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Abstract. Evaluating the efficiency of unguided search based on ran-
dom walk in unstructured peer-to-peer networks is important because
it provides guidelines in correctly setting the parameters of the search.
Most existing work is based on simulations. We evaluate two analytical
models – the algebraic model and the combinatorial model – for various
search efficiency metrics against simulation results. We use the random
graph topology and assume unguided searches. The results show that
the two analytical models are accurate and match each other closely. We
study the impact of the average node degree, hop count, number of walk-
ers, and replication ratios on node coverage, object recall, and message
efficiency, and on the accuracy of the models.

1 Introduction

Mechanisms for indexing and searching for objects are at the heart of peer-to-
peer networks [9,12]. Although current research tends to favor distributed but
structured architectures over unstructured ones, there are several drawbacks
of structured architectures [12]: they are not suited for systems with very rapid
churn, they incur overhead for maintaining the logical structure, and they do not
support keyword searches or complex queries such as range queries. Unstructured
overlays (e.g., Gnutella) have been more widely used to build P2P applications.
Further, in ubiquitous and ad-hoc mobile networks, the requirement for a struc-
ture imposes additional organizational restrictions. Thus, unstructured overlays
are also favored in such environments.

Recent research on unstructured P2P networks has focused on the search
strategies and replication schemes ([3], [12]). The goal is to avoid message explo-
sion, achieve good performance, and maintain the simple and flexible topology
of an unstructured P2P overlay. The improvements over the traditional flooding
are the expanding ring flooding and random walk [10]. These approaches can
be classified as unguided searches. In contrast, guided searches remember some
specific information on the network topology or on the past searches. When
forwarding a query message in search of an object, this information is used to
narrow down the choice of the neighbor(s) to forward the query to [4], [15].

In unstructured overlays, an object is not usually identified by its unique ID,
and it may not even have an object ID. Thus, query by keyword is a primary
method of indexing and searching for objects in such environments ([11],[8]).
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For keyword searches, the “matching” depends on the relevancy between an
object and the set of keywords used in the query. Keyword based search methods
are usually closely related to semantic identification and information retrieval
techniques ([18],[13],[14]) such that an effective semantic based clustering and
a pertinent model on the characteristics and distributions of keywords ([1]) are
essential.

We focus on unguided searches in unstructured networks. Most existing work
on performance is based on empirical and simulation studies. The most compre-
hensive analysis of search and replication strategies is by Lv, Cao, Cohen, Li,
and Shenker [10]. They studied the impact of network topology, query distri-
bution, and replication distribution using modeling and simulations. Based on
models from queuing theory, [6] presented the performance of different indexing
approaches, in terms of system throughput and probability of “successful query”.
Using Chernoff bounds on a well-connected graph, Gkantsidis et al. [7] showed
that the effect of a k-step random walk is statistically similar to that of taking k
independent samples. Using this result, expressions for the success rate, message
overhead, and time overhead of random walk as functions of the Time-to-Live
(TTL), object popularity, and number of walkers were given [2].

Overview of Results [R1]. We evaluate the goodness of two analytical models
– the algebraic model and the combinatorial model [16] – against simulation
results, for various search efficiency metrics. We use the random graph topology
and assume unguided searches. The search metrics we consider are the node
coverage, the message efficiency, and the object recall. The results show that the
two analytical models are very close to each other and reasonably accurate. Using
simulations, we evaluate the impact of the parameters such as the average node
degree, hop count, number of walkers, and replication ratios on node coverage,
object recall, and message efficiency, and on the accuracy of the models. [R2.]
We then suggest how to enhance the analytical models to also account for the
average node degree in the random graph and improve accuracy.

The models provide valuable confirmation of the extensive simulation re-
sults of Lv et al. [10]. The models also help to understand how the settings
of the various parameters impact the efficiency of the search strategies [16]. This
allows system designers to tune the parameters to achieve performance
trade-offs.

2 Assumptions and Background

Graphs. The simulations from [10] indicate that random graphs provides better
performance than Power-Law Random Graphs and Gnutella graphs, and they
also have a much more uniform degree distribution. So we assume a random
graph topology which is also a representative small-world model. Between any
two nodes in a random graph, there is a link with a probability of p. Let the
graph have N nodes. The expected number of links is pN(N−1)

2 . The average node
degree, denoted D, is p(N − 1). Random graphs have a rich set of properties [5].
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Metrics. Message overhead (number of messages), time overhead (number of
hops), and the success rate are typically used to evaluate searches. We showed
that node coverage, the fraction of nodes that have been visited, is a very useful
metric because of the following [16].

1. It is useful to estimate success rate.
2. For keyword and range searches, it is useful to measure object recall and

message efficiency.
– Object recall is the number of objects found that satisfy the query criteria.
– Message efficiency is the object recall per query message.

3. It is useful to determine when to call off a search.
4. It is useful to estimate the replication ratio of an object.

We assume a stateless search, i.e., nodes do not have any memory of previous
searches or forwardings. Two analytical models to calculate node coverage, and
hence object recall and message efficiency, were given in [16].

2.1 The Algebraic Model

In the random graph, a message forwarding may visit a node that was already
discovered. Let x denote the number of query messages and u(x) be the number
of distinct nodes visited by those messages so far. Then

u(x + 1) = u(x) +
N − u(x)

N − 2
1 (1)

This equation can be solved as:

u(x) = Ce−
x

N−2 + N (2)

Assuming W random walkers, the solution for equation (2) is:

u(x) =
{

N − (N − W − 1)e
W+1−x

N−2 for x > W + 1
x for x ≤ W + 1

(3)

Let H be the number of query hops and x = WH + 1. Then u(H) is:

u(H) =

{
N − (N − W − 1)e

W (1−H)
N−2 for H > 1

W + 1 for H = 1
(4)

2.2 Combinatorial Model

Let v be the number of nodes visited so far. Let Pr(u, v) denote the probability
that after v node visits, u distinct nodes have been visited. Then, for u ≤ v:

Pr(u, v)|u≤v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u = 2, v = 2
Pr(u, v − 1) · u−2

N−2 if u = 2, v �= 2
Pr(u − 1, v − 1) · N−(u−1)

N−2 +Pr(u, v − 1) · u−2
N−2 if 2 < u < v

Pr(u − 1, v − 1) · N−(u−1)
N−2 if u = v > 2

(5)
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Define the expected number of distinct nodes covered by W random walkers
after traveling H hops to be u(H, W ).

u(H, 1) =
{

H + 1 if H ≤ 2∑H+1
i=3 Pr(i, H + 1) · i if H > 2

(6)

To compute u(H, W ) for W > 1, assume they travel the network sequentially.
A walker may see some nodes that have already been visited by earlier walkers.
Let new(H, i) denote the expected number of distinct new nodes visited by the
ith walker. We can express new(H, i) as follows:

new(H, i) =

[
1 −

∑i−1
k=1 new(H, k)

N

]
u(H, 1) (7)

The expected total number of distinct nodes visited by W walkers is:

u(H, W ) =
W∑
i=1

new(H, i) (8)

3 Experimental Evaluation of Models

To test the validity of the algebraic and combinatorial models, we simulated
random walk on a undirected random graph having N =20,000 nodes. The graph
and search parameters included: N , D, W , H , and R (the replication factor). We
measured the node coverage, object recall, and message efficiency. Both models
performed very close to each other; hence in the graphs for most experiments,
we show their values as a single plot. A study of the small differences between
the models is shown in Section 3.4.

3.1 Node Coverage

We compare node coverage as computed from our analytic models and that
obtained from the simulations. We study the impact of D and W on node
coverage.

Effect of node degree. We simulated 32 random walkers and varied the average
node degree. From Fig. 1(a), observe that both models give higher values of node
coverage than the simulation results. When the node degree is small (D=4, D=6)
the difference between analytical results and simulations is large (up to over 30%
for H=600) but this difference reduces as D increases. For D=20, the difference
remains below 3% at all values of H (see Fig. 1(b)).

The analysis models consider each “next step” of message forwarding as ran-
dom and the probability of visiting a new node is determined by the current node
coverage only; the node degree is not taken into account. Consider a node i that
is being visited for the second time. For the forwarding to be done by i, ideally
i must select a neighbor that was not visited before. However, as we assume a
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Node Coverage (N=20000, W=32)
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Fig. 1. Impact of average node degree on node coverage. (a) Absolute values. (b)
Relative differences with respect to models.

Node Coverage (N=20000, D=10)
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Fig. 2. Impact of number of walkers on node coverage. (a) Absolute values. (b) Relative
differences with respect to models.

stateless search, i may forward the message along an already traversed link. This
reduces the probability of forwarding to an unvisited node, but the models do
not account for this effect. So the coverage computed from our models is always
higher than simulation results. However, this effect is reduced as average node
degree increases because for a higher degree node, the chance that a subsequent
forwarding is along an untraversed link is higher than that for a low degree node.
The simulation results should match the model as node degree goes to N .

Observe from Fig 1(b) that for all values of node degree, the differences be-
tween analytical and simulation results increase as the hop count H increases.
This is because as messages and hops increase, the fraction of nodes that have
been visited before also increases, magnifying the effect of node degree in reality.

Effect of number of walkers. Figure 2(a) shows the comparison of node coverage
for 32, 64, and 128 walkers in the random graph with D = 10. As observed
above, the simulation results are consistently smaller than our analytical results
and the difference increases as the message number increases. Our simulations
show no significant impact of the number of walkers on node coverage as a
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Object Recall (N=20000, R=50, W=32)
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Fig. 3. Impact of average node degree on object recall. (a) Absolute values. (b) Relative
differences with respect to models.

function of message overhead. Fig 2(b) shows the relative deviation of each of
the simulation cases from analytical results. The fluctuations observed are likely
due to our limitation of small sample space for the random sampling.

3.2 Object Recall

A query can be considered as more efficient if a certain number of query messages
yields higher object recall. In the following simulations, we inspect the influence
of average node degree and replication ratio, respectively.

Effect of node degree. We simulated 32 random walkers searching for an object
with 50 randomly distributed replicas. The average node degree was varied as
6, 10, and 20. In each case, we took the average of the object recalls for 10
searches. The simulation results are compared with the analytical models in
Fig 3.

Note that the object recall for the analytical models are derived from node
coverage. Since the actual recall value for a single search (run) heavily depends
on the random choices made by each walker at each step, we expect certain
fluctuation on the curves for the simulation results. (Ideally, the number of
samples should be large enough to ensure stable results). Fig 3(a) indicates
that the analytical models generate higher recall values than the simulations
in general. The deviations of the simulation results from analytical models di-
minish as node degree increases. This is reasonable because the object recall
is expected to increase as node coverage increases. Fig 3(b) shows the relative
deviation from the analytical results. For a smaller number of hops, the ob-
ject recall value obtained from simulations is too small to generate meaningful
comparisons. As the recall increases with hop number, the effect of node degree
becomes apparent – the higher the degree, the less the deviation from analytical
models.

Effect of replication. We simulated a search in a graph with D=10 and W=32,
while setting the replication ratio of the queried objects to 50 and to 200. The
results are plotted in Fig 4(a). The analytical values are somewhat similar to
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Object Recall (N=20000, D=10, W=32)
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Fig. 4. Impact of degree of replication on object recall. (a) Absolute values. (b) Relative
differences with respect to models.

(but a little greater than) the simulation results (Fig 4(b)), barring some excep-
tions that are likely due to the limitation of sampling spaces. With both replica-
tion values, the relative deviation tends to diminish as the hop number increases.
This is probably because with more hops, the larger recall values recorded from
each run produce more stable output than for the case of fewer hops.

3.3 Message Efficiency

Message efficiency is a derived quantity: (object recall) /(message overhead).
The expected object recall is in proportion to node coverage. According to Equa-
tion (3), the efficiency should decrease as the message overhead increases. Since
our analytic models provide an upper bound for expected node coverage, we
also expect that the models give an upper bound for expected message effi-
ciency. What interests us is to investigate how close the simulation results would
approach the “expected” upper bound, and what are the effects of search and
topology parameters upon this approximation. The results indicate that it is
reasonable to use the analytical results from our models as upper bounds of the
expected message efficiency.

Effect of number of walkers. The number of walkers is seen to have no impact
on the message efficiency, as computed from the models. Fig. 5(a) compares
the message efficiency obtained from our models and from simulation results for
W=32, W=64, and W=128, with 50 replicas per object. In our test cases, when
the message overhead is low, the recall values obtained from the simulations are
still not stable enough for comparison. As the results smooth out with increasing
messages, the analytical results tend to have better message efficiency than the
simulation results. Also, the simulations suggest that the number of walkers
has marginal impact on message efficiency. The relative differences between the
analytical results and simulations are generally below 10% for all the 3 cases
when message overhead > 6400.

Effect of average node degree. The simulation results in Fig. 5(b) show a similar
trend as Fig. 5(a) when we vary the average node degree while fixing the other
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Message Efficiency (N=20000, D=10, R=50)
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Fig. 5. Impact on message efficiency. (a) Impact of number of walkers. (b) Impact of
average node degree.

Coverage Difference between the 2 Models
(N=20000, D=10, W=32)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600
Hops

D
if

fe
re

nc
e 

%

Coverage Difference between the 2 Models
(N=20000, D=10, W=128) 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 10 20 30 40 50 60 70 80 90 100 200 300
Hops

D
if

fe
re

nc
e 

%

Fig. 6. Node coverage for the algebraic and combinatorial models. (a) 32 walkers. (b)
128 walkers.

parameters. As D has an impact on node coverage (see Section 3.1), the relative
performance of message efficiency for different D tends to be the same as the
relative performance of node coverage as D varies.

3.4 Comparison of the Analytical Models

The two analytical models fit each other extremely well. The node coverages
generated from either model are so close to each other that we represented
the results from both as a single plot in the graphs so far. Figure 6 shows the
relative difference in terms of node coverage, when D=10 and W is 32 and 128,
respectively. In both cases, the algebraic model generates slightly higher value of
node coverage than the combinatorial model. Their differences are at most 0.3%
for W=32 and at most 0.1% for W=128. Both models can serve as an upper
bound for the estimate of node coverage and object recall.

4 Discussion

Our simulations indicate that the algebraic and combinatorial formulas provide
an upper bound on the node coverage, and the actual value of node coverage
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If B was visited multiple times
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B randomly picks hop x+1.

picks an unexplored link in the
that B’s choice for hop x+1
before, what is the probability 

BA
D=7

stateless forwarding model?

hop x

Fig. 7. Refining the analytical model to account for node degree

approaches the upper bound as the average node degree increases (tending to N).
On observing the analytical expressions, we see that the degree is not a parameter
in the expressions for node coverage, and implicitly it is assumed that D = N . To
account for the average degree D in the stateless routing models, we formulate
the following approximation.

u(x + 1) = u(x) +
u(x)
N

·
[
D − d

D

]
· N − u(x)

N − 2
+

N − u(x)
N

· 1 · N − u(x)
N − 2

(9)

u(x)
N is the probability that the current node being probed (node B in Fig. 7)

has been visited before. The term
[

D−d
D

] · N−u(x)
N−2 gives the probability that the

x+1th forwarding visits a new node if the current node has been visited before.
The term 1 · N−u(x)

N−2 represents this probability if the current node has not been
visited before. d is the expected number of links of the current node B that have
been traversed previously (across possibly multiple previous visits), given the
current node coverage u(x). Hence, in the second term, D−d

D is the probability
that the link randomly chosen by B for forwarding has not been explored before.
Estimating d and the accuracy of the resulting models is studied in [17].

5 Conclusions

This paper evaluated the algebraic and the combinatorial models for computing
node coverage (NC), object recall (OR), and message efficiency (ME) of unguided
searches in random graphs. The results show that the two analytical models are
accurate and match each other closely. The impact of the average node degree,
hop count, number of walkers, and replication ratios on the accuracy of the
models, as studied via simulations, is summarized.

1. The models give a little higher value of NC, OR, and ME than simulations.
2. As D increases, accuracy of models for NC increases.
3. As H increases (i.e., number of messages increases), accuracy of models for

NC decreases.
4. The NC as a function of number of messages appears independent of W .
5. As D increases, accuracy of models for OR increases.
6. Increasing R and H increases the stability of OR values obtained from sim-

ulations, and increases the approximity of analytical to simulation results.
7. ME is seen to be almost independent of W .
8. ME from the simulations becomes more stable as H increases.
9. As D increases, the ME increases and accuracy of models also increases.
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We are (i) extending our models to power law random graphs and other small
world networks; (ii) enhancing our models to analyze other querying approaches,
eg., guided searches, such as keyword-based and probability-based searches.
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