute Collapse_Into_Child(parent(i), i)

16 else if exploring robots find parent(i) is collapsing or learn that parent(i) will be collapsing and is possibly locked then
17 Parent_I s_Collapsing

18 else if explorers E’s path meets another explorers F ’s path then
19 wait until F return
20 if parent(i) is collapsing then
21 Parent_I s_Collapsing

22 else if parent(i) is not collapsing then
23 continue E ’s exploration

be met by different other DFSs, and DFS j may in turn meet another DFS concurrently. Further, transitive chains of such
meetings can occur concurrently. This leads us to formalize the notion of a meeting graph.

Definition 1. (Meeting graph.) The directed meeting graph G ′ = (V ′, E ′) is defined as follows. V ′ is the set of concurrently
existing DFS IDs. There is a (directed) edge in E ′ from i to j if DFS i meets DFS j.

If multiple DFSs meet DFS j and head(j) is locked by i among them, then j will collapse and get subsumed by i.
For an edge (i, j) in the meeting graph, DFS j is defined to be parent(i) and DFS i is defined to be child(j). The size

of a node in the meeting graph is defined to be the size of the DFS for that node. Nodes in V ′ have an arbitrary in-degree
(< k′) but out-degree at most 1. There may also be a cycle in each connected component of G ′ . Henceforth, we focus
on a single connected component of G ′ by default; other connected components are dealt with similarly. The algorithm
partitions a connected component of G ′ into (connected) sub-components such that each sub-component is defined to have
a master node M into which all other nodes of that sub-component are subsumed, directly or transitively. At most one
sub-component may have a cycle. However the algorithm ensures that there is no cyclic wait for subsuming in that cycle, as
will follow from Property 1. In each sub-component, the master node M has the highest value of d and the other smaller (or
equal sized) nodes, i.e., DFSs, get subsumed. The pseudo-code is given in Algorithm 2 and in Algorithm 3. In Algorithm 2,
j is explored by robots from i to determine if di > d j (therefore, we sometimes call Algorithm 2 Exploration), and the
appropriate procedures for collapsing and collecting are given in Algorithm 3 (therefore, we sometimes call Algorithm 3
various procedures invoked).

For any given node i ∈ V ′ , its master node is given as per Algorithm 4. Note that this algorithm is not actually executed
and the master node of a node need not be known -- it is given only to aid our understanding and in the complexity proof.
If master(j) gets invoked directly or transitively in the invocation of master(i) for any i, then i must be subsumed and its
robots collected completely before j gets subsumed and its robots are collected completely.

As the actions of collapsing occur concurrently (but acyclically, as we will show in Theorem 4), there should not arise
a situation where a node j is collapsing (to be subsumed into its parent or some child) while some (other) child i is
concurrently collapsing in order to be subsumed into its parent j only to find after collapsing that its parent j has already
collapsed and disappeared/been subsumed. To prevent this, when it is determined that i should collapse into its parent,
but before the collapse actually begins, a mark is left at j’s robot stationed at the junction node head(i) where DFS i has
met DFS j. While j concurrently collapses (in which it has to visit the nodes of DFS j to collect the settled robots), if its
explorers visit a node of j where there is a mark left, they deduce that they should pause j’s collapse until its child node
(i) that has met j at that junction node completes its collapse and assembles all i’s robots at that junction node. The mark
is reset by i at the time, signaling to j that it is safe to collect the j DFS robots along with i’s collapsed robots from that

8

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Algorithm 3: Algorithms Collapse_Into_Child, Collapse_Into_Parent, and Parent_Is_Collapsing.

1 Collapse_Into_Child(i,j)

2 explorers of i go from head(i), which may be locked by j, to root(i)
3 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to head(j)) marked by retrace pointers, waiting until

collapsing_children = 0 at each node
4 from root(i) collect all robots accumulated on collapse path to j’s junction of head(j)
5 collapsed robots change ID treelabel to j, and state, parent , child, rank to that of the explorers of j
6 if head(j) is locked by l then
7 Collapse_Into_Child(j, l)

8 else if head(j) is not locked then
9 continue j’s DFS

10 Collapse_Into_Parent(i)

11 robot at head(i) increments collapsing_children
12 explorers of i go from head(i) to root(i) leaving collapse pointers
13 explorers of i do i’s DFS tree traversal collecting all robots to collapse path (root(i) to head(i)) marked by collapse pointers, waiting until

collapsing_children = 0 at each node
14 from root(i) collect all robots accumulated on collapse path to i’s junction of head(i)
15 robot at head(i) decrements collapsing_children
16 explorers of i and collapsed robots change ID treelabel to parent(i)
17 explorers of i and collapsed robots go to root(parent(i)) and then to head(parent(i)) by following child pointers
18 explorers of i and collapsed robots change state, parent , child, rank to that of the settled robot at head(parent(i)) (if free) or of explorers of

parent(i) at head(parent(i)) (otherwise)
19 if parent(i) along the way is found to be collapsing then
20 collapse with it; break()

21 if head(parent(i)) is free then
22 continue parent(i)’s DFS

23 else if head(parent(i)) is blocked and possibly also locked then
24 wait until parent(i) collapses (and collapse with it) or becomes unblocked (and continue parent(i)’s action acting as its unsettled robots)

25 Parent_Is_Collapsing

26 retrace path to head(i) junction
27 if di < dparent(i) and head(i) junction is not locked then
28 Collapse_Into_Parent(i)

29 else if di > dparent(i) and head(i) junction is not locked and remains unlocked until parent(i)’s collapse reaches head(i) then
30 unsettled robots get absorbed in parent(i) during its collapse

31 else if head(i) junction of i (is locked by j) or (gets locked by j before parent(i)’s collapse reaches head(i) and di > dparent(i)) then
32 Collapse_Into_Child(i, j)

Algorithm 4: Algorithm Determine_Master(i) to identify master component in which component i will collapse.

1 master(i)

2 if dparent(i) > di then
3 t1 ← time when explorers of i return to head(i) from parent(i)
4 t2 (initialized to ∞) ← the time, if any, when first child j locks head(i)
5 if t1 < t2 then w ← parent(i)
6 else if t1 > t2 then w ← j
7 return(master(w))

8 else
9 if ∃ a first child j to lock head(i) then return(master(j))

10 else return(i)

junction node and continue its collapse. As multiple child DFSs can meet j at the same junction node and if they are all
collapsing into their parent j, they must all collapse before j collects that junction node robot; thus they must all leave a
mark at that junction node. This setting and resetting the mark takes the form of incrementing and decrementing an integer
counter, which the algorithm names collapsing_children. When explorers of j visit each node in j when it is collapsing (to
be subsumed by either its parent or some child), they wait for this counter to have value 0 before they collect the robot
stationed there (along with possibly other robots of collpased children). Observe from the algorithm code that there will be
no cyclic waits among DFSs’ explorers.

Due to concurrent operations by the DFSs, multiple DFSs j may meet DFS i concurrently at possibly different junction
nodes and start exploration of i from head(j) to go to head(i) via root(i). DFS j explorers have to leave retrace pointers
going from head(j) to root(i) to enable their way back. Different DFSs’ exploratons’ exploration paths in i may overlap. To
bound the memory required to store multiple (up to k′ − 1) retrace pointers (along with as many explorer_I D variables) at
any settled robot in i to the memory for a single retrace pointer, the algorithm does as follows. When an explorer set E ’s
path reaches a node in i where explorer set F has already passed in the forward exploration, explorer set E ’s robots wait

9

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

until explorer set F ’s robots return to that node on their way back and then E ’s robots resume their forward exploration,
reusing the retrace pointer at the robots settled in i (and resetting it on the way back). Whereas if explorers from different
DFSs arrive at a node of i in the same round, priority such as based on DFS ID can be used to select which explorer set
proceeds while the others wait (acyclically).

4.2. Properties and correctness of the algorithm

The algorithm satisfies the following property.

Property 1. For any node i in the meeting graph:

1. i collapses into one larger child j if j has locked head(i)1 or explorers of j are the first to reach unblocked head(i). Otherwise i
collapses into parent(i) if parent(i) is larger and explorers of i return to head(i) from parent(i) and head(i) is not locked until
then. If neither of the above occurs, i does not collapse.

2. A smaller child(i) collapses into i if head(child(i)) has not been locked by some child(child(i)) by the time that child(i)’s explorers
return from exploring i to head(child(i)).

3. A larger child(i) does not collapse into i.
4. A larger child(i) that has not locked head(i) and such that head(child(i)) is not locked until the time the collapse of i reaches

head(child(i)) transfers its unsettled robots, which are at head(child(i)), to i and those robots get transitively absorbed by
master(i).

5. parent(i) collapses into i if i is larger and has locked head(parent(i))2 or if i is larger and its explorers are the first to reach
unblocked head(parent(i)).

6. i neither collapses nor subsumes if (i is unblocked or is blocked on a smaller parent(i) that collapses into its some other child or its
parent), and (there is no child(i) or each child(i) is smaller and locked by one of its children child(child(i))) into which that child(i)
collapses.

Theorem 4. (Deadlock-freedom/Safety:) In any connected component of the meeting graph of size more than one, there will be no
cyclic waits and no concurrent cyclic collapse/subsumption.

Proof. If there is a cycle in a connected component of G ′ spanning more than one sub-component, such a cycle is temporary
until exploration and subsumption completes; any collapses will be into more than one master and there cannot arise any
permanent cyclic waits or concurrent cyclic collapse/subsumption.

So consider the case that there is a cycle in any connected sub-component of G ′ . We show that this cycle is temporary.
Let i be any node (DFS) such that di is a local minima in the cycle -- its size being less than that of its child and parent in
the cycle. Only one of the following two must hold. (a) i has a larger child j that has locked head(i) (before explorers of i
return to head(i)), in which case i collapses into j. (b) Explorers of i return to head(i) from the larger parent(i) and head(i)
is not locked until then, in which case i collapses into parent(i). In either case, the cycle which existed temporarily (until
the explorations took place) is broken. This also follows from Property 1. 1; i will collapse and be subsumed either by its
parent or that child in the cycle, or by a (larger) child not in the cycle. In any case, the cycle will be broken and neither will
there be a concurrent cyclic collapse/subsumption as subsumption will not occur on both the incident edges in the cycle.

Further, the temporary cycle that might have existed was for the duration of the explorations. Observe from the code
that there will not be indefinite waits as part of exploration and possible collapse along any of the cycle edges or any other
edge of G ′ . �
Theorem 5. (Liveness:) In any connected component of the meeting graph of size greater than one, at least one node gets subsumed and
at least one master node of that connected component progresses with its DFS after it subsumes the other nodes in its sub-component.

Proof. It follows from Property 1 and Theorem 4 that at least one node gets subsumed. In particular, at least the smallest
size DFS in that connected component must get subsumed; as its parent and all its children are larger it must collapse into
one of them.

The master node M of that node collects the robots of the subsumed DFS(s) at head(M) from the algorithm. Further, M
must now be unblocked because

1. if it were still blocked on a smaller parent parent(i) = j, that parent would have collapsed into (a) another of its children
that had managed to lock head(parent(i)), otherwise (b) into parent(parent(i)) if larger than parent(i) or (c) into M
which would have succeeded in locking parent(i), and

1 Recall from the definition that j locks head(i) if head(i) is blocked and explorers of i do not return to head(i) from parent(i) before explorers of j
reach head(i).

2 This happens if explorers of parent(i) do not return to head(parent(i)) before it gets locked by i.

10

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

2. if it were still blocked on a larger parent, it would have collapsed into that parent and not be a master node.

Case (2) is an impossibility and so cannot happen. In Case 1(c), M would be unblocked and able to continue its DFS with
the unsettled (and subsumed) robots. In Cases 1(a) and 1(b), M might transfer out unsettled (including subsumed DFSs’)
robots to j and transitively those would be collected at head(master(j)). The same logic applies to master(j) -- if cases 1(a)
or 1(b) applied to it, it would transfer out the unsettled (including subsumed DFSs’) robots which would be transitively
collected at head(master(parent(master(j)))). This argument can continue inductively at most k′ − 1 times and for the last
time, the master node identified must not only be unblocked after subsuming nodes in its sub-component but must also
be able to continue its DFS. To see this further, even if there were a cycle in the meeting graph, once M transfers out
its unsettled (and collected) robots to parent(M) and becomes unblocked, parent(M) has collapsed and those transferred
out robots even if traversing the cycle via transfers by the master nodes along the cycle were to come back to M , they
would not be transferred out a second time along the same cycle as that parent(M) no longer exists. At this time, M is
either unblocked and possibly continuing its DFS, or has blocked after continuing its DFS and is part of a new connected
component. �

A path in G ′ is an increasing (decreasing) path if the node sizes along the path are increasing (decreasing). For a master
node M , the nodes x in its sub-component of G ′ that directly and transitively participate in only Collapse_Into_Parent and
no Collapse_Into_Child until collapsing into M form the set X(M). Whereas the (other) nodes y in the sub-component that
directly and transitively invoke at least one Collapse_Into_Child until they collapse into M belong to the set Y (M). The
sub-component C(M) = X(M) ∪ Y (M) ∪ {M}.

Even though there may be a cycle in sub-component C(M), when excluding the E ′ edges along which no subsumption
occurs, the component is acyclic. For an edge (i, j), i is the child and j is the parent. Nodes in the set X have an increasing
path to the master node. They collapse into and get subsumed by the master node (possibly transitively) by executing
Collapse_Into_Parent . Nodes in the set Y are reachable from the master node on a decreasing path -- such nodes are
termed Y _trunk nodes, or have an increasing path to a Y _trunk node -- such nodes are termed Y _branch nodes. Thus there
is just one decreasing path from the master node and the increasing paths are the other paths that end in some nodes of
the decreasing path that includes the master. Nodes in Y (i.e., in Y _trunk and Y _branch) collapse into and get subsumed
by the master node, possibly transitively. First, the Y _branch nodes collapse into and get subsumed by their ancestors
transitively on the increasing path ending in a Y _trunk node by executing Collapse_Into_Parent; then the Y _trunk nodes
collapse and get subsumed into their child nodes transitively along Y _trunk and then into the master node by executing
Collapse_Into_Child.

4.3. Dealing with dynamism

After nodes in C(M) get subsumed in M , the DFS of the master node is unblocked and continues again until involved
in more meetings and new meeting graphs are formed. Thus the meeting graph is dynamic. We define a related notion of
a meeting tree that represents which nodes (DFSs) have met and been subsumed by which master node, in which meeting
sequence number of meetings for each such node over time. A node in the meeting graph G ′ as well as in the meeting tree
is formally identified by a tuple (a,h) where a is the DFS ID of the master node and h indicates that it has participated
in at most h meetings until now. More specifically, h denotes the maximum of the number of times that the robots of
some initial DFS component a′ have participated in subsumption (subsumed by or subsumed) progressively over time until
now they are a part of component having DFS ID a. h is thus the height of the node (a,h) in the meeting tree and is
upper-bounded by k′ − 1.

Definition 2. (Meeting tree.) The k′ initial DFSs i form the k′ leaf nodes (i,0) at level 0. When α nodes (ai,hi) for i ∈ [1,α]
meet in a component and get subsumed by one of them �- the master node with DFS identifier M of the meeting graph,
— a node (M,h), where h = 1 + maxi∈[1,α] hi , is created in the meeting tree as the parent of the child nodes (ai ,hi), for
i ∈ [1,α].

For a node (M,h), h is the length of the longest path from some leaf node to that node. We now formally define X(M,h),
Y (M,h), and C(M,h).

Definition 3. (Component C(M,h).) For node (M,h) in the meeting tree we define C(M,h) as follows.
For h = 0, C(M,h) = {(M,0)}.
For h > 0, C(M,h) = {(M, z)} ∪ X(M,h) ∪ Y (M,h) where:

1. (M, z) is the child node of (M,h) in the meeting tree having the same DFS identifier M .
2. X(M,h) is the set of child nodes of (M,h) in the meeting tree that directly and transitively participate only in

Collapse_Into_Parent until collapsing into (M, z) as part of forming (M,h).
3. Y (M,h) is the set of child nodes of (M,h) in the meeting tree that directly and transitively participate in at least one

Collapse_Into_Child until collapsing into (M, z) as part of forming (M,h).

11

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Definition 4. (prev(h) and next(h).)

• For a node (a, z) in the meeting tree having parent (b,h), define prev(h)3 to be z. More simply, a node (a, prev(h)) in
the meeting tree has its parent (b,h).

• For node (i,h) in the meeting tree, define next(h) to be the value h′ such that (M,h′) is the parent of (i,h), if a parent
exists, otherwise define next(h) to be k′ .

We omit h in (i,h) and C(M,h) in places where it is understood or not required.

5. Analysis of the algorithm

In our algorithm, a common module is to traverse an already identified DFS component with nodes having the same
treelabel. Such a DFS traversal occurs in (i) Algorithm Exploration (traversal of parent(i) to notify robots at nodes in parent(i)
of its impending collapse) when di > dparent(i) and i locks head(parent(i)) junction, (ii) procedure Collapse_Into_Child
(traversal of i to collect the settled robots in i for collapse), and (iii) procedure Collapse_Into_Parent (traversal of i to
collect the settled robots in i for collapse). In (ii) and (iii), a settled robot not on the collapse path gets unsettled and
gets collected in the DFS traversal to the collapse path when the DFS backtracks from the node where the robot was set
tled. Note that there can be at most two such DFS re-traversals of any i despite concurrent explorations of i -- either in
Collapse_Into_Child or else in Collapse_Into_Parent , and once in Algorithm Exploration if Collapse_Into_Child is executed --
so two duplicate sets of variables treelabel, state, child, rank, and parent suffice. Such a retraversal of component i can be
achieved by going to root(i) and doing a (new) DFS traversal of only those nodes that are in i (using a duplicate set of vari
ables treelabel, state, rank, child, and parent). This new DFS traversal uses the same initial values of the duplicate variables
as used in the initial traversal which happened in spurts each time component i subsumed other components and then
resumed dispersion (extending the DFS traversal until then) via the next spurt in its DFS traversal. Note that the robots of
the other subsumed components set their treelabel, state, rank, parent , and child variables to that of the last-settled robot
of the then-current DFS i component into which they collapsed. Hence the new DFS traversal will be identical to the initial
(in-spurts) traversal in terms of sequence of nodes visited; if one reaches a node which has no settled robot or a settled
robot having a different treelabel, one backtracks along that edge and ends the traversal. Such a DFS retraversal of i can be
executed in 4Δdi steps.4

The time complexity of Algorithms 2 and 3 is as follows.

1. Algorithm 2 takes time bounded by 8diΔ + 3di . The derivation is as follows.

(a) min{di,dparent(i)} to go from head(i) to root(parent(i)).
(b) 4 min{di,dparent(i)}Δ to go then to head(parent(i)).
(c) if dparent(i) > di , then 2di to return to head(i) via root(parent(i)).
(d) if dparent(i) < di and i locks head(parent(i)), then 4dparent(i)Δ + 2dparent(i) for DFS traversal of parent(i) component

from root(parent(i)) plus to root(parent(i)) from head(parent(i)) and back.

If explorers E ’s path meets explorers F ’s path, the explorers E wait until F ’s return. This delay is analyzed later.
2. In Algorithm 3,

(a) Collapse_Into_Child takes 4diΔ + 2di .
Time di to go from head(i) to root(i); 4Δdi for a DFS traversal of i component from root(i); and di to collect the

accumulated robots from root(i) to head(j) along the collapse path.
(b) Collapse_Into_Parent takes 4diΔ + 2di + 4dparent(i)Δ.

Time di to go from head(i) to root(i); 4Δdi for a DFS traversal of i component from root(i); di to collect the
accumulated robots from root(i) to head(i); and 4dparent(i)Δ to then go to head(parent(i)).

(c) The cost of Parent_Is_Collapsing is min{di,dparent(i)} but is subsumed in the cost of Algorithm 2.
This cost is to return to head(i) from the exploration point in parent(i) component where it is invoked.

The contributions to this time complexity by the various nodes in C(M) are as follows. (The cost is the sum of Algorithm
Exploration plus appropriate invoked procedure costs.)

3 We avoid the more technically accurate expression prev(a,h) because we never use prev(h) stand-alone but it is always used in conjunction with a in
a tuple or a is implicit from context.

4 A retraversal can be done in 8di steps by maintaining a next_sibling variable that gives that port number at the parent, following which leads to the
next sibling node in the initial DFS tree. Updating this variable would complicate the presentation and using this does not reduce the asymptotic complexity
because the initial DFS traversal in Algorithm 1 requires 4Δdi steps (Theorem 3).

12

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

1. Each x ∈ X executes Collapse_Into_Parent after Exploration, as it is part of an increasing path. So it contributes the sum
of the two contributions, giving 12dxΔ + 5dx + 4dparent(x)Δ.

The 4dparent(x)Δ is for traversing to head(parent(x)) after x collapses to head(x), and this can be done concurrently by
multiple x that are children of the same parent. As each x can be thought of as the parent of another element in X , so
the cost of subsuming the X set is

∑
x∈X 16dxΔ + 5dx + (if X �= ∅, 4dMΔ).

2. Each y ∈ Y _branch executes Collapse_Into_Parent after Exploration, as it is part of an increasing path. So it contributes
the sum of the two contributions, giving 16dyΔ + 5dy .

Each y ∈ Y _trunk executes Collapse_Into_Child after Exploration, as it is part of a decreasing path. So it contributes
the sum of the two contributions, giving 12dyΔ + 5dy , plus it potentially acts as a parent of a node on a Y _branch that
executed Collapse_Into_Parent so it contributes an added 4dyΔ, giving a total of 16dyΔ + 5dy .

3. Node M will contribute in Algorithm Exploration 4 min{dM ,dparent(M)}Δ + min{dM dparent(M)}, plus 4dparent(M)Δ +
2dparent(M) as parent(M) is smaller. Thus, a total of 8dparent(M)Δ + 3dparent(M) . This can be counted towards a contri
bution by parent(M) = y ∈ Y , thus the contribution of each y ∈ Y can be bounded by 24dyΔ + 8dy with M contributing
nil.

There is another source of time overhead contributed by nodes in Y _trunk ∪ {M}, which belong to a decreasing path.
Nodes y, i.e., head(y) ∈ G , for y ∈ Y _trunk, are locked by their child. Before this can happen, other children of y may be
exploring y by leaving retrace pointers. However, due to the O (log(k + Δ)) bits bound on memory at each robot, a retrace
pointer at a node in y can be left by only O (1) children, not by O (k′) children. Therefore in Algorithm 2, if explorers
E path meets another explorers F path, they wait at the meeting node until explorers F return. If they learn that y is
collapsing, they retrace to their head nodes, else if they learn that y is not collapsing, they continue their exploration
towards head(y) but may have to wait again if their path meets the path already taken by another explorers F ′ . This
waiting due to concurrently exploring children introduces delays.

A child of y outside Y _trunk may be either locked (l) or unlocked (u) and is also smaller (S) or larger (L) than y. Thus,
there are 4 classes of such children.

1. Su-type children belong to Y _branch and their introduced delays are already accounted for above.
2. Each Lu-type and Ll-type child does not contribute any delay. This is because even though these children are larger than

y, they are not the child in Y who succeeds in locking y; the child in Y (in Y _trunk) or M who locks y does so before
such L∗-type children try (and fail) to lock y in their exploration of y. Such L∗-type children learn that y is collapsing.
A Lu-type child transfers its unsettled robots to y as part of y’s collapse, without any additional time cost.

3. Each Sl-type child node b contributes delay 4dbΔ + 3db; this follows from steps 1(a)-1(c) of the timing analysis of
Algorithm 2. The sum of such delays at y (∈ Y _trunk) is denoted t y . Later, we show how to bound the sum of such
delays across multiple M , h and y.

Similar reasoning can be used for M delaying its children in X due to explorations of other children z �∈ X . Specifically,
(1) type Su child z of M: � ∃ child z �∈ X . (2) type L∗ child z of M: � ∃ such a child z. If it existed, it would have succeeded in
locking M and M would not be master. (3) Each type Sl child z contributes delay 4dzΔ + 3dz; the sum for all z is denoted
t(M,prev(h)) (for h > 0). Later, we show how to bound the sum of such delays across multiple M and h.

Let A = X ∪ Y _branch. Any a ∈ X lies on an increasing path to M and any a ∈ Y _branch lies on an increasing path to
the first encountered node in Y _trunk. We analyze the delays introduced by a ∈ A delaying their children in A due to
explorations by their children not in A. A child of a outside A may be of type LL, Lu, Sl, Su. For any a ∈ A, (1) each type Su
child belongs to A and the delay is already accounted for in Collapse_Into_Parent executed by a. (2) each type Sl child and
type L∗ child (is not in A and) does not contribute any delay beyond that of Collapse_Into_Parent executed by a and already
accounted for therein. The type L∗ child does not succeed in locking head(a) and learns that a is collapsing into its parent.
A Lu child transfers its unsettled robots to x with no extra time cost. Thus nodes in X (or Y _branch) do not contribute
additional delays to their children in X (or Y _branch) due to explorations of other children not in X (or not in Y _branch).

Define a node DFS z to become passive if all its robots are settled or it is a Lu-child of some i and transfers out its
unsettled robots from head(z). Note that a node i ∈ C(M,h) receives a transfer of unsettled robots of a (blocked) child a of
type Lu not in C(M,h) (Property 1.4) and these unsettled robots are transitively absorbed/transferred to (M, prev(h)) and
then to (M,h), while node a goes passive. Such a transfer of unsettled robots from one DFS to another does not cost extra
time as it happens in the time it takes for the collapse of i and its subsumption into (M, prev(h)). Further, the resulting
configuration would have occurred if the initial distribution of robots had been different and the algorithm time bound
analysis is valid for any initial configuration.

A passive DFS node i reactivates again if unsettled robots arrive at head(i) and resume DFS traversal of i. This (getting
reactivated again) is possible only if some Su-child DFS j now blocks on i and gets subsumed. If (i, prev(h)) reactivates, its
parent in the meeting tree must be (i,h) and it does not block nor get subsumed until (i,h) forms.

The algorithm terminates when all concurrently existing DFS nodes become passive. When this happens, all robots in
such DFSs are settled.

Define idle time with respect to a node (i,h) in the meeting tree as the period in which all the concurrently existing DFSs
that are eventually transitively subsumed by the ancestor node DFS (i,h) are concurrently passive. For a (child, parent) edge

13

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

in the meeting tree, idle time is the sub-interval of the idle time of (i,h) within the window (child forms, it gets subsumed
by parent).

Theorem 6. For any (M,h) in the meeting tree, there is a path from some leaf node to it going through edges along each of which there
is no idle time, and subsumption and dispersion that immediately begin after blocking incurs necessary delays.

Proof. For any (M,h) in the meeting tree, observe from the structure of the meeting graph of nodes in C(M,h) that at most
one child (i, prev(h)) of (M,h) could have become passive after (i, prev(h)) formed and all other children (j, prev(h)) are
blocked. From the algorithm, observe that:

• Since the time (j, prev(h)) formed until it blocked, its DFS was constantly dispersing/growing, and
• since the time such a (j, prev(h)) blocked until C(M,h) formed including the time until the collapses and subsumptions

occurred, all time was spent in traversals, collapses, subsumptions, and necessary waits as dictated by the Algorithms 2
and 3 and accounted for in the timing analysis of the various procedures. Recall that the necessary waits are bounded
as the algorithm was argued to be deadlock-free due to acyclic waits.

From the 2 observations above about the algorithm, it follows that there is no idle time from the time any such
(j, prev(h)) formed until (M,h) formed. As this is true for any (M,h), the theorem follows. �
Corollary 1. For any (M,h) in the meeting tree, there is no idle time interval until its formation since the start of the algorithm.

Observe that the time for any (M,h) to form, i.e., to collapse settled robots and collect such collapsed robots and
unsettled robots of the subsumed children (z, prev(h)), from the time the first of the (j, prev(h)) children blocked, is
upper-bounded (due to possibly concurrent executions) by the sum of the times identified in the analysis of the various
procedures executed by each x ∈ X, y ∈ Y , and (M, prev(h)). The time by which the first (j, prev(h)) child blocked is
upper bounded by the time the last a ∈ X ∪ {(M, prev(h))} blocked. Note that only those nodes that satisfy the definition
of y ∈ Y (M,h) by the time (M, prev(h)) blocks will be in Y (M,h). We now proceed with the detailed time complexity
derivation of our algorithm.

Thus far, the size di of node i referred to the number of settled robots in it, and is henceforth referred to as ds
i . More

specifically, ds
i,h will refer to the number of settled robots up until just before the next(h) meeting of i. The number of

unsettled robots in i up until just before the next(h) meeting of i is referred to as du
i,h . Let T (M,h) denote the time to

settle DFS M up until meeting at depth h of the meeting tree, and from then on until the next meeting (next(h)) for M .
The collapse and collection time to head(M) has components c(M,h) and g(M,h). c(M,h) has a upper bound factor of
(24Δ + 8) for x ∈ X and y ∈ Y as derived earlier in this section. g(M,h) represents the sum of wait times introduced by
Sl-type child nodes of Y _trunk nodes y ∈ Y (M,h) and of (M, prev(h)). The time for dispersion/settling after collection and
until the next(h) meeting is s(M,h). Thus s(M,h) is the time for the growth phase of the DFS tree. These are defined as
follows.

c(M,h) =
⎧⎨
⎩

0 if h = 0
(24Δ + 8)(

∑
x∈X(M,h) ds

x + ∑
y∈Y (M,h) ds

y) if h > 0
(+4Δ(ds

M,prev(h)
) if X(M,h) �= ∅)

(1)

s(M,h) =

⎧⎪⎪⎨
⎪⎪⎩

4Δ(ds
M,h − ds

M,prev(h)
) if next(h) < k′

4Δ(
∑

x∈X(M,h) ds
x + ∑

y∈Y (M,h) ds
y otherwise

+∑
x∈X(M,h) du

x + ∑
y∈Y (M,h) du

y
+du

M,prev(h)
)

(2)

g(M,h) =
{

0 if h = 0∑
y∈Y (M,h) t y + t(M,prev(h)) if h > 0 (3)

This process of collapsing and collecting for instance (M,h) began at the very latest (since the start of the algorithm) at
the time at which the latest of the x nodes, x′ , got blocked. Thus,

T (M,h) ≤
f (M,h) ︷ ︸︸ ︷

c(M,h) + s(M,h)+g(M,h) + T (x′, prev(h)),

x′ = argmaxx | (x,prev(h))∈X(M,h)∪{(M,prev(h))}T (x, prev(h)),

c(∗,0) = 0, g(∗,0) = 0, s(∗,0) = ds∗,0. (4)

14

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

We break T (M,h) into two series, and bound them separately. The two series are:

S1 = f (M,h) + f (x′(M,h), prev(h))

+ f (x′(x′(M,h), prev(h)), prev(prev(h))) + · · · + f (∗,0)

S2 = g(M,h) + g(x′(M,h),prev(h)) + · · · + (g(∗,0) = 0)

=
∑

y∈Y (M,h)

t y +
∑

y∈Y (x′(M,h),prev(h))

t y + · · · + (
∑

y∈Y (∗,0)

t y = 0)

+t(M,prev(h)) + t(x′(M,h),prev(prev(h))) + · · · + (t(∗,prev(0)) = 0) (5)

Lemma 1. The sum in the series S1 is O (kΔ).

Proof. We consider levels of the meeting tree from level 1 upwards to h (≤ k′ − 1). Let η DFS components collapse and
merge into one of them, and let the size (i.e., number of settled robots) of each component be d. We consider two extreme
cases and show for each that the lemma holds.

1. Case 1: At each level when components collapse and collect in a master component, immediately afterwards (before the
collected unsettled robots can settle) the master component meets another component at the next level, and the collapse
and collection happen at the next level. Again, immediately afterwards, the (new) master component meets another
component at the yet next higher level, and so on till level h. This case assumes s(i,∗) = 0.

(a) At level 1, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of ηd robots in
the master component.

(b) At level 2, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of η2d robots in
the master component.

(c) At level h, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of ηhd robots in
the master component.

ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη
k
d . Therefore the maximum total elapsed time

until the h-th level meeting and collapse takes place is

Max. elapsed time is O (h(ηdΔ)) = O (ηdΔ logη
k
d
)

This maximum elapsed time is O (kΔ), considering both extreme cases (a) ηd = O (1) and (b) ηd = O (k).
2. Case 2: At each level when components collapse and collect in a master component, the collected robots (almost) fully

disperse after which the master component meets another component at the next level, and the collapse and collection
happen at the next level. Again, the robots collected by the (new) master component (almost) fully disperse after which
the master component meets another component at the yet next higher level, and so on till level h. This case assumes
∀ j, s(i, j) satisfies next(j) �< k′ .

(a) At level 1, η components of size d each merge into one of size ηd in O (ηdΔ) time, leading to a total of ηd robots in
the master component.

(b) At level 2, η components of size ηd each merge into one of size η2d in O (η2dΔ) time, leading to a total of η2d
robots in the master component.

(c) At level h, η components of size ηh−1d each merge into one of size ηhd in O (ηhdΔ) time, leading to a total of ηhd
robots in the master component.

ηhd is at most the maximum number of robots k. Solving k = ηhd, h = logη
k
d . Therefore the maximum total elapsed time

until the h-th level meeting and collapse/dispersion takes place is

O (Δ(ηd + η2d + η3d + . . . + ηhd)) = O (Δηd
ηh − 1

η − 1
)

= O (
Δηd
η − 1

(ηlogη
k
d − 1))

= O (
Δηd
η − 1

(
k
d

− 1))

= O (kΔ)

15

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

There is also a special case in which a single component M , each time (∀h′), grows and meets other fully dispersed
component(s) that collapse (transitively) in to it and no component meets M . Here, ∀h′ , X(M,h′) = ∅ as all subsumed
components belong to Y (M,h′) sets. Observe that

∑
h′ c(M,h′) = ∑

h′ s(M,h′) = O (kΔ).
The lemma follows. �

Lemma 2. The sum in the series S2 is O (kΔ).

Proof. The series S2 is the sum of all the waits introduced by children a of a Y _trunk node y and of M , that are of type Sl.
Such a Sl child contributes delay up to 4daΔ + da (≤ 4dyΔ + 3dy or ≤ 4dMΔ + 3dM , respectively) and then collapses and
gets subsumed by the node b that has locked it. Thus Sl type children can occur at most k′ − 1 times in the lifetime of the
execution. Note also that db ≥ da as b to a is a decreasing path.

If all the Sl children were never involved in any meeting until now, then
∑

da ≤ k and the lemma follows. However we
need to also analyze the case where a Sl node gets subsumed by another node b, and then the node b becomes a Sl node
later. In this case, the robots subsumed from a may be double-counted in the size of b when b later becomes a type Sl
node. This can happen at most k′ − 1 times.

Let η DFS components, including the Sl component, collapse and merge into one of them, and let the size (i.e., number
of settled robots) of each component be d. We consider two extreme cases and show for each that the lemma holds.

1. Case 1: When components collapse and are collected, immediately afterwards (before the collected unsettled robots can
settle) the master component becomes a Sl-type node, and the collapse and collection happen again. Again, immediately
afterwards, the new master component becomes a type Sl node, and so on.

(a) The first time, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of ηd robots
in the master component.

(b) The second time, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of η2d
robots in the new master component.

(c) The j-th time, η components of size d each merge into one of size d in O (ηdΔ) time, leading to a total of η jd
robots in the master component.

η jd is at most the maximum number of robots k. Solving k = η jd, j = logη
k
d . Therefore the total delay introduced in

series S2 which is linearly proportional to Δ times the sum of sizes of the type Sl components, is O (ηΔdj).

Sum of delays is O (ηΔdj) = O (ηΔd logη
k
d
)

This maximum elapsed time is O (kΔ), considering both extreme cases (a) ηd = O (1) and (b) ηd = O (k).
2. Case 2: When components collapse and are collected, the collected robots (almost) fully disperse after which the master

component becomes a type Sl node, and the collapse and collection happen again. Again, the collected robots in the
new master component (almost) fully disperse after which the (new) master component becomes a type Sl node and
collapses and gets collected, and so on.

(a) The first time, η components of size d each merge and settle into one of size ηd in O (ηdΔ) time, leading to a total
of ηd robots in the master component.

(b) The second time, η components of size ηd each merge and settle into one of size η2d in O (η2dΔ) time, leading to
a total of η2d robots in the master component.

(c) The j-th time, η components of size η j−1d each merge and settle into one of size η jd in O (η jdΔ) time, leading to
a total of η jd robots in the master component.

η jd is at most the maximum number of robots k. Solving k = η jd, j = logη
k
d . Therefore the total delay introduced in

series S2 which is linearly proportional to Δ times the sum of sizes of the type Sl components, is

O (Δ(ηd + η2d + η3d + . . . + η jd)) = O (Δηd
ηh − 1

η − 1
)

= O (
Δηd
η − 1

(ηlogη
k
d − 1))

= O (
Δηd
η − 1

(
k
d

− 1))

= O (kΔ)

The lemma follows. �
16

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

Theorem 7. Algorithm Exploration (Algorithm 2) in conjunction with Algorithm D F S(k) correctly solves Dispersion for k ≤ n robots
initially positioned arbitrarily on the nodes of an arbitrary anonymous graph G of n memory-less nodes, m edges, and degree Δ in
O (min{m,kΔ}) rounds using O (log(k + Δ)) bits at each robot.

Proof. T (M,h) is the sum of the series S1 and S2 which are both O (kΔ) by Lemmas 1 and 2. So the time till termination
of the Algorithms 1 (D F S(k)), 2 (Exploration), and Algorithm 3 (various procedures invoked) is O (kΔ). As k ≤ n, this is
O (nΔ). Now observe that in our derivations (Lemmas 1 and 2), the Δ factor is an overestimate. The actual upper bound is
O (

∑n
i=1 δi) which is O (m), the number of edges in the graph. This upper bound is better when m < kΔ and hence the time

complexity is O (min{m,kΔ}).
The highest level node (i,h) in each tree in the final forest of the meeting graph represents a master node that has never

been subsumed and always alternated between growing and subsuming other components, and growing again. The growth
happens as per Algorithm 1 (D F S(k)) which correctly solves Dispersion by Theorem 3. Whereas the subsuming of other
components merely collects the robots of the other components to the head node head(i) (Algorithm Exploration) which
subsequently get dispersed by the growing phases (Algorithm D F S(k)). Hence, Dispersion is achieved.

The retrace and collapse variable at each robot used in Algorithm 2 and 3 are O (log Δ). collapsing_children takes
O (log k) bits and a single bit each is required to track whether the component is locked and whether it is collapsing.
The space requirement of Algorithm 1 was shown in Theorem 3 to be (log(k + Δ)) bits. The theorem follows. �
Proof of Theorem 1. Follows from Theorem 7. �
Proof of Theorem 2. In the asynchronous setting, in every CCM cycle, each robot at a node u determines x, the number of
co-located robots, if any, that should be moving with it to node v . It then moves as per its own schedule. On arriving at v ,
it does not start its next CCM cycle until x robots have arrived from u. This essentially constitutes one epoch and ensures
that the robots that move together in a round in a synchronous setting move together in one epoch in the asynchronous
setting. With this simple modification, the algorithm given for the synchronous setting works for the asynchronous setting.
The space and time complexities, as given in Theorem 1, carry over to the asynchronous setting. �
6. Concluding remarks

In this paper, we have presented a deterministic algorithm that solves Dispersion, starting from any initial configuration
of k ≤ n robots positioned on the nodes of an arbitrary anonymous graph G having n memory-less nodes, m edges, and
degree Δ, in time O (min{m,kΔ}) with Θ(log(k + Δ)) bits at each robot. Memory is optimal for any degree Δ and the
time also becomes optimal if the graph has constant degree, i.e., Δ = O (1), the first simultaneously optimal result for
arbitrary graphs. For any degree Δ, time is optimal within a O (Δ) factor since there exists a time lower bound of Ω(k)

[3]. This algorithm improves the time bound established in the best previously known results [7,8] by an O (log�) factor
and matches asymptotically the time and memory bound of the single-source DFS traversal. This algorithm uses a non
trivial approach of subsuming parallel DFS traversals into single one based on their DFS tree sizes, limiting the subsumption
process overhead to the time proportional to the time needed in the single-source DFS traversal. This approach might be of
independent interest.

For future work, it will be interesting to improve the existing time lower bound of Ω(k) to Ω(min{m,kΔ}) or improve
the time bound to O (k) removing the O (Δ) factor. The second interesting direction will be to consider faulty (crash and/or
Byzantine) robots.

CRediT authorship contribution statement

Ajay D. Kshemkalyani: Writing -- review & editing, Writing -- original draft, Methodology, Formal analysis. Gokarna
Sharma: Writing -- review & editing, Writing -- original draft, Validation, Methodology, Investigation, Formal analysis, Con
ceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

17

A.D. Kshemkalyani and G. Sharma Journal of Computer and System Sciences 152 (2025) 103656

References

[1] A.D. Kshemkalyani, G. Sharma, Near-optimal dispersion on arbitrary anonymous graphs, in: 25th International Conference on Principles of Distributed
Systems, OPODIS, 2021, 8.

[2] J. Augustine, W.K.M. Jr., Dispersion of mobile robots: a study of memory-time trade-offs, in: ICDCN, 2018, pp. 1--10.
[3] A.D. Kshemkalyani, F. Ali, Efficient dispersion of mobile robots on graphs, in: ICDCN, 2019, pp. 218--227.
[4] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Efficient dispersion of mobile robots on dynamic graphs, in: ICDCS, 2020, pp. 732--742.
[5] P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Oblivious Mobile Robots, Synthesis Lectures on Distributed Computing Theory, Morgan

& Claypool Publishers, 2012.
[6] P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Mobile Entities, Theoretical Computer Science and General Issues, vol. 1, Springer

International Publishing, 2019.
[7] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Fast dispersion of mobile robots on arbitrary graphs, in: ALGOSENSORS, 2019, pp. 23--40.
[8] T. Shintaku, Y. Sudo, H. Kakugawa, T. Masuzawa, Efficient dispersion of mobile agents without global knowledge, in: SSS, 2020, pp. 280--294.
[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, The MIT Press, 2009.

[10] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Dispersion of mobile robots on grids, in: WALCOM, 2020, pp. 183--197.
[11] A.R. Molla, W.K.M. Jr., Dispersion of mobile robots: the power of randomness, in: TAMC, 2019, pp. 481--500.
[12] A. Das, K. Bose, B. Sau, Memory optimal dispersion by anonymous mobile robots, in: CALDAM, 2021, pp. 426--439.
[13] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Dispersion of mobile robots in the global communication model, in: ICDCN, 2020, 12.
[14] D. Pattanayak, G. Sharma, P.S. Mandal, Dispersion of mobile robots tolerating faults, in: ICDCN, 2021, pp. 133--138.
[15] A.R. Molla, K. Mondal, W.K. Moses Jr., Efficient dispersion on an anonymous ring in the presence of weak Byzantine robots, in: ALGOSENSORS, 2020,

pp. 154--169.
[16] A.R. Molla, K. Mondal, W.K. Moses Jr., Byzantine dispersion on graphs, in: IPDPS, 2021, pp. 1--10.
[17] G.F. Italiano, D. Pattanayak, G. Sharma, Dispersion of mobile robots on directed anonymous graphs, in: 29th International Colloquium on Structural

Information and Communication Complexity SIROCCO, 2022, 11.
[18] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, Euler tour lock-in problem in the rotor-router model: I choose pointers and

you choose port numbers, in: DISC, 2009, pp. 423--435.
[19] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration by a finite automaton, ACM Trans. Algorithms 4 (4) (2008) 42.
[20] D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, P. Uznański, Fast collaborative graph exploration, Inf. Comput. 243 (C) (2015) 37--49.
[21] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, Graph exploration by a finite automaton, Theor. Comput. Sci. 345 (2--3) (2005) 331--344.
[22] P. Fraigniaud, L. Gasieniec, D.R. Kowalski, A. Pelc, Collective tree exploration, Networks 48 (3) (2006) 166--177.
[23] A.D. Kshemkalyani, F. Ali, Fast graph exploration by a mobile robot, in: First IEEE International Conference on Artificial Intelligence and Knowledge

Engineering, AIKE, 2018, pp. 115--118.
[24] A. Menc, D. Pajak, P. Uznanski, Time and space optimality of rotor-router graph exploration, Inf. Process. Lett. 127 (2017) 17--20.
[25] A. Dessmark, P. Fraigniaud, D.R. Kowalski, A. Pelc, Deterministic rendezvous in graphs, Algorithmica 46 (1) (2006) 69--96.
[26] D.R. Kowalski, A. Malinowski, How to meet in anonymous network, Theor. Comput. Sci. 399 (1--2) (2008) 141--156.
[27] Y. Elor, A.M. Bruckstein, Uniform multi-agent deployment on a ring, Theor. Comput. Sci. 412 (8--10) (2011) 783--795.
[28] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, T. Masuzawa, Uniform deployment of mobile agents in asynchronous rings, in: PODC, 2016, pp. 415--424.
[29] L. Barriere, P. Flocchini, E. Mesa-Barrameda, N. Santoro, Uniform scattering of autonomous mobile robots in a grid, in: IPDPS, 2009, pp. 1--8.
[30] P. Poudel, G. Sharma, Time-optimal uniform scattering in a grid, in: ICDCN, 2019, pp. 228--237.
[31] P. Poudel, G. Sharma, Fast uniform scattering on a grid for asynchronous oblivious robots, in: SSS, 2020, pp. 211--228.
[32] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, J. Parallel Distrib. Comput. 7 (2) (1989) 279--301.
[33] R. Subramanian, I.D. Scherson, An analysis of diffusive load-balancing, in: SPAA, 1994, pp. 220--225.
[34] A. Cord-Landwehr, B. Degener, M. Fischer, M. Hüllmann, B. Kempkes, A. Klaas, P. Kling, S. Kurras, M. Märtens, F. Meyer auf der Heide, C. Raupach, K.

Swierkot, D. Warner, C. Weddemann, D. Wonisch, A new approach for analyzing convergence algorithms for mobile robots, in: ICALP, 2011, pp. 650--661.

18

http://refhub.elsevier.com/S0022-0000(25)00038-8/bib84186538A68319AC0D98DFAD56EF962As1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib84186538A68319AC0D98DFAD56EF962As1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib0343A64435E7730A6F7940FA73571969s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib126FC416FB30DB4A095EE7966F364E21s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib756E4B2E7F26C133646CD28E985ECF1Ds1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib79FBF7A3F5319D08F85B87C98FB139A5s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib79FBF7A3F5319D08F85B87C98FB139A5s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibC6C9E291C69041D16817366B300FF639s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibC6C9E291C69041D16817366B300FF639s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibD4479E6ACD446609D45C7E8699BB6FDAs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib998A8D0A14CCFA6FE9E24FB3F13530AAs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib49CD924F15DA808FF5726A77F5D8FAA5s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibDE04312E31BBB2EE596E42FC26215271s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibDDBD4F7D7F8DE51BFAC47C9FEE7EECBBs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib41C81B5C7D4D393D850F727B63953B97s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib69FE479A48FF9C6B99EB02C6B80E2BBCs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib3E00E45A5F1B38BD2157292549DB9947s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib4312C71FA168CA11139B87F00E42371Cs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib4312C71FA168CA11139B87F00E42371Cs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibD7A3EA7F4535C2202D5C401BCB5C3E75s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib04AF2B6061E3F8353CC0E11E1611AF7As1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib04AF2B6061E3F8353CC0E11E1611AF7As1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib638CE17736AA1D162FA311438D0F72FFs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib638CE17736AA1D162FA311438D0F72FFs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib678A4B6CABB14C4FE1D1E32347EC6AB7s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibE1751B120E7437A9D35EEED9A143355Ds1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib815663A618EEBFDB2C199C9D5D3FEEADs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib95E1D0B85B0BDE1AE7197F9D20128C37s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib64C15C8C4C32D3AC55E4253AB324B082s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib64C15C8C4C32D3AC55E4253AB324B082s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibB3B73E4A3DDF251927B615FA8351DDCBs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib83DBAFA97324A49485BAFDF581A9D957s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibB125C3301149AB83D14B13DDDB41C497s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibA69433A87142F685DA91E5B236407F22s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib0A0515287F730E8A363FC81674B8B3AAs1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bibE1361DC07F17885055CC6F9084360C0As1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib4151ABAAAE48DB7E622B3F09CB625074s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib72CDDC46F3C075C5910E059DC66C6343s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib1736CEEE0874038DB1E8E335D04D6C10s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib1F7583694E17C80D9C1907A88F8180B2s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib52089CB71A5C40152858FC89F2D34FD3s1
http://refhub.elsevier.com/S0022-0000(25)00038-8/bib52089CB71A5C40152858FC89F2D34FD3s1

	Near-optimal dispersion on arbitrary anonymous graphs
	1 Introduction
	1.1 Overview of the model and results
	1.2 Challenges
	1.3 Techniques
	1.4 Related work
	1.5 Roadmap

	2 Model
	3 Single-source DFS traversal algorithm
	4 Multi-source DFS traversal algorithm
	4.1 Idea and algorithm
	4.2 Properties and correctness of the algorithm
	4.3 Dealing with dynamism

	5 Analysis of the algorithm
	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

