
J. Parallel Distrib. Comput. 67 (2007) 369–385
www.elsevier.com/locate/jpdc

Efficient detection of a locally stable predicate in a distributed system�

Ranganath Atreyaa,1, Neeraj Mittalb,∗, Ajay D. Kshemkalyanic, Vijay K. Gargd,2,
Mukesh Singhale

aWeb Services Technologies, Amazon.com, Inc., Seattle, WA 98101, USA
bDepartment of Computer Science, The University of Texas at Dallas, Richardson, TX 75083, USA

cDepartment of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
dElectrical and Computer Engineering Department, The University of Texas at Austin, Austin, TX 78712, USA

eDepartment of Computer Science, The University of Kentucky, Lexington, KY 40506, USA

Received 23 December 2004; received in revised form 2 June 2006; accepted 29 December 2006
Available online 16 January 2007

Abstract

We present an efficient approach to detect a locally stable predicate in a distributed computation. Examples of properties that can be formulated
as locally stable predicates include termination and deadlock of a subset of processes. Our algorithm does not require application messages to
be modified to carry control information (e.g., vector timestamps), nor does it inhibit events (or actions) of the underlying computation. The
worst-case message complexity of our algorithm is O(n(m + 1)), where n is the number of processes in the system and m is the number of
events executed by the underlying computation. We show that, in practice, its message complexity should be much lower than its worst-case
message complexity. The detection latency of our algorithm is O(d) time units, where d is the diameter of communication topology. Our
approach also unifies several known algorithms for detecting termination and deadlock. We also show that our algorithm for detecting a locally
stable predicate can be used to efficiently detect a stable predicate that is a monotonic function of other locally stable predicates.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Monitoring distributed computation; Stable property detection; Termination detection; Deadlock detection; Global virtual time computation;
Inconsistent snapshots

1. Introduction

Two important problems in distributed systems are detecting
termination of a distributed computation, and detecting dead-
lock in a distributed database system. Termination and dead-
lock are examples of stable properties. A property is said to be
stable if it stays true once it becomes true. For example, once a

� Parts of this paper have appeared earlier in 1990 IEEE Symposium
on Parallel and Distributed Processing (SPDP) [26] and 2003 International
Conference on Principles of Distributed Systems (OPODIS) [3].

∗ Corresponding author. Fax: +1 972 8832349.
E-mail addresses: ratreya@amazon.com (R. Atreya),

neerajm@utdallas.edu (N. Mittal), ajayk@cs.uic.edu (A.D. Kshemkalyani),
garg@ece.utexas.edu (V.K. Garg), singhal@cs.uky.edu (M. Singhal).

1 This work was done while Ranganath Atreya was a student in the
Department of Computer Science at The University of Texas at Dallas.

2 Supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas
Education Board Grant ARP-320, an Engineering Foundation Fellowship, and
an IBM grant.

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.12.004

subset of processes are involved in a deadlock, they continue to
stay in a deadlocked state. An algorithm to detect a general sta-
ble property involves collecting the relevant states of processes
and channels that are consistent with each other and testing to
determine whether the property holds over the collected state.
By repeatedly taking such consistent snapshots of the compu-
tation and evaluating the property over the collected state, it is
possible to eventually detect a stable property once it becomes
true.

Several algorithms have been proposed in the litera-
ture for computing a consistent snapshot of a computation
[10,31,18,1,2]. These algorithms can be broadly classified into
four categories. They either require sending a control message
along every channel in the system [10] or rely on piggybacking
control information on application messages [31] or assume
that messages are delivered in causal order [1,2] or are in-
hibitory in nature [18]. As a result, consistent snapshots of a
computation are expensive to compute. More efficient algo-
rithms have been developed for termination and deadlock that

http://www.elsevier.com/locate/jpdc
mailto:ratreya@amazon.com
mailto:neerajm@utdallas.edu
mailto:ajayk@cs.uic.edu
mailto:garg@ece.utexas.edu
mailto:singhal@cs.uky.edu

370 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

do not require taking consistent snapshots of the computation
(e.g., [20,41,37,14,38,22,40,19,8,13,47,24,34,44,43]).

Termination and deadlock are examples of stable properties
that can be formulated as locally stable predicates [36]. A pred-
icate is locally stable if no process involved in the predicate
can change its state relative to the predicate once the predicate
holds. In this paper, we show that it is possible to detect any
locally stable predicate by taking possibly inconsistent snap-
shots of the computation in a certain manner. Our algorithm
does not inhibit any event of the underlying computation nor
does it require messages to be delivered in a certain order.
Unlike Marzullo and Sabel’s algorithm for detecting a locally
stable predicate [36], no control information is required to be
piggybacked on application messages and, therefore, applica-
tion messages do not need to be modified at all. This saves on
the message size and, therefore, network bandwidth, and also
avoids the overheads of another software layer to parse each
and every application message. Another advantage of our ap-
proach is that it does not require snapshots to be consistent,
and hence it is not necessary for processes to coordinate their
actions when taking a snapshot.

The worst-case message complexity of our algorithm is
O(n(m+1)), where n is the number of processes in the system
and m is the number of events executed by the computation
before the predicate becomes true. We show that, in practice,
its average-case message complexity should be much lower
than its worst-case message complexity. The detection latency
of our algorithm is O(d) time units, where d is the diameter
of the communication topology.

Our general algorithm for detecting a locally stable predicate
also unifies several known algorithms for detecting termination
and deadlock [20,37,14,40,19]. Some of the examples include
Safra’s color-based algorithm [14], Mattern’s four-counter
algorithm [37] and Mattern et al.’s sticky-flag algorithm [40]
for termination detection, and Ho and Ramamoorthy’s two-
phase algorithm [20] for deadlock detection. All of these algo-
rithms can be derived as special cases of the approach given
in this paper. Therefore, this paper presents a unifying frame-
work for understanding and describing various termination
and deadlock detection algorithms. We argue that the perfor-
mance of the presented algorithm is asymptotically no worse
than that of the specialized algorithms, and in many cases, it
performs better. We also instantiate our general algorithm to
derive an efficient deadlock detection algorithm whose perfor-
mance is comparable with that of existing deadlock detection
algorithms. Further, we show that our algorithm can be used
to efficiently detect a stable predicate that can be expressed as
a monotonic function of other locally stable predicates. Note
that the two-phase deadlock detection algorithm as described
in [20] is actually flawed [23] but can be corrected using the
ideas given in this paper. A correct version of the two-phase
deadlock detection algorithm can be found in [26]. Finally,
we discuss how our approach can be extended to work in the
presence of process crashes.

A special feature of our algorithm is that it does not require
application messages to be modified to assist the detection algo-
rithm, unlike many other algorithms (e.g., [22,37,19,8,47,34]).

The algorithm detects locally stable predicates solely by moni-
toring changes in the values of the relevant variables. Although
this may require modification of the application program, it
cannot be considered as an extra overhead because most algo-
rithms for predicate detection also monitor changes in the val-
ues of relevant variables and, therefore, require the application
program to be modified to aid in the detection process (e.g.,
[20,22,37,40,19,8,47,34]).

The paper is organized as follows. Section 2 describes the
system model and notations used in this paper. A basic algo-
rithm for detecting a locally stable predicate is proposed in
Section 3 after presenting the main ideas behind the algorithm.
Section 4 gives a complexity analysis of the algorithm.
Section 5 gives an improved algorithm that has a bounded
worst-case complexity. Section 6 describes three applications
of our algorithm. Specifically, we describe how a stable predi-
cate, expressed as a monotonic function of other locally stable
predicates, can be detected efficiently using our approach. We
also show that many algorithms for detecting termination and
deadlock can be viewed as special cases of our algorithm. We
discuss modifications to our algorithm to make it fault-tolerant
in Section 7. We discuss the related work in Section 8. Finally,
Section 9 concludes the paper and outlines directions for future
research.

2. Model and notation

In this section we formally describe the model and notations
used in this paper.

2.1. Distributed computations

We assume an asynchronous distributed system comprising
of multiple processes which communicate with each other by
sending messages over a set of channels. There is no common
clock or shared memory. Processes are non-faulty and channels
are reliable. Channels are bidirectional and may be non-FIFO.
Message delays are finite but may be unbounded.

Processes execute events and change their states. A local
state of a process, therefore, is given by the sequence of events
it has executed so far starting from the initial state. Events are
either internal or external. An external event could be a send
event or a receive event or both. An event causes the local state
of a process to be updated. In addition, a send event causes a
message or a set of messages to be sent and a receive event
causes a message or a set of messages to be received. Let
proc(e) denote the process on which event e is executed. The
event executed immediately before e on the same process (as e)
is called the predecessor event of e and is denoted by pred(e).
The successor event of e, denoted by succ(e), can be defined
in a similar fashion.

Although it is possible to determine the exact order in which
events were executed on a single process, it is, in general, not
possible to do so for events executed on different processes.
As a result, an execution of a distributed system, referred to as
distributed computation (or simply a computation), is modeled
by an (irreflexive) partial order on a set of events. The partial

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 371

order, denoted by →, is given by the Lamport’s happened-
before relation (also known as causality relation) [32] which is
defined as the smallest transitive relation satisfying the follow-
ing properties

1. if events e and f occur on the same process, and e occurred
before f in real time then e happened-before f , and

2. if events e and f correspond to the send and receive events,
respectively, of the same message then e happened-before f .

Intuitively, the Lamport’s happened-before relation captures
the maximum amount of information that can be deduced about
the ordering of events when the system is characterized by
unpredictable message delays and unbounded relative processor
speeds.

2.2. Cuts, consistent cuts and frontiers

A state of a distributed system, referred to as global state or
global snapshot, is the collective state of processes and chan-
nels. (A channel state is given by the set of messages in tran-
sit.) If every process maintains a log of all the messages it has
sent and received so far, then a channel state can be determined
by examining the state of the two processes connected by the
channel. Therefore, in this paper, we view a global state as a
collection of local states. The equivalent notion based on events
is called cut. A cut is a collection of events closed under the
predecessor relation. In other words, a cut is a set of events such
that if an event is in the set, then its predecessor, if it exists,
also belongs to the set. Formally,

C is a cut � 〈∀e, f :: (e = pred(f)) ∧ (f ∈ C)⇒e ∈ C〉.
The frontier of a cut consists of those events of the cut whose

successors do not belong to the cut. Formally,

frontier(C) � { e ∈ C | succ(e) exists ⇒ succ(e) /∈ C }.
Not every cut corresponds to a valid state of the system. A

cut is said to be consistent if it contains an event only if it also
contains all events that happened-before it. Formally,

C is a consistent cut � 〈∀e, f :: (e → f) ∧ (f ∈ C)

⇒e ∈ C〉.

Observe that if a cut is not consistent then it contains an
event such that one or more events that happened-before it do
not belong to the cut. Such a scenario, clearly, cannot occur in
a real world. Consequently, if a cut is not consistent then it is
not possible for the system to be in a global state given by that
cut. In other words, only those cuts which are consistent can
possibly occur during an execution. In this paper, we use the
terms “snapshot” and “cut” interchangeably.

2.3. Global predicates

A global predicate (or simply a predicate) is defined as a
boolean-valued function on variables of one or more processes.

In other words, a predicate maps every consistent cut of a com-
putation to either true or false . Given a consistent cut, a
predicate is evaluated with respect to the values of the relevant
variables in the state resulting after executing all events in the
cut. If a predicate b evaluates to true for a cut C, we say that C

satisfies b or, equivalently, b(C) = true. Hereafter, we abbre-
viate expressions b(C) = true and b(C) = false by b(C) and
¬b(C), respectively. Also, we denote the value of a variable x

resulting after executing all events in a cut C by x(C).
In this paper, we focus on a special but important class of

predicates called locally stable predicates [36]. A predicate
is stable if once the system reaches a global state where the
predicate holds, the predicate holds in all future global states
as well.

Definition 1 (stable predicate). A predicate b is stable if it
stays true once it becomes true. Formally, b is stable if for all
consistent cuts C and D,

b(C) ∧ (C ⊆ D) ⇒ b(D).

Termination of a distributed computation, expressed as “all
processes are passive” and “all channels are empty”, is an
example of a stable predicate. A deadlock in a distributed
database system—which occurs when two or more processes
are involved in some sort of circular wait—and inaccessibility
of an object can also be expressed as stable predicates. A sta-
ble predicate is said to be locally stable if once the predicate
becomes true, no variable involved in the predicate changes its
value thereafter. For a predicate b, let vars(b) denote the set
of variables on which b depends.

Definition 2 (locally stable predicate, Marzullo and Sabel
[36]). A stable predicate b is locally stable if no process in-
volved in the predicate can change its state relative to b once b

holds. Formally, b is locally stable if for all consistent cuts C

and D,

b(C) ∧ (C ⊆ D) ⇒ 〈∀x ∈ vars(b) :: x(C) = x(D)〉.
Intuitively, once a locally stable predicate becomes true, not

only does the value of the predicate stay the same—which is
true, but the values of all variables involved in the predicate
stay the same as well. In this paper, we distinguish between
property and predicate. A predicate is a concrete formulation of
a property in terms of program variables and processors states.
In general, there is more than one way to formulate a property.
For example, the mutual exclusion property, which states that
there is at most one process in its critical section at any time,
can be expressed in the following ways:

1.
∧

1� i<j �n (¬csi ∨ ¬csj), where csi is true if and only if
process pi is in its critical section.

2. (
∑n

i=1 csi)�1, where csi is 1 if and only if process pi is
in its critical section and is 0 otherwise.

Local stability, unlike stability, depends on the particular
formulation of a property. It is possible that one formulation of
a property is locally stable while the other is not. For instance,

372 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

consider the property “the global virtual time of the system has
advanced beyond k”, which is abbreviated as GVT > k [49].
The property “GVT > k” is true if and only if the local virtual
time of each process has advanced beyond k and there is no
message in transit with timestamp at most k. Let lvti denote
the local clock of process pi . Also, let sent(i, j ; k) denote the
number of messages with timestamp at most k that process pi

has sent to process pj so far. Likewise, let rcvd(i, j ; k) denote
the number of messages with timestamp at most k that process
pi has received from process pj so far. The property GVT > k

can be expressed as

GVT > k ≡
(∧

1� i �n

lvti > k
)

∧(∧
1� i,j �n

sent(i, j ; k) = rcvd(j, i; k)
)
.

The above formulation of the property GVT > k is not
locally stable because local clock of a process may change even
after the predicate has become true. However, we can define an
auxiliary variable ai which is true if and only if lvti > k. An
alternative formulation of the property GVT > k is

GVT > k ≡
(∧

1� i �n

ai

)
∧(∧

1� i,j �n

sent(i, j ; k) = rcvd(j, i; k)
)
.

Unlike the first formulation, the second formulation is actu-
ally locally stable. We say that a property is locally stable if
there is at least one way to formulate the property such that the
formulation corresponds to a locally stable predicate. Termi-
nation, deadlock of a subset of processes (under single, AND,
OR and k-out-of-n request models) and global virtual time
exceeding a given value can all be expressed as locally stable
predicates.

Remark 1. A deadlock exists in the system if and only if there
exists a subset of processes such that the processes in the subset
are involved in some sort of circular wait. The exact nature
of the “circular wait” depends on the request model used. For
example, in the AND request model, a circular wait corresponds
to a cycle in the wait-for graph [21,25,45], whereas, in the
OR request model, it corresponds to a knot in the wait-for
graph [21,25,45]. (In the AND request model, a process may
specify one or more resources at the time of the request, and can
proceed only if it receives permission to access all the requested
resources. In the OR request model, on the other hand, a process
may specify one or more resources at the time of the request,
and can proceed if it receives permission to access any one of
the requested resources.)

Consider the AND request model. For a subset of processes
Q, where Q ⊆ P , let WFG(Q) denote the wait-for graph that

exists among processes in Q. Then,

circular-wait(Q) ≡ WFG(Q) forms a simple cycle.

Clearly, the property “WFG(Q) forms a simple cycle” can
be formulated as a locally stable predicate. Specifically, for a
process pi ∈ Q, let wf

Q
i denote the set of processes in Q

that process pi is waiting-for. Once the property “WFG(Q)

forms a simple cycle” becomes true, none of the variables wf
Q
i

for each pi ∈ Q change their values after that. The dead-
lock property under AND request model can now be expressed
as

deadlock(P) ≡ 〈∃ Q : Q ⊆ P : circular-wait(Q)〉.
Note that deadlock(P) by itself cannot be expressed as a

locally stable predicate. This is because, even if some pro-
cesses in P are involved in a deadlock, other processes in P

may continue to execute and therefore their variables may con-
tinue to change their values. However, it can be expressed as
a disjunction of locally stable predicates, where each disjunct
is of the form circular-wait(Q) for some Q. We refer to such
a predicate as monotonically decomposable stable predicate
and we discuss it in greater detail later in Section 6. A simi-
lar observation can be made for deadlock under other request
models.

3. An algorithm for detecting a locally stable predicate

In this section, we describe an on-line algorithm to detect a
locally stable predicate, that is, to determine whether a locally
stable predicate has become true in a computation in progress.
A general algorithm for detecting a stable predicate is to re-
peatedly compute consistent snapshots (or consistent cuts) of
the computation and evaluate the predicate for these snapshots
until the predicate becomes true. More efficient algorithms have
been developed for detecting certain stable properties such as
termination and deadlock. Specifically, it has been shown that to
detect many stable properties, including termination and dead-
lock, it is not necessary for snapshots to be consistent. In this
section, we show that any locally stable predicate can be de-
tected by repeatedly taking possibly inconsistent snapshots of
the underlying computation.

3.1. The main idea

The main idea is to take snapshots of the computation in
such a manner that there is at least one consistent snapshot
lying between any two consecutive snapshots. To that end, we
generalize the notion of consistent cut to the notion of consistent
interval.

Definition 3 (interval). An interval [C, D] is a pair of possibly
inconsistent cuts C and D such that C ⊆ D.

We next formally define what it means for an interval to be
consistent.

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 373

Definition 4 (consistent interval). An interval [C, D] is said
to be consistent if there exists a consistent cut G such that C ⊆
G ⊆ D.

Note that an interval [C, C] is consistent if and only if C

is a consistent cut. Next, we give the necessary and sufficient
condition for an interval to be consistent.

Theorem 1. An interval [C, D] is consistent if and only if all
events that happened-before some event in C belong to D.
Formally, [C, D] is consistent if and only if the following holds:

〈∀e, f :: (e → f) ∧ (f ∈ C) ⇒ e ∈ D〉. (1)

Proof. First, assume that [C, D] is a consistent interval. This
implies that there exists a consistent cut G such that C ⊆ G ⊆
D. Pick any events e and f such that f ∈ C and e → f . Since
f ∈ C and C ⊆ G, we get that f ∈ G. From the fact that G

is consistent, we get that e ∈ G. But e ∈ G and G ⊆ D imply
that e ∈ D.

Conversely, assume that (1) is true. We define the cut G as
consisting of all events in C and those that happened-before
them. Formally,

G � {e | ∃f ∈ C : e = f or e → f }.
Evidently, from the definition of G, C ⊆ G. To show that G ⊆
D, consider an event e ∈ G. By definition of G, there exists an
event f ∈ C such that either e = f or e → f . In the first case,
e ∈ D because C ⊆ D. In the second case, e ∈ D because (1)
holds. Now, we only need to show that G is consistent. Pick any
events u and v such that u → v and v ∈ G. From the definition
of G, there exists an event f ∈ C such that either v = f or
v → f . In either case, u → f . Since f ∈ C and u → f , by
definition of G, we get that u ∈ G. Hence G is consistent. �

Observe that when C = D, the necessary and sufficient con-
dition for an interval to be consistent reduces to the definition
of a consistent cut. Now, consider a consistent interval [C, D].
Suppose there is no change in the value of any variable in
vars(b) between C and D. In that case, we say that the inter-
val [C, D] is quiescent with respect to b. Consider a consistent
cut G that lies between C and D. Clearly, for every variable
x ∈ vars(b), x(C) = x(D) = x(G). This implies that b(G) =
b(C) = b(D). In other words, in order to compute the value of
the predicate b for the consistent cut G, we can instead eval-
uate b for either endpoint of the interval, that is, cut C or cut
D. In case b is a stable predicate and b(D) evaluates to true,
we can safely conclude that b has indeed become true in the
underlying computation. Formally,

Theorem 2. If an interval [C, D] is consistent as well as qui-
escent with respect to a predicate b, then

b(D) ⇒ 〈∃ G : G is a consistent cut : b(G)〉.

Based on the idea described above, an algorithm for de-
tecting a locally stable predicate can be devised as follows.

Repeatedly compute possibly inconsistent snapshots of the
computation in such a way that every pair of consecutive
snapshots forms a consistent interval. After each snapshot is
recorded, test whether any of the relevant variables—on which
the predicate depends—has undergone a change since the last
snapshot was taken. In case the answer is “no”, evaluate the
predicate for the current snapshot. If the predicate evaluates
to true, then, using Theorem 2, it can be deduced that the
computation has reached a state in which the predicate holds,
and the detection algorithm terminates with “yes”. Otherwise,
repeat the above steps for the next snapshot and so on.

Theorem 2 establishes that the algorithm is safe, that is, if the
algorithm terminates with answer “yes”, then the predicate has
indeed become true in the computation. We need to show that
the algorithm is also live, that is, if the predicate has become
true in the computation, then the algorithm terminates eventu-
ally with answer “yes”. To establish liveness, we use the fact
that the predicate is locally stable, which was not required to
prove safety. Suppose the predicate b, which is locally stable,
has become true in the computation. Therefore, there exists a
consistent cut G of the computation that satisfies b. Let C and
D with C ⊆ D be two snapshots of the computation taken
after G. In other words, G ⊆ C ⊆ D. Since b is a locally
stable predicate and b(G) holds, no variable in vars(b) under-
goes a change in its value after G. This implies that the values
of all the variables in vars(b) for D is same as that for G and
therefore D satisfies b as well. Formally,

Theorem 3. Given a locally stable predicate b, an interval
[C, D] and a consistent cut G such that G ⊆ C,

b(G) ⇒ ([G, D] is quiescent with respect to b) ∧ b(D).

Intuitively, Theorem 3 implies that, for an algorithm to
be live, it is sufficient for the algorithm to take at least two
snapshots forming a consistent interval after the predicate has
become true.

Theorem 4. Consider a locally stable predicate b. If an al-
gorithm takes at least two cuts C and D after b has become
true such that interval [C, D] is consistent, then the algorithm
eventually detects that b has become true.

Proof. Since C and D are taken after b has become true, there
exists a consistent cut G that satisfies b such that G ⊆ C.
From Theorem 3, interval [G, D] is quiescent with respect to
b, and, therefore, so is the interval [C, D]. From Theorem 2, b

evaluates to true for D. �

We next describe how to ensure that a pair of consecutive
snapshots form a consistent interval and how to detect that the
interval they form is quiescent.

3.2. Implementation

To implement the detection algorithm described in the pre-
vious section, two issues need to be addressed. First, how to

374 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

ensure that every pair of consecutive snapshots forms a con-
sistent interval. Second, how to detect that no relevant variable
has undergone a change in a given interval, that is, all relevant
variables have reached a state of quiescence. We next discuss
solutions to both problems.

3.2.1. Ensuring interval consistency using barrier
synchronization

First, we give a condition that is stronger than the condi-
tion (1) given in Theorem 1 in the sense that it is sufficient but
not necessary for a pair of cuts to form a consistent interval.
The advantage of this condition is that it can be implemented
using only control messages without altering messages gener-
ated by the underlying computation, hereafter referred to as ap-
plication messages. To that end, we define the notion of barrier
synchronized interval. Intuitively, an interval [C, D] is barrier
synchronized if it is not possible to move beyond D on any
process until all events in C have been executed.

Definition 5 (barrier synchronized interval). An interval
[CD] is barrier synchronized if every event contained in C

happened-before every event that does not belong to D. For-
mally,

〈∀e, f :: (e ∈ C) ∧ (f /∈ D) ⇒ e → f 〉. (2)

Next, we show that a barrier synchronized interval is also
consistent.

Lemma 5 (barrier synchronization ⇒ consistency). If an in-
terval is barrier synchronized, then it is also consistent.

Proof. The proof is by contradiction. Assume that an interval
[C, D] is barrier synchronized but is not consistent. Therefore
there exist events u and v with u → v such that v ∈ C but
u /∈ D. Since [C, D] is barrier synchronized, v → u. How-
ever, u → v and v → u imply that → contains a cycle—a
contradiction. �

It can be verified that when C = D, the notion of barrier
synchronized interval reduces to the notion of barrier synchro-
nized cut, also known as inevitable global state [17]. Now, to
implement the algorithm described in the previous section, we
use a monitor which periodically records snapshots of the un-
derlying computation. One of the processes in the system can
be chosen to act as a monitor. In order to ensure that every
pair of consecutive snapshots is barrier synchronized, the mon-
itor simply needs to ensure that the instance (of the snapshot
algorithm) for recording the next snapshot is initiated only after
the instance for recording the current snapshot has terminated.
Recording a snapshot basically requires the monitor to col-
lect local states of all processes. Many approaches can be used
depending upon the communication topology and other factors
[49]. For instance, the monitor broadcasts a message to all pro-
cesses requesting them to send their local states. A process, on
receiving message from the monitor, sends its (current) local
state to the monitor [20]. Alternatively, processes in the sys-

tem can be arranged to form a logical ring. The monitor uses a
token (sometimes called a probe) which circulates through the
entire ring gathering local states on its way [14,40,36]. Another
approach is to impose a spanning tree on the network with the
monitor acting as the root. The monitor collects a snapshot us-
ing a combination of broadcast and convergecast on the span-
ning tree. Specifically, in the broadcast phase, starting from the
root node, control messages move downward all the way to the
leaf nodes. In the convergecast phase, starting from leaf nodes,
control messages move upward to the root node collecting local
states on their way [49]. (A process can record its local snapshot
either during the broadcast phase or during the convergecast
phase.) Hereafter, we refer to the three approaches discussed
above as broadcast-based, ring-based and tree-based, respec-
tively. In all the three approaches, recording of a local state
can be done in a lazy manner [40]. In lazy recording, a process
postpones recording its local state until its current local state is
such that it does not preclude the (global) predicate from be-
coming true. For instance, in termination detection, a process
which is currently active can postpone recording its local state
until it becomes passive. Hereafter, unless otherwise specified,
we assume that the tree-based approach is used for taking a
snapshot. This is because, with the tree-based approach, no as-
sumption has to be made about the communication topology
(e.g., whether it is fully connected).

Let a session corresponds to taking a single snapshot of the
computation. For the kth session, let Sk refer to the snapshot
computed in the session, and let startk and endk denote the
events on the monitor that correspond to the beginning and
the end of the session, respectively. All the above approaches
ensure the following:

〈∀e : e ∈ frontier(Sk) : e → endk〉
∧ 〈∀f : f ∈ frontier(Sk+1) : startk+1→f 〉.

Since sessions do not overlap, endk → startk+1. This im-
plies that

〈∀e, f :: (e ∈ frontier(Sk)) ∧ (f ∈ frontier(Sk+1))

⇒ e → f 〉. (3)

It can be easily verified that (3) implies (2). Therefore, we
have,

Lemma 6. If a new instance of snapshot algorithm is
started only after the current instance of snapshot algo-
rithm has finished, then the two snapshots form a consistent
interval.

Note that non-overlapping of sessions is a sufficient condi-
tion for interval consistency, but it is not necessary. It is possi-
ble to ensure interval consistency even when sessions overlap.
However, application messages need to be modified to carry
control information.

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 375

3.2.2. Detecting interval quiescence using dirty bits
To detect whether one or more variables have undergone a

change in their values in a given interval, we use dirty bits.
Specifically, we associate a dirty bit with each variable whose
value the predicate depends on. Sometimes, it may be possible
to associate a single dirty bit with a set of variables or even
the entire local state. Initially, each dirty bit is in its clean
state. Whenever there is a change in the value of a variable, the
corresponding dirty bit is set to an unclean state. When a local
snapshot is taken (that is, a local state is recorded), all dirty
bits are also recorded along with the values of all the variables.
After the recording, all dirty bits are reset to their clean states.
Clearly,

Lemma 7. An interval [C, D] is quiescent if and only if all
dirty bits in D are in their clean states.

For properties that may be evaluated on a partial state (e.g.,
a subset of processes are involved in a circular wait), it is
more efficient for a process to record only the quiescent part of
its state when taking a local snapshot. Specifically, instead of
recording the values of all the variables along with the associ-
ated dirty bits, it may be more efficient to record the values of
only those variables that have not undergone any change since
the last local snapshot was recorded. The monitor, on collect-
ing the quiescent part of the local state from each process, can
evaluate the locally stable predicate on the collected state, if it
is possible to do so.

3.2.3. Combining the two: the BasicLSPD algorithm
To detect a locally stable predicate, the monitor executes the

following steps:

1. Compute a snapshot of the computation.
2. Test whether all dirty bits in the snapshot are in their clean

states. If not, go to the first step.
3. Evaluate the predicate for the snapshot. If the snapshot does

not satisfy the predicate, then go to the first step.

We use BasicLSPD to refer to the algorithm described in
this section.

3.2.4. Optimizing the algorithm
The basic algorithm BasicLSPD can be further optimized.

In the ring-based approach, the process currently holding the
token can discard the token if the local states gathered so far
indicate that the global predicate has not become true. This
can happen, for example, when the token reaches a process
with one or more dirty bits in their unclean states. The pro-
cess discarding the token can either inform the monitor or be-
come the new monitor itself and initiate the next session for
recording a snapshot. When a session is aborted early in this
manner, only a subset of processes would have recorded their
local states and have their dirty bits reset. In this case, the
global snapshot for a session, even if it is aborted early, can be
taken to be the collection of last recorded local states on all
processes.

4. Complexity analysis

We analyze the performance of BasicLSPD with respect to
three metrics: message complexity, detection latency and space
complexity.

Message complexity measures the number of message
exchanged by the predicate detection algorithm. Detection la-
tency measures the time elapsed between when the predicate
becomes true and when the algorithm detects that the predicate
has become true. To measure detection latency, it is typically
assumed that message transmission time is at most one time
unit and message processing time is negligible [49,4]. (A sim-
ilar assumption is made when computing time-complexity of
an algorithm for an asynchronous distributed system as well.)
Finally, space complexity measures the amount of space used
by the predicate detection algorithm.

Message complexity: The worst-case message complexity of
BasicLSPD is unbounded. This is because an adversary can
force the monitor to initiate an unbounded number of instances
of the snapshot algorithm before the monitor detects that the
predicate has become true. However, we show that its message
complexity should be much lower in practice.

Let n denote the number of processes in the system and d

denote the diameter of the communication topology. We first
calculate the average time an instance of a snapshot algorithm
takes to execute, denoted by �s . Let �c denote the average chan-
nel delay. Unless otherwise stated, assume that message pro-
cessing time is negligible and a snapshot is collected using the
tree-based approach via a breadth-first-search (BFS) spanning
tree. When using a tree-based approach to collect a snapshot of
the system, messages are required to travel from the root node,
which acts as a monitor, to leaf nodes and back. Therefore,

�s ≈ 2 d �c.

Let �w denote the average time for which a monitor waits
before initiating the next instance of a snapshot algorithm. We
now compute the average number of events that are executed
in the system between two consecutive initiations of a snap-
shot algorithm, denoted by �e. Let �e denote the average delay
between two consecutive events of a process. We have,

�e ≈ n
�s + �w

�e

.

Let m denote the total number of events executed by the
underlying computation before the predicate becomes true. We
next compute the average number of instances of a snapshot
algorithm initiated by the monitor, denoted by �s . We have,

�s ≈ m

�e

+ 2 ≈ m

n

�e

�s + �w

+ 2.

The additional two snapshots are used to account for the
fact that the monitor may have to take two snapshots of the
system even after the predicate has become true before de-
tecting that the predicate has indeed become true. With tree-
based approach, each instance of a snapshot algorithm generates
2(n−1) messages. Therefore, the average number of messages

376 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

generated by BasicLSPD , denoted by �m, is given by

�m ≈ 2 (n − 1) �s ≈ 2 (n − 1)

(
m

n

�e

�s + �w

+ 2

)

≈ 2 m �e

2 d �c + �w

+ 4 (n − 1).

With �c = 5ms, �e = 50ms, �w = 50ms and d = 25, �m ≈
m
3 +4(n−1). We expect m to be much greater than n in practice
because, in a realistic computation, each process should execute
many events. Therefore, the average message complexity of
BasicLSPD is strongly influenced by the multiplier factor for
m, which is given by 2 �e

2 d �c+�w
. It is important to note that the

multiplier factor for m decreases as d increases.
An interesting question is: how does our general algorithm

for detecting any locally stable predicate compare with a more
specialized algorithm for detecting a specific locally stable
predicate, say, termination? To our knowledge, if the communi-
cation topology is arbitrary, then all message-optimal termina-
tion detection algorithms are acknowledgment-based [15,9,43];
they generate an acknowledgment message for every applica-
tion message generated by the underlying computation. As a
result, their message complexity even in average case is at least
m+n− 1. (The additional n− 1 messages are required in case
the computation is non-diffusing, that is, any subset of pro-
cesses may be active initially.) A similar argument can be made
for deadlock detection algorithms in this class (e.g., [20,26]).

As our discussion illustrates, depending on the values of
various parameters, the message-complexity of BasicLSPD, in
practice, may be significantly lower than that of even more
specialized detection algorithms even though its worst-case
message complexity is unbounded. In computing the average
message complexity, we assume that processes record their
snapshots as soon as they learn that a new instance of the snap-
shot algorithm is in progress. If, on the other hand, processes
record their snapshots in a lazy manner, then the average mes-
sage complexity should be even lower. We also note here that
we can restrict our algorithm to require participation by only
those processes that are part of the global predicate that is
being evaluated.

Detection latency: Once the predicate becomes true, from
Theorem 2, the monitor needs to collect at most two snapshots
of the system to detect that the predicate has become true.
Therefore, the detection latency of BasicLSPD depends on the
time-complexity of the snapshot algorithm. If a BFS spanning
tree is used to collect a snapshot of the system, then the time-
complexity of a snapshot algorithm is O(d). Thus, the detection
latency of BasicLSPD is also O(d).

Space complexity: Let s denote the amount of space required
to store a local snapshot of a single process. The monitor, in the
worst-case, may have to store local snapshots of all processes
explicitly before it can evaluate the predicate. Therefore, the
space complexity of BasicLSPD is O(n s) in the worst-case.
In many cases, however, it may be possible to combine local
snapshots of processes into a more succinct form, which can
still be used to evaluate the predicate. For example, when de-
tecting termination, it is sufficient for the monitor to know if
one of the processes is active or one of the channels is empty.

It is not necessary to know the states of all processes and chan-
nels explicitly. Therefore, in the case of termination detection,
space complexity of BasicLSPD may be as low as O(1).

5. A worst-case message-complexity bounded algorithm

The algorithm BasicLSPD has one major drawback. Its
worst-case message complexity is unbounded. We describe how
to bound the worst-case message complexity without adversely
affecting the average message complexity, detection latency
and space complexity. The main idea is as follows. Instead of
evaluating the locally stable predicate on a periodic basis, the
monitor evaluates the predicate only after learning that some
process has executed an event. Specifically, on learning that
some process in the system has executed an event, the monitor
evaluates the predicate by taking two snapshots of the system
one after another. The monitor takes the second snapshot only
after it has the first snapshot to ensure that the two snapshots
form a consistent interval. Intuitively, the first snapshot resets
all dirty bits and the second snapshot is used to test if the pred-
icate has become true. We refer to the act of predicate evalua-
tion by taking two snapshots of the system as evaluateLSP. To
account for the degenerate case when the predicate is true ini-
tially and, therefore, no event may be executed in the system,
the monitor evaluates the predicate once in the beginning.

We now provide more details of the algorithm. Processes are
arranged in the form of a tree and the root of the tree acts as
a monitor. Whenever a process executes an event, it sends a
message to the root, via the tree, requesting it to evaluate the
predicate since the predicate may have become true. Requests
to the root are forwarded in a “delayed” manner. Specifically,
once a process has forwarded a request for predicate evaluation
to its parent, it does not forward any more requests to the parent
until its previous request has been satisfied. A process considers
its previous request to be satisfied if it has participated in at least
one instance of predicate evaluation after sending/forwarding
the request to its parent.

Intuitively, the “delayed” forwarding of requests to the par-
ent helps in reducing the average message complexity of the
modified algorithm. This is because of the following reasons.
While a process is waiting for its previous request to be satis-
fied, it may execute many events, but it only sends one request
to the parent for all such events. Further, while waiting, a non-
leaf process in the tree may receive requests from many chil-
dren, but it only forwards one request to its parent for all such
children.

We refer to this modified algorithm as BoundedLSPD . A
formal description of the algorithm is given in Figs. 1 and 2. In
the algorithm, each process pi maintains two variables statusi
and pendingi . The first variable statusi keeps track of the
status of a predicate evaluation request that pi has forwarded
to its parent. If statusi = NOT_WAITING, then all requests
forwarded by pi to its parent have been satisfied. On the other
hand, if statusi �= NOT_WAITING, then we say that pi has
an extant request for predicate evaluation. The second variable
pendingi keeps track of whether pi has a pending request for
predicate evaluation that it has received either from itself or one

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 377

Fig. 1. The algorithm with bounded message complexity BoundedLSPD for detecting a locally stable predicate.

of its children, but has not forwarded the request to its parent
yet. We say that pi is latent if it has a pending request but no
extant request for predicate evaluation (that is, action (A3) is
enabled). From the algorithm, pi forwards a pending request for
predicate evaluation to its parent as soon as it becomes latent,
that is, pendingi = true and statusi = NOT_WAITING.

The safety of BoundedLSPD follows from Theorem 2, Lem-
mas 6 and 7. We now show that BoundedLSPD is live. The
following lemma can be proved by using induction on the dis-
tance of a process from the root in the tree.

Lemma 8. Any extant request for predicate evaluation at a
process is satisfied within O(d) time units.

Suppose the predicate becomes true after executing an event
on process pi at time t . We call a process pj an ancestor of pro-
cess pi if it lies on the path from the root to pi (both inclusive)
in the tree. The following lemma can be proved by using induc-
tion on the distance of an ancestor of pi from pi in the tree.

Lemma 9. Every ancestor of pi becomes latent at least once
within O(d) time units of t .

Specifically, the above lemma implies that

Corollary 10. The root becomes latent at least once within
O(d) time units of t .

378 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

Fig. 2. The algorithm with bounded message-complexity BoundedLSPD for
detecting a locally stable predicate (continued).

The root, on becoming latent, initiates an instance of predi-
cate evaluation if it still has not detected that the predicate has
become true. From Theorem 4, any instance of predicate evalu-
ation initiated after time t terminates with answer “yes”. This, in
turn, implies that the algorithm BoundedLSPD is live. Further,
an instance of predicate evaluation finishes in O(d) time units,
which implies that the detection latency of BoundedLSPD
is O(d).

The worst-case message complexity of BoundedLSPD is
O(n(m + 1)). This is because, in the worst-case, each event in
the system causes the monitor to take two snapshots to evaluate
the predicate. As far as average message complexity is con-
cerned, the derivation given in Section 4 for BasicLSPD can
be easily adopted for BoundedLSPD. Specifically, the average
number of instances of a snapshot algorithm initiated by the
monitor, denoted by �s , is still given by

�s ≈ m

n

�e

�s + �w

+ 2.

It can be verified that a process sends at most one request to
its parent for every instance of predicate evaluation initiated by
the monitor. Note that each instance of predicate evaluation in-
volves taking two snapshots of the system. Therefore, at most
5(n − 1) control messages are exchanged for every instance of
predicate evaluation. As a result the average message complex-
ity of BoundedLSPD is given by

�m ≈ 5 (n − 1)

2
�s ≈ 5 (n − 1)

2

(
m

n

�e

�s + �w

+ 2

)

≈ 2.5 m �e

2 d �c + �w

+ 5 (n − 1).

Clearly, BoundedLSPD has the same space complexity as
BasicLSPD. Therefore, the modification described in this sec-
tion gives an algorithm with bounded worst-case message com-
plexity without adversely affecting its performance with respect
to other metrics.

Note that it is not necessary to evaluate the predicate af-
ter executing any application event. Instead, it is sufficient to
evaluate the predicate whenever a process executes an applica-
tion event that has the potential of changing the value of the
predicate (from false to true). Such an event is referred to as a
relevant event [36]. For termination detection, such an event
occurs when process changes its state from active to passive.
For deadlock detection, such an event occurs when process
changes its state from unblocked to blocked.

6. Applications

First, we identify a class of stable predicates that can be
detected efficiently using the algorithm for detecting a locally
stable predicate. Next, we show that many algorithms for de-
tecting termination and deadlock can be viewed as special cases
of our general algorithm for detecting a locally stable predicate.
We also instantiate the general algorithm to derive an efficient
algorithm for deadlock detection whose performance is com-
parable with that of existing deadlock detection algorithms.

6.1. Detecting a subclass of stable predicates

The approach described in Section 3 can only be used to
detect a locally stable predicate in general. For any other pred-
icate, safety is guaranteed but liveness is not. In this section,
we identify a class of stable predicates for which even liveness
is ensured.

Consider a stable predicate b that is a function of k locally
stable predicates b1, b2, . . . , bk . If b is a monotonic function of
all its arguments, then it is indeed possible to use the algorithm
BasicLSPD to detect b. Some examples of predicates that are
monotonic functions of all their arguments are

1. b1 ∧ b2 ∧ · · · ∧ bk ,
2. b1 ∨ b2 ∨ · · · ∨ bk ,
3. (b1 ∨ b2) ∧ (b3 ∨ b4) ∧ · · · ∧ (bk−1 ∨ bk), when k is even.

Note that, although b is stable, it may not be locally stable.
For example, suppose b = b1 ∨b2, where b1 and b2 are locally
stable predicates. Once one of the disjuncts, say b1, becomes
true, b also becomes true. However, the other disjunct b2 may
still be false. Therefore, values of variables of b2, and conse-
quently of b, may continue to change implying that b is not
locally stable. We assume that false < true. The assignment of
values to the arguments of b can be represented by a boolean
vector of size k; the j th entry of the boolean vector refers to
the value of the locally stable predicate bj . Let X and Y be two
boolean vectors representing possible assignment of values to
the arguments of b. We say that X�Y if

〈∀j : 1�j �k : X[j]�Y [j]〉.
We use b(X) to denote the value of b when evaluated for the

boolean vector X. The predicate b is said to be a monotonic
function of all its arguments if it satisfies the following:

〈∀X, Y :: X�Y ⇒ b(X) � b(Y)〉

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 379

which in turn implies the following:

〈∀X, Y :: (X�Y) ∧ b(X) ⇒ b(Y)〉.
We now show that any stable predicate derived from locally

stable predicates using ∧ and ∨ operators satisfies the mono-
tonicity property.

Lemma 11. Consider a predicate b derived from k other
locally stable predicates b1, b2, . . . , bk using ∧ and ∨ opera-
tors. Then b satisfies the monotonicity property.

Proof. Let X and Y be two boolean vectors representing as-
signment of values to the arguments of b. Assume that X�Y

and b(X) holds. We have to show that b(Y) holds as well. With-
out loss of generality, assume that the formula is fully parenthe-
sized. The proof is by induction on the length of the formula,
say l, where the length of the formula is defined as the number
of operators in the formula.

Base case (l = 0): Clearly, either b is a constant or b = bj

for some j where 1�j �k. It can be easily verified that, in
either case, b(Y) holds.

Induction step (l > 0): Assume that the lemma holds when
the length of the formula is at most l − 1. We now show that
the lemma holds when the length of the formula is l. There are
two cases to consider depending on the topmost operator, say
op, in the formula:

Case 1 (op = ∧): In this case,

b(b1, b2, . . . , bk) = u(b1, b2, . . . , bk) ∧ v(b1, b2, . . . , bk).

Therefore, we have,

(X�Y) ∧ b(X)

≡ { b = u ∧ v }

(X�Y) ∧ u(X) ∧ v(X)

≡ { predicate calculus }(
(X�Y) ∧ u(X)

)∧(
(X�Y) ∧ v(X)

)
⇒ { using induction hypothesis }

u(Y) ∧ v(Y)

≡ { b = u ∧ v }

b(Y).

Therefore, in this case, b satisfies the monotonicity property.
Case 2 (op = ∨): The proof for the second case is similar

to that for the first case.
This establishes the lemma. �

For convenience, we refer to stable predicates that can be
expressed as monotonic functions of other locally stable pred-
icates as monotonically decomposable stable predicates.

A simple approach for detecting b is to use an instance of
BasicLSPD for each locally stable predicate in b. However,
instead of taking a separate snapshot for each locally stable
predicate, the monitor can take only one snapshot and use it to
evaluate those locally stable predicates in b that have not be-
come true so far. Based on the truth values of the locally stable
predicates in b, the truth value of b itself can be computed. We
refer to this algorithm as BasicMSPD. As in the case of Basi-
cLSPD, BasicMSPD also has unbounded message complexity
in the worst-case. Using ideas presented in Section 5, we can
similarly obtain an algorithm BoundedMSPD for detecting b

that has bounded message complexity. Clearly, BoundedMSPD
has same message complexity (worst-case and average-case)
and detection latency as BoundedLSPD.

6.2. Detecting termination of a distributed computation

The termination detection problem involves detecting when
an ongoing distributed computation has ceased all its activi-
ties. The distributed computation satisfies the following rules.
A process can be either in an active state or a passive state. A
process can send a message only when it is active. An active
process can become passive at any time. A passive process be-
comes active on receiving a message. The computation is said
to have terminated when all processes have become passive
and all channels have become empty. (The termination detec-
tion problem arises when a distributed computation terminates
implicitly and therefore a separate algorithm is required to de-
tect the termination [48]. Examples of such computations can
be found in [48].)

A large number of algorithms that have been developed for
termination detection can be viewed as special cases of our ap-
proach (e.g., [41,37,14,40,19,13,24]). To detect termination, we
need to test for two conditions. First, all processes have become
passive. Second, all channels have become empty. Passiveness
of a process is a local property and can be tested quite easily by
the process. However, emptiness of a channel depends on the
states of two processes connected by the channel and is there-
fore not a local property. Typically, three approaches have been
used to test for the emptiness of channels: acknowledgment-
based, message counting-based and channel flushing-based.

6.2.1. Acknowledged-based approach
In this approach, when a process receives an application mes-

sage, it sends an acknowledgment message to the source pro-
cess. Therefore, once a process has received an acknowledg-
ment message for every application message it has sent so far,
it knows that all its outgoing channels are empty. For a pro-
cess pi , let passivei be true if the process is passive and false
otherwise. Also, let missingi denote the difference between
the number of application messages that have been sent by pi

and the number of acknowledgment messages that have been
received by pi . The termination condition can be formulated as

〈∀i : 1� i�n : passivei ∧ (missingi = 0)〉.
Hélary and Raynal [19] use the above formulation of the

termination condition to detect termination of a distributed

380 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

computation. In their approach, a process takes a snapshot in
a lazy manner, that is, it delays recording of its local snapshot
until it has become passive and all its application messages
have been acknowledged. However, instead of using dirty bits,
each process pi maintains a flag cpi that is true if and only
if pi continuously stayed passive since cpi was last reset. The
flag cpi acts as a dirty bit for the variable passivei . There is
no need to maintain a dirty bit for the other variable missingi

because the rules of the computation ensure that the dirty bit
for the variable passivei is set if and only if the dirty bit for
the variable missingi is set.

6.2.2. Message counting-based approach
In this approach, each process pi maintains a deficit counter,

denoted by deficiti , that tracks the difference between the num-
ber of messages it has sent and the number of messages it has
received. The termination condition can be formulated as

〈∀i : 1� i�n : passivei〉 ∧
(

n∑
i=1

deficiti = 0

)
.

The termination detection algorithm by Safra [14] uses the
above formulation of the termination condition. Again, instead
of using dirty bits, each process pi is associated with a color,
denoted by colori , which is white if pi stayed continuously
passive since colori was last reset; otherwise it is black. Some
other examples of termination detection algorithms that use
message counting and are special cases of our algorithm in-
clude Mattern’s four counter algorithm [37], Mattern’s sticky-
flag algorithm [40] and Sinha et al.’s two phase algorithm [46].

6.2.3. Channel flushing-based approach
This approach assumes that all channels satisfy the FIFO

property. The emptiness of a channel is tested by sending a
marker message along that channel. If the process at the receiv-
ing end of the channel receives the marker message without
receiving any application message before it, then the channel
was empty; otherwise it was not. A snapshot of the system is
collected using two waves [49]. The first wave collects the lo-
cal state of each process. A process, on recording its local state,
sends a marker message along all its outgoing channels. The
second wave collects the state of each channel. On receiving
the second wave, a process waits until it has received a marker
message along every incoming channel before propagating the
wave further. Note that the two waves of a snapshot are not re-
quired to form a consistent interval and therefore can overlap.
If a tree-based approach is used to record a snapshot of the sys-
tem, then process states can be recorded in the broadcast phase
and channel states can be recorded in the convergecast phase.

It is possible to evaluate the termination condition using only
a single wave per snapshot. Specifically, each wave collects lo-
cal states of all processes with respect to the current snapshot
and states of all channels with respect to the previous snapshot.
Let allP assive denote the predicate that all processes are pas-
sive, and allEmpty denote the predicate that all channels are
empty. Then the termination condition can be represented as

termination � allP assive ∧ allEmpty.

Let C and D be two consecutive snapshots such that [C, D]
is quiescent with respect to termination. We have,

termination(D)

≡ { definition of termination }

all P assive(D) ∧ allEmpty(D)

≡ { [C, D] is quiescent with respect to termination }

all P assive(D) ∧ allEmpty(D)∧
(allEmpty(C) = allEmpty(D))

⇒ { predicate calculus }

all P assive(D) ∧ allEmpty(C).

In other words, to evaluate the termination condition with
respect to the snapshot D, as far as a channel is concerned, it is
safe to use its state with respect to the earlier snapshot C. Ter-
mination detection algorithms based on using marker messages
to detect emptiness of channels can be found in [41,11]. For
example, the quiescence detection algorithm in [11] uses the
ring-based approach to record a snapshot. Moreover, a snapshot
session is aborted as soon as it is detected that the computation
has not terminated or the interval is not quiescent. The process
that aborts the snapshot session then starts a new snapshot ses-
sion and forwards the token to the next process in the ring.

When channel flushing-based approach is used to detect
emptiness of a channel, the message complexity is no longer
O(n(m + 1)) but increases to O(c(m + 1)), where c is the
number of channels in the communication topology.

6.3. Detecting deadlock in a distributed system

Deadlock may occur when processes require access to mul-
tiple resources at the same time. Ho and Ramamoorthy [20]
present a two-phase algorithm to detect a deadlock in a dis-
tributed database system under the AND request model. In Ho
and Ramamoorthy’s two-phase algorithm [20], a wait-for graph
is constructed in each phase by collecting a snapshot of the
system in the form of process status tables. A deadlock is an-
nounced if the cycle observed in the first-phase is also detected
in the second phase. Two phases are used because the snapshot
collected in a phase may be inconsistent, and, therefore, a cycle
detected in the wait-for graph constructed using such a snap-
shot may not actually exist in the system. The second phase
is used to validate the cycle observed in the first phase. The
algorithm is flawed because it does not correctly test for quies-
cence of the interval between the first phase and second phase
before evaluating the deadlock condition. Specifically, their qui-
escence detection approach works only if status tables maintain
information about transactions (and not processes) and trans-
actions follow the two-phase locking discipline. Although the
two-phase deadlock detection algorithm as described in [20] is
incorrect, it can be fixed using the ideas given in this paper as
discussed next. A correct version of the two phase deadlock
detection algorithm can also be found in [26].

We briefly explain how our general approach can be instan-
tiated to detect a deadlock under any request model (and also

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 381

fixes Ho and Ramamoorthy’s two-phase deadlock detection al-
gorithm). To detect a deadlock, each process maintains a table
that tracks the current status of the process: there is an entry in
the table for each resource that a process is either holding or
waiting on. Moreover, there is a dirty bit associated with each
entry in the table. Whenever an entry is added to the table, the
dirty bit is initially set to its unclean state. When a process takes
a local snapshot, it only records those entries in the table whose
dirty bit is in the clean state. As discussed in Section 3.2.2,
immediately after taking the snapshot, all dirty bits are reset
to their clean states. Note that a snapshot of the system only
collects those entries that were in the table when the last snap-
shot was taken and have not changed since then. Since more
than one process may initiate the snapshot algorithm, for every
entry in the table, a separate dirty bit has to be maintained for
each possible initiator. The initiator of the snapshot algorithm
can then use the entries recorded as part of the snapshot to
construct a wait-for graph. (Alternatively, instead of dirty bits,
it is possible to use a local clock to timestamp entries in the
table.) Consider a wait-for graph G constructed by a process
as described above. Given a consistent cut C, let WFG(C) de-
note the wait-for graph that exists among processes for the cut
C. Using properties of interval consistency and interval quies-
cence, it can be deduced that

〈∃ C : C is a consistent cut : G is a subgraph of WFG(C)〉.
In other words, various edges in G are actually consistent

with each other and, therefore, G can be safely analyzed to ob-
tain meaningful results. Now, depending on the request model,
any algorithm for analyzing a wait-for graph can be used to de-
tect a deadlock [21,12,33]. For example, under the AND request
model, the wait-for graph should contain a cycle, whereas, un-
der the OR request model, the wait-for graph should contain a
knot.

6.3.1. Computing maximum deadlocked set
Our deadlock detection algorithm can be used to determine

the subset of all processes currently involved in a deadlock,
which is referred to as maximum deadlocked set [8]. The
algorithm for computing the maximum deadlocked set has
O(n) message complexity and O(d) time complexity, where n

is the number of processes in the system and d is the diameter
of the communication topology.

6.3.2. Improving performance of the deadlock detection
algorithm

Note that the message complexity of the deadlock detection
algorithm described above depends on the total number of pro-
cesses in the system. However, it can be modified to obtain
a more efficient deadlock detection algorithm whose message
complexity depends on the size of the wait-for graph. Such an
algorithm is useful, for example, when most deadlocks involve
only a small subset of processes. For convenience, we assume
that the communication topology is fully connected.

The main idea is as follows. When a process suspects that it
may be involved in a deadlock, instead of taking a snapshot of

the entire system, it takes a snapshot of only those processes
that can be involved in a deadlock with it. To that end, it first
computes its reachability set. The reachability set of a process
consists of all those processes that can be reached from it
through edges in the wait-for graph. To compute the reachabil-
ity set, we assume that each process knows its dependency set,
that is, the set of processes that are holding resources that it
is currently waiting on. This assumption is also made by most
deadlock detection algorithms (e.g., [7,27,12,6,29,35,33]). One
way to satisfy this assumption is by treating resources as pro-
cesses and also including them when constructing the wait-for
graph [28]. A process can compute its reachability set in an it-
erative manner [12]; in the j th iteration, it discovers processes
at a distance of j hops from it in the wait-for graph. Let r

denote the number of processes in the reachability set and let
t denote the diameter of the wait-for graph. Clearly, a process
can compute its reachability set using at most 2r messages and
in at most 2t time units. As part of computing its reachability
set, the process can also collect a snapshot of all processes
in the set. After a process has computed its reachability set,
the message complexity of taking the second snapshot is only
2r messages and its time complexity is only 2. Therefore,
the modified deadlock detection algorithm has overall mes-
sage complexity of 4r and detection latency of 2t + 2. This
compares quite favorably with the existing deadlock detection
algorithms. For example, the deadlock detection algorithm by
Chen et al. [12] has message complexity of 2r and detection la-
tency of 2t . Their algorithm uses logical timestamps and there-
fore requires application messages to be modified to carry the
timestamps. The deadlock detection algorithm by Lee [33] has
low detection latency of t + 2 but high message complexity of
2s, where s is the number of edges in the wait-for graph among
processes in the reachability set. The algorithm by Chen
et al. [12], to our knowledge, has the best message complexity
among all deadlock detection algorithms, and our modified
algorithm uses at most twice the number of messages as their
algorithm.

7. Achieving fault tolerance

In this section, we describe modifications to our approach
for detecting a locally stable predicate to make it fault-tolerant.
We assume that processes are unreliable and may fail by crash-
ing. Once a process crashes, it stops executing any events. Fur-
ther, a crashed process never recovers. A process that never
crashes is said to be correct; a process that is not correct is
said to be faulty. We call a process that has not crashed so far
as operational or live. We assume that process crashes do not
partition the system. Although processes are unreliable, we as-
sume that channels are reliable in the sense that a message sent
by a correct process to another correct process is eventually
delivered.

To detect a locally stable predicate in the presence of pro-
cess crashes, in general, it is necessary that the crash of a
process can be reliably detected by its neighboring processes.
This is because the same assumption is necessary to solve the

382 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

termination detection problem [42], and detecting termination
is a special case of detecting a locally stable predicate.

Once a process crashes, its state (specifically, its state just
before the crash) becomes inaccessible to other processes.
Therefore, we assume that evaluating the predicate only in-
volves currently operational processes and channels that are
incident on them. Note that a faulty process before crashing
may have sent one or more messages to other processes in the
system, which may still be in transit at the time of the crash.
Such messages have to be somehow “taken into account” be-
fore announcing that the predicate has become true; otherwise
the safety property may be violated. For instance, consider
the termination detection problem and assume that all opera-
tional processes are passive and all channels between them are
empty. However, termination should not be announced yet as
a message from a crashed process may make an operational
process, which is currently passive, active. There are two ap-
proaches to deal with this problem. The first approach is to
assume the existence of special primitive, such as return-flush
or fail-flush, that allows an operational process to flush its
incoming channel with a crashed process [51,30]. The second
approach is to assume that an operational process, on detecting
crash of its neighbor, simply freezes its incoming channel with
the crashed process and does not accept any more messages
received along that channel [50,42]. For the ease of exposi-
tion, we take the second approach. However, the ideas in this
section can be used with the first approach as well.

With the channel freezing approach, it is sufficient to eval-
uate the predicate on the currently operational processes and
the channels between them. Therefore, it is sufficient to collect
local states of currently operational processes only. Note that,
in the presence of process crashes, the safety of an algorithm
specifically designed for a failure-free environment (such as
BasicLSPD or BoundedLSPD) is not violated; only its liveness
may be violated [42]. To ensure liveness, the main problems
that need to be addressed are as follows. First, on occurrence
of a failure, a new monitor may have to be elected because the
old monitor may have crashed. Second, a new spanning tree
has to be constructed on the set of currently operational pro-
cesses because the failure may have disconnected the current
spanning tree. To solve the two problems, we can use the ap-
proach described in [42]. We describe it briefly here for the
sake of completeness. Whenever a process crashes, we recon-
struct the spanning tree using the tree construction algorithm
proposed by Awerbuch [5]. An advantage of Awerbuch’s algo-
rithm is that different processes can start the algorithm at dif-
ferent times. So, whenever a process learns about a new failure,
it simply starts a new instance of the spanning tree construc-
tion algorithm. (Any old instance of the tree construction algo-
rithm is aborted.) We differentiate between various instances of
the spanning tree construction algorithm by using the process’
knowledge about the failure of other processes when it starts
the new instance, which we refer to as instance identifier.

A process may learn about the failure of a process either di-
rectly via its failure detector or through the instance identifier
of a message received. Note that the former can only provide
information about the failure of a neighboring process, whereas

the latter can provide information about the failure of any pro-
cess. In any case, on learning about a new failure, a process
starts a new instance of the spanning tree construction algo-
rithm as explained earlier.

If no more failures occur for a sufficiently long period of
time, then all operational processes eventually learn about
the failure of all crashed processes. Therefore, eventually, all
operational processes start the same instance of the span-
ning tree construction algorithm and a valid spanning tree is
eventually constructed. Once the tree construction algorithm
terminates, the root of the tree elects itself as the monitor.
Thereafter, it uses the new tree to collect a snapshot of cur-
rently operational processes until another process fails.

Let f denote the number of processes that crash during an
execution. Also, let c denote the number of channels in the
communication topology. It can be shown that the number of
additional control messages exchanged due to process crashes
is given by O(f (c+n log n)) [42]. This implies that the cost of
handling process crashes increases in proportion to the number
of processes that actually crash during an execution.

8. Related work

The work most relevant to our work are algorithms for de-
tecting a locally stable predicate and those for detecting a stable
predicate.

Marzullo and Sabel [36] describe an approach for detect-
ing a locally stable predicate using the notion of weak vector
clock. A weak vector clock, unlike the Fidge/Mattern’s vector
clock [39,16], is updated only when an event that is relevant
with respect to the predicate is executed. Whenever a process
sends a message, it timestamps the message with the current
value of its local (weak) vector clock. A process, on receiv-
ing a message, updates its weak vector clock by taking the
component-wise maximum of its own clock and the timestamp
of the message. (Of course, if the receive event of the mes-
sage is a relevant event, then it also increments its entry in the
weak vector clock.) Thus Marzullo and Sabel’s approach re-
quires application messages to be modified to carry a vector
timestamp of size n, where n is the number of processes. This
makes their approach unscalable as the number of processes in
the system increases. Further, in their approach, local snapshot
of each process is assigned a vector timestamp of size n, which
is used at the time of evaluating the predicate. As a result, their
space complexity is O(n(n+ s)), which is higher than that our
approach in case s = o(n). (Recall that O(s) is the amount of
space required to store local snapshot of a single process.)

Based on their general approach, Marzullo and Sabel present
two different algorithms for detecting a locally stable predi-
cate. Similar to BasicLSPD , the first algorithm has unbounded
message complexity in the worst-case. The second algorithm,
however, has worst-case message complexity of O(md). Basi-
cally, in the second algorithm, a process sends its local snapshot
to a monitor whenever it executes a relevant event. If a mes-
sage on average travels a distance of d/2, the average message
complexity of the second algorithm is approximately m d/2.

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 383

Observe that the algorithm for detecting a locally stable pred-
icate given by Marzullo and Sabel [36] can also be used to de-
tect a monotonically decomposable stable predicate described
in Section 6. However, with their solution, each application
message may have to carry up to k vectors, each of size n,
where k is the number of locally stable predicates on which the
predicate depends. This is because the set of relevant events
may be different for different locally stable predicates and, as
a result, a different weak vector clock may have to be main-
tained for each locally stable predicate. This results in high ap-
plication message overhead of O(n k). On the other hand, in
our algorithm, application messages do not carry any control
information and, therefore, application message overhead due
to detection algorithm is zero.

A locally stable predicate is also a stable predicate. There-
fore, an algorithm for detecting a stable predicate can also be
used for detecting a locally stable predicate. The only approach
that we know of for detecting a stable predicate is by repeatedly
taking consistent snapshots of the system until the predicate
evaluates to true. Taking a consistent snapshot of the system
requires different processes to coordinate their actions to en-
sure that every pair of local snapshots are mutually concurrent.
As a result, any algorithm for taking a consistent snapshot of
the system, has to constrain the process as to when it should
record its local state. On the other hand, when a snapshot is
not required to be consistent, processes are free to record their
local states opportunistically. For example, it may be better for
a process to record its local state when it is idle or waiting for
an I/O operation.

Lai and Yang [31] define the notion of strongly stable pred-
icate. Intuitively, a stable predicate is strongly stable if it can
be evaluated correctly even for an inconsistent cut. Formally,

Definition 6 (strongly stable predicate). A stable predicate b

is strongly stable if for all cuts C and D (consistent as well as
inconsistent),

b(C) ∧ (C ⊆ D) ⇒ b(D).

The class of strongly stable predicates is incomparable with
the class of locally stable predicates. Consider the following
predicate:

bsum � x1 + x2 + · · · + xn �s,

where each xi is a monotonically non-decreasing variable on
process pi and s is a constant. Clearly, bsum is not a locally
stable predicate because the values of xi’s may continue to in-
crease even after bsum has become true. It can be easily verified
that bsum is a strongly stable predicate.

Note that, for a stable predicate to be strongly stable, if it
evaluates to true for some consistent cut C, then it is not suffi-
cient for the predicate to evaluate to true for every inconsistent
cut D that follows C. It should be the case that if the predicate
evaluates to true for some inconsistent cut C, then it should
also evaluate to true for every consistent cut D that follows C.
The former only guarantees liveness of a detection algorithm.
The latter is necessary to ensure safety of the detection algo-

rithm. To show that the class of locally stable predicates is not
a subset of the class of strongly stable predicates, consider the
following formulation of termination based on deficit counters:

〈∀i : 1� i�n : passivei〉 ∧
(

n∑
i=1

def iciti = 0

)
.

Evidently, the predicate is locally stable. However, it is not
strongly stable because it may evaluate to true for an inconsis-
tent cut even though the system has not terminated.

Similar to the notion of locally stable property, we can
define the notion of strongly stable property as follows: a sta-
ble property is strongly stable if there exists at least one way to
formulate the property such that the formulation corresponds
to a strongly stable predicate. An interesting question that still
remains is: how does the class of locally stable “properties”
compare with the class of strongly stable “properties”?

9. Conclusion and future work

In this paper, we have described an efficient algorithm to
detect a locally stable predicate based on repeatedly taking
possibly inconsistent snapshots of the computation in a certain
manner. Our algorithm uses only control messages and thus ap-
plication messages need not be modified to carry any control
information. It also unifies several known algorithms for detect-
ing two important locally stable properties, namely termination
and deadlock. We have also shown that any stable predicate that
can be expressed as a monotonic function of other locally sta-
ble predicates can be efficiently detected using our approach.
Finally, we have described extensions to our approach to make
it tolerant to process crashes.

In this paper, we assume that it is possible to monitor changes
in the values of the relevant variables efficiently. This can be
accomplished in two ways. In the first approach, the application
program is modified such that whenever a relevant variable is
assigned a new value, the detection algorithm is informed of
the change. In the second approach, which is more desirable,
monitoring is done in a transparent manner without modifying
the underlying program. While most debuggers such as gdb
already have such a capability, their approach is very inefficient.
As a future work, we plan to investigate efficient ways for
monitoring an application program in a transparent manner.

References

[1] A. Acharya, B.R. Badrinath, Recording distributed snapshots based on
causal order of message delivery, Inform. Process. Lett. (IPL) 44 (6)
(1992) 317–321.

[2] S. Alagar, S. Venkatesan, An optimal algorithm for recording snapshots
using casual message delivery, Inform. Process. Lett. (IPL) 50 (1994)
311–316.

[3] R. Atreya, N. Mittal, V.K. Garg, Detecting locally stable predicates
without modifying application messages, in: Proceedings of the
seventh International Conference on Principles of Distributed Systems
(OPODIS), La Martinique, France, 2003, pp. 20–33.

[4] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations
and Advanced Topics, second ed., Wiley, New York, 2004.

384 R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385

[5] B. Awerbuch, Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems, in:
Proceedings of the 19th Annual ACM Symposium on Theory of
Computing (STOC), ACM Press, New York, NY, United States, 1987,
pp. 230–240.

[6] A. Boukerche, C. Tropper, A distributed graph algorithm for the detection
of local cycles and knots, IEEE Trans. Parallel Distributed Systems
(TPDS) 9 (8) (1998) 748–757.

[7] G. Bracha, S. Toueg, Distributed deadlock detection, Distributed Comput.
(DC) 2 (3) (1987) 127–138.

[8] J. Brzezinski, J.M. Hélary, M. Raynal, M. Singhal, Deadlock models
and a general algorithm for distributed deadlock detection, J. Parallel
Distributed Comput. (JPDC) 31 (2) (1995) 112–125.

[9] S. Chandrasekaran, S. Venkatesan, A message-optimal algorithm for
distributed termination detection, J. Parallel Distributed Comput. (JPDC)
8 (3) (1990) 245–252.

[10] K.M. Chandy, L. Lamport, Distributed snapshots: determining global
states of distributed systems, ACM Trans. Comput. Systems 3 (1) (1985)
63–75.

[11] K.M. Chandy, J. Misra, An example of stepwise refinement of distributed
programs: quiescence detection, ACM Trans. Programm. Languages
Systems (TOPLAS) 8 (3) (1986) 326–343.

[12] S. Chen, Y. Deng, P.C. Attie, W. Sun, Optimal deadlock detection
in distributed systems based on locally constructed wait-for graphs,
in: Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS), May 1996, pp. 613–619.

[13] M. Demirbas, A. Arora, An optimal termination detection algorithm
for rings, Technical Report OSU-CISRC-2/00-TR05, The Ohio State
University, February 2000.

[14] E.W. Dijkstra, Shmuel Safra’s Version of Termination Detection, EWD
Manuscript 998, available at 〈http://www.cs.utexas.edu/users/EWD/〉,
1987.

[15] E.W. Dijkstra, C.S. Scholten, Termination detection for diffusing
computations, Inform. Process. Lett. (IPL) 11 (1) (1980) 1–4.

[16] C.J. Fidge, Logical time in distributed computing systems, IEEE
Computer 24 (8) (1991) 28–33.

[17] E. Fromentin, M. Raynal, Inevitable global states: a concept to
detect unstable properties of distributed computations in an observer
independent way, in: Proceedings of the sixth IEEE Symposium on
Parallel and Distributed Processing (SPDP), 1994, pp. 242–248.

[18] J.-M. Hélary, C. Jard, N. Plouzeau, M. Raynal, Detection of stable
properties in distributed applications, in: Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), 1987, pp.
125–136.

[19] J.-M. Hélary, M. Raynal, Towards the construction of distributed
detection programs, with an application to distributed termination,
Distributed Comput. (DC) 7 (3) (1994) 137–147.

[20] G.S. Ho, C.V. Ramamoorthy, Protocols for deadlock detection in
distributed database systems, IEEE Trans. Software Eng. 8 (6) (1982)
554–557.

[21] R.C. Holt, Some deadlock properties of computer systems, ACM
Comput. Surveys (CSUR) 4 (1972) 179–195.

[22] S.-T. Huang, Detecting termination of distributed computations by
external agents, in: Proceedings of the IEEE International Conference
on Distributed Computing Systems (ICDCS), 1989, pp. 79–84.

[23] J.R. Jagannathan, R. Vasudevan, Comments on protocols for deadlock
detection in distributed database systems, IEEE Trans. Software Eng. 9
(3) (1983) 371.

[24] A.A. Khokhar, S.E. Hambrusch, E. Kocalar, Termination detection in
data-driven parallel computations/applications, J. Parallel Distributed
Comput. (JPDC) 63 (3) (2003) 312–326.

[25] E. Knapp, Deadlock detection in distributed databases, ACM Comput.
Surveys (CSUR) 19 (4) (1987) 303–328.

[26] A.D. Kshemkalyani, M. Singhal, Correct two-phase and one-phase
deadlock detection algorithms for distributed systems, in: Proceedings
of the IEEE Symposium on Parallel and Distributed Processing (SPDP),
December 1990, pp. 126–129.

[27] A.D. Kshemkalyani, M. Singhal, Efficient detection and resolution of
generalized distributed deadlocks, IEEE Trans. Software Eng. 20 (1)
(1994) 43–54.

[28] A.D. Kshemkalyani, M. Singhal, On characterization and correctness of
distributed deadlock detection, J. Parallel Distributed Comput. (JPDC)
22 (1) (1994) 44–59.

[29] A.D. Kshemkalyani, M. Singhal, A one-phase algorithm to detect
distributed deadlocks in replicated databases, IEEE Trans. Knowledge
Data Eng. 11 (6) (1999) 880–895.

[30] T.-H. Lai, L.-F. Wu, An (N − 1)-resilient algorithm for distributed
termination detection, IEEE Trans. Parallel Distributed Systems (TPDS)
6 (1) (1995) 63–78.

[31] T.-H. Lai, T.H. Yang, On distributed snapshots, Inform. Process. Lett.
(IPL) 25 (3) (1987) 153–158.

[32] L. Lamport, Time clocks and the ordering of events in a distributed
system, Comm. ACM (CACM) 21 (7) (1978) 558–565.

[33] S. Lee, Fast, centralized detection and resolution of distributed deadlocks
in the generalized model, IEEE Trans. Software Eng. 30 (9) (2004)
561–573.

[34] N.R. Mahapatra, S. Dutt, An efficient delay-optimal distributed
termination detection algorithm, Department of Computer Science and
Engineering, University of Buffalo. The State University of New York,
November 2001, Technical Report No. 2001-16.

[35] D. Manivannan, M. Singhal, An efficient distributed algorithm for
detecting knots and cycles in a distributed graph, IEEE Trans. Parallel
Distributed Systems (TPDS) 14 (2003) 961–972.

[36] K. Marzullo, L. Sabel, Efficient detection of a class of stable properties,
Distributed Comput. (DC) 8 (2) (1994) 81–91.

[37] F. Mattern, Algorithms for distributed termination detection, Distributed
Comput. (DC) 2 (3) (1987) 161–175.

[38] F. Mattern, Global quiescence detection based on credit distribution and
recovery, Inform. Process. Lett. (IPL) 30 (4) (1989) 195–200.

[39] F. Mattern, Virtual time and global states of distributed systems, in:
Parallel and Distributed Algorithms: Proceedings of the Workshop on
Distributed Algorithms (WDAG), Elesevier Science Publishers B.V.,
North-Holland, 1989, pp. 215–226.

[40] F. Mattern, H. Mehl, A. Schoone, G. Tel, Global virtual time
approximation with distributed termination detection algorithms,
Technical Report RUU-CS-91-32, University of Utrecht, The
Netherlands, 1991.

[41] J. Misra, Detecting termination of distributed computations using
markers, in: Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 1983, pp. 290–294.

[42] N. Mittal, F.C. Freiling, S. Venkatesan, L.D. Penso, Efficient reductions
for wait-free termination detection in crash-prone systems, Technical
Report AIB-2005-12, Department of Computer Science, Rheinisch-
Westfälische Technische Hochschule (RWTH), Aachen, Germany, June
2005.

[43] N. Mittal, S. Venkatesan, S. Peri, Message-optimal and latency-optimal
termination detection algorithms for arbitrary topologies, in: Proceedings
of the 18th Symposium on Distributed Computing (DISC), Amsterdam,
The Netherlands, 2004, pp. 290–304.

[44] S. Peri, N. Mittal, On termination detection in an asynchronous
distributed system, in: Proceedings of the ISCA International Conference
on Parallel and Distributed Computing Systems (PDCS), San Francisco,
California, USA, September 2004, pp. 209–215.

[45] M. Singhal, Deadlock detection in distributed systems, IEEE Comput.
22 (1989) 37–48.

[46] A. Sinha, L. Kalé, B. Ramkumar, A dynamic and adaptive quiescence
detection algorithm, Technical Report 93-11, Parallel Programming
Laboratory, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1993.

[47] G. Stupp, Stateless termination detection, in: Proceedings of the 16th
Symposium on Distributed Computing (DISC), Toulouse, France, 2002,
pp. 163–172.

[48] G. Tel, Distributed control for AI, Technical Report UU-CS-1998-
17, Information and Computing Sciences, Utrecht University, The
Netherlands, 1998.

http://www.cs.utexas.edu/users/EWD/

R. Atreya et al. / J. Parallel Distrib. Comput. 67 (2007) 369–385 385

[49] G. Tel, Introduction to Distributed Algorithms, second ed., Cambridge
University Press (US Server), Cambridge, 2000.

[50] Y.-C. Tseng, Detecting termination by weight-throwing in a faulty
distributed system, J. Parallel Distributed Comput. (JPDC) 25 (1) (1995)
7–15.

[51] S. Venkatesan, Reliable protocols for distributed termination detection,
IEEE Trans. Reliability 38 (1) (1989) 103–110.

Ranganath Atreya received his B.E. degree in
mechanical engineering with distinction from
Bangalore University, India in 2000 and his M.S.
degree in computer science from The University
of Texas at Dallas in 2004. He was the recipient
of the National Award for the best B.E. project
in 2000. His research interests include computer
networking and distributed computing. He has
been working at Amazon.com, Inc. since Jan-
uary 2005.

Neeraj Mittal received his B.Tech. degree in
computer science and engineering from the In-
dian Institute of Technology, Delhi in 1995 and
M.S. and Ph.D. degrees in computer science
from the University of Texas at Austin in 1997
and 2002, respectively. He is currently an as-
sistant professor in the Department of Com-
puter Science and a co-director of the Ad-
vanced Networking and Dependable Systems
Laboratory (ANDES) at the University of Texas
at Dallas. His research interests include dis-
tributed systems, mobile computing, networking
and databases.

Ajay D. Kshemkalyani received the Ph.D.
degree in computer and information science
from Ohio State University in 1991 and the
B.Tech. degree in computer science and engi-
neering from the Indian Institute of Technology,
Bombay, in 1987. His research interests are
in computer networks, distributed computing,
algorithms, and concurrent systems. He has
been an associate professor at the University of
Illinois at Chicago since 2000, before which he
spent several years at IBM Research Triangle
Park working on various aspects of computer
networks. He is a member of the ACM and

a senior member of the IEEE and the IEEE Computer Society. In 1999, he
received the US National Science Foundation’s CAREER Award.

Vijay K. Garg received his B.Tech. degree
in computer science from the Indian Institute
of Technology, Kanpur in 1984 and M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of Califor-
nia at Berkeley in 1985 and 1988, respectively.
He is currently a full professor in the Depart-
ment of Electrical and Computer Engineering
and the director of the Parallel and Distributed
Systems Laboratory at the University of Texas,
Austin. His research interests are in the areas
of distributed systems and discrete event sys-
tems. He is the author of the books Elements of

Distributed Computing (Wiley & Sons, 2002), Principles of Distributed Sys-
tems (Kluwer, 1996) and a co-author of the book Modeling and Control of
Logical Discrete Event Systems (Kluwer, 1995).

Mukesh Singhal is a Full Professor and
Gartener Group Endowed Chair in Network
Engineering in the Department of Computer
Science at The University of Kentucky, Lex-
ington. From 1986 to 2001, he was a faculty
in Computer and Information Science at The
Ohio State University. He received a Bachelor
of Engineering degree in Electronics and Com-
munication Engineering with high distinction
from Indian Institute of Technology, Roorkee,
India, in 1980 and a Ph.D. degree in Computer
Science from University of Maryland, College
Park, in May 1986. His current research interests

include distributed systems, wireless and mobile computing systems, computer
networks, computer security, and performance evaluation. He has published
over 180 refereed articles in these areas. He has coauthored three books titled
Advanced Concepts in Operating Systems, McGraw-Hill, New York, 1994,
Data and Computer Communications: Networking and Internetworking, CRC
Press, 2001, and Readings in Distributed Computing Systems, IEEE Computer
Society Press, 1993. He is a Fellow of IEEE. He is a recipient of 2003
IEEE Technical Achievement Award. He is currently serving in the editorial
board of IEEE Transactions on Parallel and Distributed Systems and IEEE
Transactions on Computers. From 1998 to 2001, he served as the Program
Director of Operating Systems and Compilers program at National Science
Foundation.

