
The Bloom Clock to Characterize
Causality in Distributed Systems

Ajay D. Kshemkalyani(B) and Anshuman Misra

University of Illinois at Chicago, Chicago, IL 60607, USA
{ajay,amisra7}@uic.edu

Abstract. Determining the causality between events in distributed exe-
cutions is a fundamental problem. Vector clocks solve this problem but
do not scale well. The probabilistic Bloom filter data structure can be
used as a Bloom clock to determine causality between events with lower
space overhead than vector clock; however, the Bloom filter and hence
the Bloom clock naturally suffer from false positives. We give a formal
protocol of the Bloom clock based on Counting Bloom filters and study
its properties. We formulate the probabilities of a positive outcome, a
positive being false, and a false positive for Bloom clocks as a function
of the corresponding vector clocks, as well as their estimates as a func-
tion of the Bloom clocks. We also indicate how to estimate the accuracy,
precision, and false positive rate of an execution slice that is identified
by the Bloom timestamps of two events.

Keywords: Causality · Vector clock · Bloom clock · Bloom filter ·
Partial order · Distributed system

1 Introduction

Determining causality between pairs of events in a distributed execution has
many applications [8,15]. This problem can be solved using vector clocks [5,10].
However, vector clocks do not scale well. Several works attempted to reduce the
size of vector clocks [7,11,16,18], but they had to make some compromises in
accuracy or alter the system model, and in the worst-case, were as lengthy as
vector clocks. A survey of such works is included in [6].

The Bloom filter, proposed in 1970, is a space-efficient probabilistic data struc-
ture that supports set membership queries [1]. The Bloom filter is widely used
in computer science. Surveys of the variants of Bloom filters and their applica-
tions in networks and distributed systems are given in [2,17]. The accuracy of
a Bloom filter depends on the size of the filter (m), the number of hash func-
tions used in the filter (k), and the number of elements added to the set (n).
Bloom filters suffer from false positives but no false negatives. Recently, the
idea of using the Bloom filter as a Bloom clock to determine causality between
events with lower space overhead than that of vector clocks was proposed, where,
like Bloom filters, the Bloom clock will naturally inherit false positives [14].
c© Springer Nature Switzerland AG 2021
L. Barolli et al. (Eds.): NBiS 2020, AISC 1264, pp. 269–279, 2021.
https://doi.org/10.1007/978-3-030-57811-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57811-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-57811-4_25

270 A. D. Kshemkalyani and A. Misra

However, the Bloom clock protocol was not given. We give a formal protocol of
the Bloom clock based on Counting Bloom filters. We then formulate the expres-
sions for the probabilities of a positive outcome, a positive being false, and a false
positive as a function of the corresponding vector clocks, as well as their estimates
as a function of the Bloom clocks. We also study properties of the Bloom clock.
We give a way to estimate the accuracy, precision, and the false positive rate for
a slice of the execution as identified by two given events’ Bloom timestamps.

Section 2 gives the system model. Section 3 details the Bloom clock protocol.
Section 4 studies properties of the Bloom clock and discusses ways to estimate
the probability that a positive is false and the probability of a false positive.
Section 5 presents an analysis of the probabilities as the distance between the
events varies, and this is followed by a discussion. Section 6 presents a way to
estimate the accuracy, precision, and false positive rate of an execution slice that
is identified by the Bloom timestamps of two events. Section 7 concludes.

2 System Model

A distributed system is modeled as an undirected graph (P,L), where P is the
set of processes and L is the set of links connecting them. Let p = |P|. Between
any two processes, there may be at most one logical channel over which the
two processes communicate asynchronously. A logical channel from Pi to Pj is
formed by paths over links in L. We do not assume FIFO logical channels.

The execution of process Pi produces a sequence of events Ei = 〈e0i , e1i , e2i ,-
· · · 〉, where ej

i is the jth event at process Pi. An event at a process can be
an internal event, a message send event, or a message receive event. Let E =⋃

i∈P{e | e ∈ Ei} denote the set of events in a distributed execution. The causal
precedence relation between events, defined by Lamport’s “happened before”
relation [9], and denoted as →, induces an irreflexive partial order (E,→).

Mattern [10] and Fidge [5] designed the vector clock which assigns a vector V
to each event such that: e → f ⇐⇒ Ve < Vf . The vector clock is a fundamental
tool to characterize causality in distributed executions [8,15]. Each process needs
to maintain a vector V of size p to represent the local vector clock. Charron-Bost
has shown that to capture the partial order (E,→), the size of the vector clock
is the dimension of the partial order [3], which is bounded by the size of the
system, p. Unfortunately, this does not scale well to large systems.

Let ↓ e = {f | f ∈ E ∧ f → e}⋃{e} denote the causal past of event e. The
vector timestamp of ↓ e, V↓e is defined as: ∀i ∈ [1, p], V↓e[i] = Ve[i]. The set of
events ↓ e

⋂ ↓ f represents the common past of e and f . The vector timestamp
of ↓ e

⋂ ↓ f , V↓e
⋂↓f is defined as: ∀i ∈ [1, p], V↓e

⋂↓f [i] = min(Ve[i], Vf [i]).

3 The Bloom Clock Protocol

The Bloom clock is based on the Counting Bloom filter. Each process Pi main-
tains a Bloom clock B(i) which is a vector B(i)[1, . . . ,m] of integers, where m
< p. The Bloom clock is operated as shown in Fig. 1. To try to uniquely update

The Bloom Clock to Characterize Causality 271

B(i) on a tick for event ex
i , k random hash functions are used to hash (i, x), each

of which maps to one of the m indices in B(i). Each of the k indices mapped
to is incremented in B(i); this probabilistically tries to make the resulting B(i)
unique. As m < p, this gives a space savings over the vector clock.

1. Initialize B(i) = 0.
2. (At an internal event exi):

apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick).

3. (At a send event exi):
apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick). Then Pi sends the message
piggybacked with B(i).

4. (At a receive event exi for message piggybacked with B′):
Pi executes
∀j ∈ [1,m], B(i)[j] = max(B(i)[j], B′[j]) (merge);
apply k hash functions to (i, x) and increment the corresponding k
positions mapped to in B(i) (local tick).
Then deliver the message.

Fig. 1. Operation of Bloom clock B(i) at process Pi.

The Bloom timestamp of an event e is denoted Be. Let V and B denote the
sets of vector timestamps and Bloom timestamps of events. The standard vector
comparison operators <, ≤, and = [5,10] apply to pairs in V and in B. Thus,
for example, Bz ≥ By is ∀i ∈ [1,m], Bz[i] ≥ By[i]. The Bloom clock mapping
from E to B is many-one. (B,≤) is a partial order that is not isomorphic to
(E,→). If the local tick (after merge) at a receive event is optionally omitted,
this may introduce some added false positives (see the discussion in Sect. 4.4 for
an analysis). In the development that follows next, we assume a local tick at a
receive event.

Proposition 1. Test for y → z using Bloom clocks: if Bz ≥ By then declare
y → z else declare y
→ z.

4 Properties of the Bloom Clock

4.1 Accuracy of Causality Test

We have the following cases based on the actual relationship between y and z,
and the relationship inferred from By and Bz.

1. y → z and Bz ≥ By: From Proposition 1, this results in a true positive.

272 A. D. Kshemkalyani and A. Misra

2. y → z and Bz
≥ By: This false negative is not possible because from the rules
of operation of the Bloom clock, Bz must be ≥ By when y → z. Thus, given
a negative outcome, i.e., Bz
≥ By, the probability that the negative outcome
is false, i.e., y → z, is 0.

3. y
→ z and Bz
≥ By: From Proposition 1, this results in a true negative.
Given a negative outcome of the Bloom clock test, the probability that the
negative outcome is true, i.e., y
→ z, is 1.

4. y
→ z and Bz ≥ By: From Proposition 1, this results in a false positive.

4.2 Probability of a False Positive and Probability that a Positive
is False

We define probabilities along the following lines for the false positive case (Case
(4)), and for the true positive and true negative cases.

1. The probability of a false positive, which we denote as prfp, is pr(y
→ z and
Bz ≥ By). This probability is the equivalent of the error rate, which is defined
as the percentage of causal relationships that are classified incorrectly.

2. We define the probability of a positive prp as pr(Bz ≥ By).
3. The probability pr(y
→ z) must be evaluated using only By and Bz as we

do not have access to vector timestamps in practice. Thus, we approximate
the probability that ∃i |Vy[i] > Vz[i] as the probability that ∃i |By[i] > Bz[i],
which equals 1 − prp. Then, pr(y
→ z) = 1 − prp.

4. prfp = pr(y
→ z) · pr(Bz ≥ By) = (1 − prp) · prp.
5. Given a positive outcome of the Bloom Clock test, prpf = 1 − prp is used to

denote the probability that a positive is false.
6. Let prtp denote the probability of a true positive. prtp = prp · prp = pr2p.
7. Let prtn denote the probability of a true negative. For a negative outcome

having probability 1 − prp, it is certain that y
→ z and hence in this case
prtn = 1; and for a positive outcome having probability prp, in this case
prtn = 0. So prtn = 1 · (1 − prp) = 1 − prp.

The probabilities prpf and prfp are functions of prp. We now show how prp

can be calculated for the false positive case (Case (4)) where Bz ≥ By, otherwise
if Bz
≥ By it is defined as 0. Observe that pr(y → z) and pr(y
→ z) are estimated
as prp and 1−prp. However, as By and Bz are inputs, one could define the second
term of prfp = (1 − prp) · prp, which is pr(Bz ≥ By), as a step function prδ(p)

which equals 1 if Bz ≥ By and 0 otherwise. Then prfp becomes (1 − prp) · prδ(p)

and prpf remains 1 − prp and evaluates to prfp. Also, prtp becomes prp · prδ(p)

and prtn becomes 1 − prδ(p). It is a difference in perspective.
Events in ↓ y

⋂ ↓ z contribute exactly equally to increments in By and
Bz. Beyond those increments, we have the following. ↓ y\ ↓ z
= ∅. Events in
↓ y\ ↓ z contribute to increments in By. Disjoint events in ↓ z\ ↓ y contribute
to increments in Bz. This happens in such a way that for each increment to an
index in By due to events in ↓ y\ ↓ z, there is an increment to the same index in
Bz due to disjoint events in ↓ z\ ↓ y. The probability of this occurrence is prp.

The Bloom Clock to Characterize Causality 273

We now formulate the precise expression for prp using vector timestamps Vy

and Vz, if they were available. Then we estimate this prp using Bloom timestamps
By and Bz.

Definition 1. V↓y\↓z ≡ ∀i ∈ [1, p], V↓y\↓z[i] = Vy[i] − V↓y
⋂↓z[i].

Definition 2. For a vector X, Xsum ≡ ∑|X|
i=1 X[i].

V↓y\↓z gives the process-wise number of events in ↓ y\ ↓ z whereas V sum
↓y\↓z

gives the total number of events in ↓ y\ ↓ z.
As analyzed above, for a false positive to occur, for each increment to By[i]

due to events in ↓ y\ ↓ z, there is an increment to Bz[i] due to disjoint events
in ↓ z\ ↓ y. The expected number of increments to By[i], which we denote as
c the count threshold, is kV sum

↓y\↓z/m. The probability prp of Bz ≥ By is now
formulated. Let b(l, n, 1/m) denote the probability mass function of a binomial
distribution having success probability 1/m, where l increments have occurred
to a position in Bz after applying uniformly random hash mappings n times.
From the above analysis, it follows that n = kV sum

↓z\↓y times. Then,

b(l, kV sum
↓z\↓y, 1/m) =

(
kV sum

↓z\↓y

l

)

(
1
m

)l(1 − 1
m

)kV sum
↓z\↓y−l (1)

The expected number of increments to By[i] is kV sum
↓y\↓z/m. The probability that

less than the count threshold kV sum
↓y\↓z/m increments have occurred to Bz[i] is

given by:
�kV sum

↓y\↓z/m−1�
∑

l=0

b(l, kV sum
↓z\↓y, 1/m) (2)

The probability that each of the m positions of Bz is incremented at least
kV sum

↓y\↓z/m times (after events in ↓ y
⋂ ↓ z), which gives prp, can be given by:

prp(k,m, Vy, Vz) = (1 −
�kV sum

↓y\↓z/m−1�
∑

l=0

b(l, kV sum
↓z\↓y, 1/m))m (3)

Equation 3 assumed access to vector timestamps V↓y\↓z and V↓z\↓y, which are
derived from Vy and Vz. If only Bloom clocks are maintained, then we can approx-
imate prp(k,m, Vy, Vz) to p̂rp(k,m,By, Bz) as follows. Clearly, Bsum

z ≥ Bsum
y

because Bz ≥ By. We use Bsum
z as estimate of kV sum

↓z\↓y, while simultaneously
varying l (for each i) from 0 to By[i] instead of to Bsum

y /m (or to kV sum
↓y\↓z/m)

across all i. Thus, in Eq. 3, kV sum
↓z\↓y changes to Bsum

z , �kV sum
↓y\↓z/m − 1� in the

summation bound changes to By[i] − 1 (i.e., the count threshold changes from
kV sum

↓y\↓z/m to By[i]), and rather than treating each position in By identically
and raising to the exponent m, now a product is taken across all i ∈ [1,m]. This
gives the following.

p̂rp(k,m,By, Bz) =
m∏

i=1

(1 −
By[i]−1∑

l=0

b(l, Bsum
z , 1/m)) (4)

274 A. D. Kshemkalyani and A. Misra

Equation 4 treats the V sum
↓y events in V↓y and the V sum

↓z events in V↓z as disjoint
and independent, whereas in reality, only the V sum

↓y\↓z events in V↓y\↓z and the
V sum

↓z\↓y events in V↓z\↓y are disjoint and independent. Events in ↓ y
⋂ ↓ z incre-

ment the Bloom clocks By and Bz identically in reality, whereas Eq. 4 assumes
these events independently update the positions in By and Bz randomly through
the k hash functions. This approximation is made as Bloom timestamps cannot
identify the actual number of independent events.

4.3 Efficient Estimation of Probabilities

Equations 3 and 4 are time-consuming to evaluate for events y and z as the
execution progresses. Specifically, Eq. 4 has to consider events in the entire causal
past of y and z. A binomial distribution b(l, n, 1/m) can be approximated by
a Poisson distribution with mean n/m, for large n and small 1/m. Also, the
cumulative mass function of a Poisson distribution is a regularized incomplete
gamma function. This provides an efficient way of evaluating Eqs. 3 and 4.

A more efficient-to-evaluate estimate p̂rp can be obtained by taking the
Bloom clock equivalents of V sum

↓y\↓z events in V↓y\↓z and the V sum
↓z\↓y events in

V↓z\↓y, by trying to exclude the impact of events in ↓ y
⋂ ↓ z. For By and Bz,

the common increments to each index are min(min(By),min(Bz)), which we
denote reduce. (Here, min(X) is the lowest element in vector X.) So we reduce
each index entry of By and Bz by reduce to obtain B reducey|z and B reducez|y
vectors, respectively.

Definition 3. For By and Bz,

1. B reducey|z ≡ ∀i ∈ [1,m], B reducey|z[i] = By[i] − min(min(By),min(Bz))
2. B reducez|y ≡ ∀i ∈ [1,m], B reducez|y[i] = Bz[i] − min(min(By),min(Bz))

We then use B reducey|z and B reducez|y instead of By and Bz in Eq. 4 to
get the following.

p̂rp(k,m,By, Bz) =
m∏

i=1

(1 −
B reducey|z[i]−1∑

l=0

b(l, B reducesum
z|y , 1/m)) (5)

4.4 Ticking at a Receive Event

In the Bloom clock protocol given in Fig. 1, omitting the local tick at a receive
event slows the growth of the Bloom clock but introduces more false positives
which depend on the partial order induced by the communication pattern. Let
s and r denote a send and receive event, respectively. Let the message sent at sy

i

be received at rz
j and let sz−1

j → sy
i . Then Bsy

i
= Brz

j
. For events ew

k such that
sy

i → ew
k , then Brz

j
≤ Bew

k
even though rz

j
→ ew
k may be the case. The impact of

The Bloom Clock to Characterize Causality 275

such additional false positives on p̂rp is not considered in Eq. 4 or 5 and seems
non-trivial to quantify. Note that the number of false positives increases further
if multicasts are allowed in the system model and the local tick is omitted at a
receive. This is because for one send event, there will be multiple receive events
and all these receive events will have the same Bloom clock value if the tick is
omitted at the receive events. If rz1

j1 and rz2
j2 are two such receive events, then

for any event e1 such that rz1
j1 → e1 and rz2

j2
→ e1, the false positive rz2
j2 → e1

will be inferred.
In Fig. 1, with a local tick at a receive event, a more accurate test for a false

positive gives the following instead of Proposition 1.

Proposition 2. Test for y → z using Bloom clocks: if Bz ≥ By

∧
Bsum

z ≥
Bsum

y + k then declare y → z else declare y
→ z.

To compute the new p̂rp, the expression in Eq. 4 or 5 needs to be multiplied
by the conditional probability that Bsum

z ≥ Bsum
y + k, given that Bz ≥ By.

This probability depends on the selection of y and z, and on |E|. However, we
expect it can be approximated to 1 and hence Eq. 4 and 5 which are based on
Proposition 1 are still good estimates of p̂rp.

5 Analysis and Discussion

For arbitrary events y and z, as V sum
↓z\↓y − V sum

↓y\↓z increases, or equivalently in
terms of the Bloom clock, as Bsum

z −Bsum
y increases, we can predict the following

trends from the definitions of prp, prfp, and prpf .

1. prp, the probability of a positive, is low if z is close to y and this probability
increases as z goes further in the future of y. This is because, in Eq. 4, as
Bsum

z increases with respect to Bsum
y or rather its m components, the sum-

mation (cumulative probability distribution function) decreases and hence
p̂rp increases. Likewise for Eq. 5.
This behavior is intuitive because intuition says that as z becomes more
distant from y, the more is the likelihood that some causal relationship will
get established from y to z either directly or transitively, by the underlying
message communication pattern.

2. prpf , the probability that a positive is false, decreases as z goes further in the
future of y. This is because prpf is defined as 1 − prp.
This behavior is also intuitive. Given a positive outcome, if z is close to y
(Bsum

z is just a little greater than Bsum
y), it is unlikely that a causal rela-

tionship has been established either directly or transitively from y to z by
the underlying message communication pattern, and thus prpf will tend to
be higher; as z goes more distant from y, this likelihood increases, resulting
in a lower prpf .

3. prfp, the probability of a false positive, which is the product of prp and prpf ,
is lower than the above two probabilities. It will likely reach a maximum of
0.25 and then decrease.

276 A. D. Kshemkalyani and A. Misra

If prδ(p) were used instead of prp for pr(Bz ≥ By), then prfp would be higher
for a positive outcome. Once Bz ≥ By becomes true, it steps up from 0 and
then as z goes into the future of y, it decreases.

We remind ourselves that these probabilities depend on By, Bz, k, and m, and
observe that they are oblivious of the communication pattern in the distributed
execution.

There is a trade-off using Bloom clocks. m can be chosen, as desired, arbi-
trarily less than p, for space savings. To minimize the prp or p̂rp, the expression
for the optimal number of hash functions k as a function of m, n, and c (the m
values of c if Eq. 4 or 5 is used) can be derived. Alternatively, for an acceptable
prp or p̂rp, the combination of values for m and k can be determined.

We observe that many applications in distributed computing require testing
for causality between pairs of events that are temporally close to each other.
In checkpointing, causality needs to be tracked only between two consistent
checkpoints. In fair mutual exclusion in which requests need to be satisfied in
order of their logical timestamps, contention occurs and request timestamps need
to be compared only for temporally close requests. For detecting data races
in multi-threaded environments, a causality check based on vector clocks can
be used; however, in practice one needs to check for data races only between
read/write events that occur in each other’s temporal locality [13]. In general,
many applications are structured as phases and track causality only within a
bounded number of adjacent phases [4,12].

6 Estimating Accuracy, Precision, and False Positive
Rate

Accuracy (Acc), Precision (Prec), Recall (Rec), and False Positive Rate (fpr)
are metrics defined over all data points, i.e, pairs of events, in the execution.
Let TP, FP, TN, and FN be the number of true positives, number of false posi-
tives, number of true negatives, and the number of false negatives, respectively.
Observe that FN is 0 as there are no false negatives. We have:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP

TP + FP
,

Recall =
TP

TP + FN
, fpr =

FP

FP + TN

(6)

Recall is always 1 with Bloom clocks. Given events y and z and their Bloom
timestamps By and Bz, there is not enough data to compute these metrics. So
we consider the slice of the execution from y to z and define the metrics over the
set of events X in this slice. Specifically, we fix event y and we let z′ be virtual
events from y to z and estimate the TP, FP,TN, and FN of events x ∈ X with
respect to each other x′ ∈ X. We define v = (Bsum

z −Bsum
y)/k+1 virtual events

x, having timestamps such that Bsum
x = Bsum

y + k(i − 1), for i ∈ [1, v].

The Bloom Clock to Characterize Causality 277

• The contribution of each Bx′ (w.r.t. Bx) to TP is pr(x → x′ and Bx′ ≥ Bx),
which is estimated as pr(Bx′ ≥ Bx) · pr(Bx′ ≥ Bx) = pr2p for that x′ w.r.t. x.
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution to
TP would be prp · prδ(p).

• The contribution of each Bx′ (w.r.t. Bx) to FP is estimated as prfp = (1 −
prp) · prp for that x′ w.r.t. x. (See the discussion and definitions at the start
of Sect. 4.2.)
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution to
FP would be (1 − prp) · prδ(p).

• The contribution of each Bx′ (w.r.t. Bx) to TN is pr(x
→ x′ and Bx′
≥ Bx). If
Bx′
≥ Bx then certainly x
→ x′. (See Case 3 of Sect. 4.1). So the contribution
is estimated as 1 · pr(Bx′
≥ Bx) = (1 − prp) for that x′ w.r.t. x.
If prδ(p) were used for pr(Bx′ ≥ Bx) in the second term, the contribution to
TN would be 1 · (1 − prδ(p)).

Let prp(x, x′) denote prp for event x′ with respect to event x, where x, x′ ∈ X.
We get the following estimates.

The equivalent of the error rate is given by 1 − Acc.

1 − Âcc =
FP

∑
x,x′ 1

=

∑
x,x′ prfp(x, x′)

∑
x,x′ 1

=

∑
x,x′(1 − prp(x, x′)) · prp(x, x′)

∑
x,x′ 1

(7)

The equivalent of the error rate that a positive is false is given by 1 − Prec.

1 − ̂Prec =
FP

TP + FP

=

∑
x,x′(1 − prp(x, x′)) · prp(x, x′)

∑
x,x′(1 − prp(x, x′)) · prp(x, x′) + (prp(x, x′))2

=

∑
x,x′(1 − prp(x, x′)) · prp(x, x′)

∑
x,x′ prp(x, x′)

(8)

fpr is the proportion of actual negatives that are misclassified as false
positives.

f̂pr =

∑
x,x′(1 − prp(x, x′)) · prp(x, x′)

∑
x,x′(1 − prp(x, x′)) · prp(x, x′) + (1 − prp(x, x′))

=

∑
x,x′(1 − prp(x, x′)) · prp(x, x′)

∑
x,x′ 1 − (prp(x, x′))2

(9)

Note that prδ(p)(x, x′) cannot be used unless we have access to Bloom times-
tamps for events x, x′ in the execution slice X. In a real execution, we would
have access to these timestamps, and we have the following in terms of prδ(p).

278 A. D. Kshemkalyani and A. Misra

1 − Âcc =

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′)

∑
x,x′ 1

(10)

1 − ̂Prec =

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′)

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′) + prp(x, x′) · prδ(p)(x, x′)

=

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′)

∑
x,x′ prδ(p)(x, x′)

(11)

f̂pr =

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′)

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′) + (1 − prδ(p)(x, x′))

=

∑
x,x′(1 − prp(x, x′)) · prδ(p)(x, x′)

∑
x,x′ 1 − prp(x, x′) · prδ(p)(x, x′)

(12)

7 Conclusions

Detecting the causality relationship between a pair of events in a distributed
execution is a fundamental problem. To address this problem in a scalable way,
this paper gave the formal Bloom clock protocol, derived expressions for the
probability of false positives and the probability that a positive is false using
Bloom clock, and studied the properties of the Bloom clock. We also gave a way
to estimate the accuracy, precision, and the false positive rate for a slice of the
execution as identified by two given events’ Bloom timestamps.

The Bloom clock is seen to offer a trade-off between accuracy (minimization
of false positives) and space overhead. The trade-off provides the Bloom clock
with adaptability to different scenarios. It would be interesting to study such
trade-offs in some practical applications of detecting causality between event
pairs, for example, fair mutual exclusion, checkpointing, or dynamic race detec-
tion in multi-threaded environments. As future work, one could compute the
values of the expressions of accuracy, precision, and false positive rates for a
simulated execution to study their behavior. This will give an indication about
the feasibility of the Bloom clock for real applications.

References

1. Bloom, B.: Space/time tradeoffs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

2. Broder, A.Z., Mitzenmacher, M.: Survey: network applications of bloom filters: a
survey. Internet Math. 1(4), 485–509 (2003)

3. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39(1), 11–16 (1991)

4. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract).
In: Proceedings of the 12th International Conference on Distributed Computing
Systems, Yokohama, Japan, 9–12 June 1992, pp. 486–493 (1992)

The Bloom Clock to Characterize Causality 279

5. Fidge, C.J.: Logical time in distributed computing systems. IEEE Comput. 24(8),
28–33 (1991)

6. Kshemkalyani, A., Shen, M., Voleti, B.: Prime clock: encoded vector clock to char-
acterize causality in distributed systems. J. Parallel Distrib. Comput. 140, 37–51
(2020)

7. Kshemkalyani, A.D., Khokhar, A.A., Shen, M.: Encoded vector clock: using primes
to characterize causality in distributed systems. In: Proceedings of the 19th Inter-
national Conference on Distributed Computing and Networking, ICDCN 2018,
Varanasi, India, 4–7 January 2018, pp. 12:1–12:8 (2018)

8. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the Parallel and Distributed Algorithms Conference, pp. 215–226 (1988)

11. Meldal, S., Sankar, S., Vera, J.: Exploiting locality in maintaining potential causal-
ity. In: Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 1991, pp. 231–239 (1991)

12. Misra, J.: Phase synchronization. Inf. Process. Lett. 38(2), 101–105 (1991)
13. Pozzetti, T.: Resettable encoded vector clock for causality analysis with an appli-

cation to dynamic race detection. M.S. Thesis, University of Illinois at Chicago
(2019)

14. Ramabaja, L.: The bloom clock. CoRR abs/1905.13064 (2019). http://arxiv.org/
abs/1905.13064

15. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994)

16. Singhal, M., Kshemkalyani, A.D.: An efficient implementation of vector clocks. Inf.
Process. Lett. 43(1), 47–52 (1992)

17. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Commun. Surv. Tutor. 14(1), 131–155 (2012)

18. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for
distributed systems. Distrib. Comput. 12(4), 179–195 (1999)

http://arxiv.org/abs/1905.13064
http://arxiv.org/abs/1905.13064

	The Bloom Clock to Characterize Causality in Distributed Systems
	1 Introduction
	2 System Model
	3 The Bloom Clock Protocol
	4 Properties of the Bloom Clock
	4.1 Accuracy of Causality Test
	4.2 Probability of a False Positive and Probability that a Positive is False
	4.3 Efficient Estimation of Probabilities
	4.4 Ticking at a Receive Event

	5 Analysis and Discussion
	6 Estimating Accuracy, Precision, and False Positive Rate
	7 Conclusions
	References

