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Abstract. Blockchains add transactions to a distributed shared ledger
by arriving at consensus on sets of transactions contained in blocks. This
provides a total ordering on a set of global transactions. However, total
ordering is not enough to satisfy application semantics under the Byzan-
tine fault model. This is due to the fact that malicious miners and clients
can collaborate to add their own transactions ahead of correct clients’
transactions in order to gain application level and financial advantages.
These attacks fall under the umbrella of front-running attacks. In this
paper, we propose causality preserving total order as a solution to this
problem. The resulting blockchains will be stronger than traditional con-
sensus based blockchains and will provide enhanced security ensuring
correct application semantics in a Byzantine setting.
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1 Introduction

Blockchain is a shared distributed ledger that provides a tamper-proof ordered
sequence of records. Bitcoin [25] was the first blockchain that provided a solution
to the double-spending problem and revolutionized electronic money transfer. Bit-
coin solves Byzantine-tolerant consensus [19] via proof-of-work. This led to the
development of further blockchains that solved consensus such as Ethereum [31]
that go a step further and provide smart contracts [9] that allow the blockchain to
act as a universal computer. Smart contracts are code hosted on the blockchain
that provide operations to change the state of the blockchain. Since the code
is tamper-proof, a set of parties can conduct business in a transparent manner
on the blockchain. Further, smart contracts provide the capability to run classic
centralized applications on the blockchain in a decentralized manner, such as auc-
tions [12] and elections [13]. As more applications are designed for blockchain,
an important question that arises is—does blockchain guarantee the required
semantics for these applications? In the case of peer-to-peer money transfer, the
answer is yes, because total order prevents double-spending. However, total order
is not enough for a decentralized auction, because a Byzantine miner can collude
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with a Byzantine client by informing the client of its opponents’ bids prior to
them being added to the blockchain. This lack of enforcement of semantics pro-
vides an opportunity to Byzantine nodes to launch a variety of attacks known as
front-running attacks [11,33]. An important point to note is that blockchains pre-
serve total ordering across transactions by utilizing consensus. This is equivalent
to total order broadcast with transactions as messages. Total order broadcast
and consensus protocols do not necessarily preserve causal relationships across
transactions [8]. In this paper we prove that front-running attacks are essentially
causality violations [18] accross transactions in the blockchain. Further, we pro-
pose utilizing causal ordering protocols enforcing strong safety [21–23] to provide
an enhanced level of security in the blockchain ecosystem. Our contributions are
as follows:

1. We formalize front-running attacks and prove that they are a violation of
causal ordering (this is a precise characterization of front-running attacks).

2. We prove that utilizing a causal ordering protocol will enforce application
semantics and make the blockchain more secure and suitable for classic cen-
tralized applications.

3. We introduce a protocol to provide security against front-running attacks by
providing a causality preserving total ordering across transactions recorded
in the blockchain. We term the resulting blockchain as a strong blockchain
since it provides stronger security guarantees and semantics compared to
traditional blockchains.

4. We prove the correctness of our protocol and analyze its intrinsic fairness
properties.

2 System Model

This paper models the set of miners as a distributed system having Byzan-
tine processes which are processes that can misbehave [19,26]. A correct process
(miner) behaves exactly as specified by the blockchain protocol whereas a Byzan-
tine process (miner) may exhibit arbitrary behaviour including crashing at any
point during the execution. A Byzantine process cannot impersonate another
process or spawn new processes. The distributed system is modelled as an undi-
rected graph G = (M,H). Here M is the set of miners adding blocks to the
blockchain. Let n be |M|. H is the set of FIFO logical communication links over
which miners communicate by message passing. G is a complete graph. This
model is equivalent to the permissioned blockchain model [27]. Nonetheless, as
can be seen by the proof of Theorem 1, our result proving that front-running
attacks are causal violations holds for permissionless blockchains [25] as well.
However, the solution we provide is geared towards permissioned blockchains.

The system is assumed to be synchronous, i.e., there is a known fixed upper
bound δ on the message latency, and a known fixed upper bound ψ on the relative
speeds of processors [10]. This is opposed to an asynchronous system, i.e., there is
no upper bound δ on the message latency, nor any upper bound ψ on the relative
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speeds of processors [10]. Clients send their transactions to the system of miners
by broadcasting a protocol message containing the transaction to the system.
This message contains all the required metadata for the transaction such as gas
fees and the client’s identity. Next, transactions sit at each miner’s mempool
[28], waiting to get added to the blockchain. Clients can also be Byzantine and
collude with Byzantine miners and miners can also act as clients in the system.
Our protocol assumes an upper bound on the number of Byzantine miners, t
with n ≥ 3t + 2. The number of Byzantine clients is assumed to be unbounded.

Definition 1. The happens before relation → on messages consists of the fol-
lowing rules:

1. If pi sent or delivered message m before sending message m′, then m → m′.
2. If m → m′ and m′ → m′′, then m → m′′.

Definition 2. The causal past of message m is denoted as CP (m) and defined
as the set of all messages m′ such that m′ → m.

Definition 3. A causal ordering algorithm must ensure the following:

1. Strong Safety: ∀m′ ∈ CP (m) such that m′ and m are sent to the same
(correct) process(es), no correct process delivers m before m′.

2. Liveness: Each message sent by a correct process to another correct process
will be eventually delivered.

Definition 4. A transaction is a string contained in messages broadcasted to
the system of miners with the intention of being recorded in the blockchain via
consensus. Transactions change the state of the blockchain by executing business
logic between two or more clients.

Definition 5. The happens before relation → on transactions is defined as fol-
lows: Given messages m1 and m2 containing transactions t1 and t2 respectively,
t1 → t2 if and only if m1 → m2.

Definition 6. The causal past of transaction t is denoted as CP (t) and defined
as the set of all transactions t′ such that t′ → t.

Definition 7. A block contains a sequence of totally ordered transactions and
a hash of its parent block. A block is only added to the blockchain after the system
of miners arrive at consensus on the contents of the block.

Definition 8. Blockchain is a distributed data structure consisting of a tree of
blocks. Each block has only one parent (except the genesis block) and may have
multiple children blocks.

Definition 9. A causal ordering algorithm for blockchain BT must ensure the
following:

1. Strong Safety: Given transaction t, ∀t′ ∈ CP (t), t′ gets recorded in BT
before t.
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2. Liveness: Each transaction sent by a correct client eventually arrives in
every correct miner’s memory pool.

Definition 10. Given a blockchain BT , the consensus chain is a sequence of
blocks B0, B1, ...., Bl such that Bk is the parent of Bk+1 and tree depth(BT ) = l.

Definition 11. BT is a valid blockchain if BT contains one and only one
consensus chain.

As a shorthand, we will refer to the consensus chain of a valid blockchain BT
as consensus chain(BT ).

3 Front-Running Attacks

In this section we first present a broad family of attacks called front-running
attacks. We formalize the attacks and prove that they are essentially an attack
on causal ordering. An important point to note is that front-running attacks
are executed prior to execution of the blockchain consensus protocol. Miners
can view unconfirmed transactions in their memory pools and broadcast their
own transactions with higher transaction fees with the intention of executing
front-running attacks on unsuspecting clients. Byzantine miners can also collude
with Byzantine clients to execute front-running attacks. However, without loss
of generality in our proofs and solutions, we assume that miners act as clients
in executing attacks. The following are illustrative examples of front-running
attacks on real-world applications:

1. An honest client process pi sends transaction ti to the network as part of a
decentralized auction. A malicious miner M reads ti, figures out the bid value
pi wants to place for an asset being auctioned and sends its own transaction
tM with the purpose of getting into the blockchain first. This results in an
unfair advantage for M in winning the auction.

2. An honest client process pi sends a request to buy cryptocurrency (transaction
t1) at price x, where the market price y is less than x. A malicious miner M
can attempt to make a profit here by adding two transactions to the block
where it includes t1:

(a) It adds t0 buying cryptocurrency at price y from the market. t0 is placed
before t1. Note that the miner is exhibiting malicious behaviour in this
step.

(b) It sells cryptocurrency to pi in transaction t2 to pi (placed after t1) at
price x. Note that in isolation, sending transaction t2 is not malicious
behaviour.

This results in M making a profit by arbitraging off an honest client with a
profit of (x − y) per coin.
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An honest miner should not look into the content of transactions in the net-
work. Blockchains incentivize miners to go after transactions with higher mining
fees to maximize profits. The blockchain protocol requires miners to be concerned
with only transaction fees and not the contents of transactions. The Byzantine
fault model encapsulates behaviour that does not follow the specified protocol.
Therefore, such malicious miners can be modeled as Byzantine processes and
Byzantine fault-tolerant protocols can be utilized to prevent such behaviour.

Observation 1. Miners executing front-running attacks are Byzantine.

Front-running attacks are broadly categorized as follows [30]:

1. Displacement Attack: A Byzantine miner reads transaction t from its mem-
ory pool and broadcasts its own transaction (copying contents of t) t′ with
higher transaction fees in order to record t′ in the blockchain before t.

2. Sandwich Attack: A Byzantine miner reads transaction t1 from its memory
pool and broadcasts two transactions t0 and t2 with the intention of recording
t0 before t1 and t2 after t1 in the same block. In this way, the Byzantine miner
creates an arbitrage opportunity to make a profit.

3. Suppression Attack: A Byzantine miner reads transaction t from its mem-
ory pool and broadcasts a set of transactions T containing transactions with
high transaction fees. This attack essentially forces t to not get recorded in
the next block in the blockchain.

We now formally define front-running attacks and prove that they are causal
ordering violations. Since front-running attacks are executed before consensus
and are harder to execute when no forks exist, for the sake of proofs we assume
without loss of generality that they are executed on valid blockchains (Definition
11).

Definition 12. A Byzantine miner executes a front-running attack by read-
ing an unconfirmed transaction tx and broadcasting/mining its own transaction
ty with the intention of recording ty before tx in the consensus chain of a valid
blockchain BT .

Note that a sandwich attack consists of two transactions being sent out by
the Byzantine miner. The first transaction front-runs the client’s transaction as
per Definition 12, while the second transaction is non-malicious in isolation. Also
note that a suppression attack is simply the repeated application of Definition
12. In other words, multiple transactions are sent out by the Byzantine miner to
be recorded in the blockchain before the client’s transaction, ultimately forcing
the client’s transaction be recorded in a future block.

Theorem 1. Front-running attacks are a violation of causal ordering.

Proof. BT is a valid blockchain and let C = consensus chain(BT ). Let pi broad-
cast m1 (containing transaction t1) to the system of miners. Miner M delivers
m1 and adds t1 to its memory pool. Miner M then broadcasts m2 (containing
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t2) with significantly higher transaction fees than m1 (t1), with the intention
of adding t2 to C before t1 is added to it. If this attack succeeds, one of the
following scenarios must play out:

1. Miner M ′ (M may be M ′) succeeds in adding the next block B containing
t2 to C. The new consensus chain of BT is C ′ = C + B. Eventually, t1 gets
added to consensus chain(BT ) as part of block B′. Since C ′ is a prefix of all
future consensus chains, t2 is ordered before t1.

2. Miner M ′ (M may be M ′) succeeds in adding the next block B to C. B
contains both t1 and t2 with t2 ordered before t1.

By Definition 12, this is a front-running attack on t1 by M via t2. In order to
execute this attack, M delivered m1 and broadcasted m2. By the message order
rule in Definition 1, m1 → m2. Since t2 is recorded in C before t1, the contents of
m2 are consumed by the system before the contents of m1 resulting in a strong
safety violation as per Definition 3. Therefore, it is clear that a front-running
attack across transactions requires a causality violation across their respective
protocol messages. �

4 Background

4.1 Some Cryptographic Basics

We utilize non-interactive threshold cryptography as a means to guarantee strong
safety of broadcasts [29]. Threshold cryptography consists of an initialization
function to generate keys, message encryption, sharing decrypted shares of the
message and finally combining the decrypted shares to obtain the original mes-
sage from ciphertext. The following functions are used in a threshold crypto-
graphic scheme:

Definition 13. The dealer executes the generate() function to obtain the public
key PK, verification key V K and the private keys SK0, SK1, ... , SKn−1.

The dealer shares private key SKi with each process pi while PK and V K
are publicly available.

Definition 14. When process pi wants to send a message m to pj, it executes
E(PK,m,L) to obtain Cm. Here Cm is the ciphertext corresponding to m, E is
the encryption algorithm and L is a label to identify m. pi then broadcasts Cm

to the system of processes.

Definition 15. When process pl receives ciphertext Cm, it executes D(SKl, Cm)
to obtain σm

l where D is the decryption share generation algorithm and σm
l is

pl’s decryption share for message m.

When process pj receives a cipher message Cm intended for it, it has to wait
for k decryption shares to arrive from the system to obtain m. The value of k
depends on the security properties of the system. It derives the message from
the ciphertext as follows:
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Definition 16. When process pj wants to generate the original message m from
ciphertext Cm, it executes C(V K,Cm, S) where S is a set of k decryption shares
for m and C is the combining algorithm for the k decryption shares.

The following function is used to verify the authenticity of a decryption share:

Definition 17. When a decryption share σ is received for message m, the
Share Verification Algorithm is used to ascertain whether σ is authentic :
V (V K,Cm, σ) = 1 if σ is authentic, V (V K,Cm, σ) = 0 if σ is not authentic.

4.2 Byzantine Causal Broadcast via Byzantine Reliable Broadcast

We propose a causal order broadcast algorithm for clients to send transactions to
miners. Byzantine-tolerant causal broadcast is invoked as BC broadcast(m) and
delivers a message through BC deliver(m). Under the covers, Byzantine Causal
Broadcast invokes Byzantine Reliable Broadcast. These two are defined next.

Definition 18. Byzantine Causal Broadcast (BCB) satisfies the following prop-
erties:

1. (BCB-Validity:) If a correct process pi BC delivers message m from sender(m)
then sender(m) must have BC broadcast m.

2. (BCB-Termination-1:) If a correct process BC broadcasts a message m then
it eventually BC delivers m.

3. (BCB-Agreement or BCM-Termination-2:) If a correct process BC delivers a
message m from a possibly faulty process, then all correct processes eventually
deliver m.

4. (BCB-Integrity:) For any message m, every correct process pi BC delivers m
at most once.

5. (BCB-Causal-Order:) If m → m′, then no correct process BC delivers m′

before m.

BCB-Causal-Order is the strong safety property of Definition 3. BCB-Termi-
nation-1 and BCB-Agreement imply the liveness property of Definition 3.

The Byzantine-tolerant Reliable Broadcast (BRB) [3,4] is invoked by BR bro-
adcast and its message is delivered by BR deliver, and satisfies the properties
given below.

Definition 19. Byzantine-tolerant Reliable Broadcast (BRB) provides the fol-
lowing guarantees [3,4]:

1. (BRB-Validity:) If a correct process BR delivers a message m from sender-
(m), then sender(m) must have BR broadcast m.

2. (BRB-Termination-1:) If a correct process BR broadcasts a message m, then
it eventually BR delivers m.

3. (BRB-Agreement or BRB-Termination-2:) If a correct process BR delivers a
message m from a possibly faulty process, then all correct processes eventually
BR deliver m.

4. (BRB-Integrity:) For any message m, every correct process BR delivers m at
most once.
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5 Causal Ordering Protocol to Prevent Front-Running
Attacks

In light of the result of Theorem 1, we present a causality preserving blockchain
protocol to strengthen the security of blockchain to withstand front-running
attacks under the synchronous system setting. A synchronous system can assume
lock-step execution in rounds. Within a round, a process can send messages,
then receive messages, and lastly have internal events; further a message sent in
a round is received in the same round at all its destinations. Algorithm 1 serves
as a reference point for synchronous round-based communication. Without loss
of generality, we assume that all processes send their messages at the beginning
of each round, all messages arrive in the same round that they are sent out
and messages are delivered at the end of each round. In Algorithm 2, thresh-
old cryptography in conjunction with the execution in rounds and Byzantine
Reliable Broadcast are used to ensure strong safety + liveness. Clients broad-
cast transactions to the system of miners encapsulated in protocol messages
via BRB. Using BRB protects against liveness attacks by Byzantine clients via
BRB-Termination-1 and BRB-Agreement.

Algorithm 1: Synchronous round-based message passing protocol
Data: Each process locally maintains two FIFO queues Qs and Qd for storing

outgoing/incoming messages respectively
1 when round r starts:
2 broadcast all messages in FIFO order after dequeuing from Qs

3 when round r ends:
4 deliver all messages in FIFO order after dequeuing from Qd

5 when the application is ready to broadcast message m:
6 Qs.enqueue(m)
7 when message m arrives:
8 Qd.enqueue(m)

We present our solution called causality preserving blockchain protocol in
Algorithm 2. Classic Blockchain consensus protocols generate a total ordering
of transactions. Our protocol guarantees a stronger property, causally consistent
total ordering of transactions. Algorithm 2 ensures that the blockchain’s total
ordering does not violate causality across transactions, hence ensuring appli-
cation semantics in a Byzantine setting. This is why we term any blockchain
following our protocol as a stronger blockchain than classic blockchains. For
simplicity, we term this as a strong blockchain and is defined below.

Definition 20. A strong blockchain BT must satisfy the following properties:

1. BT is a valid blockchain (Definition 11)
2. ∀t1, t2 such that t1 → t2, t1 is recorded before t2 in BT ’s consensus chain.
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Algorithm 2 is agnostic to the blockchain consensus mechanism. Algorithm 2
ensures that only transactions whose causal past is already recorded in the con-
sensus chain are allowed to be mined. In addition to blockchain-specific prop-
erties that need to be satisfied (e.g., sufficient balance, identity of client), a
transaction is not considered for mining if it causally depends on one or more
transactions that have not been finalized in the blockchain. Algorithm 2 only
mines what we term as safe transactions. Safe transactions satisfy blockchain-
specific properties and all transactions in their causal past are already recorded
in the blockchain. Algorithm 2 only considers safe blocks for consensus, thereby
preventing front-running attacks by maintaining causal relations across transac-
tions. Safe transactions and safe blocks are formalized below:

Definition 21. t is a safe transaction with regards to a strong blockchain BT
if and only if ∀t′ ∈ CP (t),∃B′ ∈ BT such that t′ ∈ B′ and B′ is an ancestor of
the block B that contains t (B may be mined in the future).

Definition 22. A safe block B only contains safe transactions.

Note that in Algorithm 2, we construct a strong blockchain (Definition 20)
using only safe blocks (Definition 22) which are in turn comprised of only
safe transactions (Definition 21). However, a strong blockchain can also be
constructed using unsafe transactions, as long as all causal dependencies of a
recorded transaction are recorded before it in a previous or even the same block.
In Algorithm 2 each client process pci has access to PK (global public key),
each miner process pMi

has access to V K (global verification key). Each miner
pMi

has access to a local secret key SKi. Each client uses a FIFO queue Qs for
outgoing protocol messages. Each miner pMi

’s memory pool is denoted by a set
MP . The causal past of transaction t is denoted as CP (t). The set of all miners
is M. BT is the shared blockchain. Bi

r is the block proposed by miner pMi
in

round r + 1.
Algorithm 2 provides the BC broadcast primitive to clients to protect against

front-running attacks and BC deliver to miners for extracting transactions from
messages. BR broadcast and BR delivery are the underlying primitives implement-
ing Byzantine reliable broadcast (BRB) [3,4]. Let β and γ denote the maximum
and minimum number of rounds (sequential steps) respectively in a BRB pro-
tocol. For example, Bracha’s BRB has β = ∞, γ = 3 and requires n > 3f
[3,4] whereas Imbs-Raynal [14] has β = ∞, γ = 2 and requires n > 5f . How-
ever, β = ∞ is the case when a Byzantine process initiates broadcast and the
Byzantine processes do not follow the protocol in its entirety. Whenever a cor-
rect process initiates BRB, it is delivered in γ rounds. In the case of a Byzantine
broadcaster, the message will either not be delivered or in case it is delivered
some correct processes may deliver the message after others as we will show in
Lemma 1. Although a message m sent in a round is delivered after all messages
sent in previous rounds, a Byzantine miner can peek into m before its trans-
action is committed to the blockchain and send a causally dependent message
m′ in the same round to initiate a broadcast send via its own BR broadcast. m′

may be BR delivered in the same round as m at some miners, thus leading to a
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Algorithm 2: Causality Preserving Blockchain Protocol

1 when round r starts at client pci :

2 while Qs.head() �= φ do
3 Cm = Qs.pop()
4 BR broadcast(Cm, M)

5 when client pci sends m to M via BC broadcast(m, M) in round r:

6 Cm = E(PK, m, idm)
7 Qs.push(Cm)

8 when round r starts at miner pMi :

9 B = consensus(candidate set) � consensus on the set of blocks

delivered in the previous round

10 candidate set = φ
11 Add B at the end of consensus chain(BT )
12 for all t ∈ B do
13 delete t from MP
14 for all t′ such that t ∈ CP (t′) do
15 CP (t′) = CP (t′) \ t

16 Bi
r = φ

17 for all t in MP such that t is semantically invalid do
18 delete t

19 for all t in MP ′ where MP ′ ⊆ MP ∧ CP (t) = φ do
20 Bi

r = Bi
r ∪ {t} � Block construction with safe transactions

21 for all pMj ∈ M do
22 send Bi

r to pMj

23 when Bj
r arrives at miner pMi during round r: � Block created by miner

pMj in round r and proposed for consensus in round (r + 1)

24 for all t ∈ Bj
r do

25 if t is semantically invalid ∨ CP (t) �= φ then
26 discard Bj

r

27 if Bj
r has not been discarded then

28 candidate set = candidate set ∪ Bj
r � all safe blocks arriving in

round r are added to candidate set

29 when Cm is BR delivered at miner pMi in round r:

30 σm
i = D(SKi, Cm)

31 for all pMj ∈ M do
32 send σm

i to pj in round (r + 1)

33 when miner pMi receives (2t + 1)th valid 〈σm
x 〉 message by round r:

34 Store (2t + 1) decryption shares in set S
35 m = C(V K, Cm, S)
36 extract tm from m � bc delivery(m)

37 CP (tm) = MP
38 MP = MP ∪ {tm}
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potential front-running attack across the transactions contained in m and m′.
To prevent a Byzantine process from peeking into the transaction of a message
prior to BC delivery, the message is encrypted using threshold encryption.

Algorithm 2 consists of both miner side code and client side code divided
into six when blocks, each in reaction to an event in the protocol. The when
block from lines 1–4 is executed in the beginning of a round, with each client
broadcasting messages it created in the previous round using BRB in a FIFO
manner from a local queue containing those messages. FIFO ordering at the client
in conjunction with FIFO channels ensures source order at the miners’ end. The
when block in lines 5–7 describes how clients utilize the BC broadcast primitive
provided by Algorithm 2. Clients encrypt messages using threshold cryptography
and enqueue them in a local FIFO queue, ready to be sent out in the beginning
of the next round. The when block between lines 8–22 is executed by each miner
in the beginning of a round. In line 9, miners arrive at consensus on the set of
blocks proposed by each miner in the previous round. These blocks are stored in
a set candidate set. Miners then clear candidate set to make it ready to store
blocks in the current round and the consensus block B is added to the blockchain.
Lines 12–15 clear transactions contained in B from the miners’ memory pool,
MP (a set data structure containing transactions waiting to be added to the
blockchain), and the causal past (CP (t) keeps track of transactions in MP that
need to be added to the blockchain before t) of the remaining transactions in
MP . Next, the miner constructs its own block (to be sent out for consensus in the
next round) with semantically valid and safe transactions (lines 16–20). In lines
21–22, miners send their blocks for consensus in the next round. The when block
in lines 23–28 deals with incoming blocks from other miners for which consensus
will be arrived at in the next round. When a miner receives a block, it checks
if the block is semantically valid and makes sure all transactions in the block
do not have causal dependencies on existing transactions in the memory pool.
If that is the case, the block is added to candidate set. The when block in lines
29–32 deals with miners receiving a message (containing a transaction) from a
client via BR delivery, computing their decryption shares for the message and
broadcasting the decryption share in the next round. Finally, the when block in
lines 33–38 deals with miners receiving the required number of decryption shares
(2t + 1) for decrypting a protocol message. The miners decrypt the message m
in line 35 and extract the transaction tm in line 36 (this line is BC delivery) and
store the causal past of tm in CP (tm). Finally, tm is added to the memory pool
in line 38. For the purposes of this protocol, CP (t) is treated as a dynamic set
data structure, which starts off containing the entire set of transactions in the
causal past of t. As each of these transactions is added to blockchain BT , it is
removed from CP (t). Once CP (t) = φ, t is a safe transaction and is ready to be
added to the blockchain.

Lemma 1. In a system following the BRB protocol in [3], if a correct process
BR delivers message m in round r, it will be BR delivered at all correct processes
at or before round (r + 1).
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Proof. Let pi be the first correct process to BR deliver m; let it do so in round
r. For this to be the case, pi must have received at least (2t + 1) READY (m)
messages by round r. At least (t + 1) of the READY (m) messages were sent
by correct processes. Therefore, at the end of round r, all correct processes
will have received at least (t + 1) READY (m) messages. At the start of round
(r + 1), all correct processes will broadcast READY (m) and will receive (2t +
1) READY (m) messages before the end of the round. Therefore, all correct
processes will BR deliver m at or before round (r + 1). �

Theorem 2. For all transactions t1 and t2 in a valid blockchain BT , such that
t1 → t2, Algorithm 2 guarantees that t1 is ordered before t2 in BT ’s consensus
chain.

Proof. Consider messages m1 and m2 containing transactions t1 and t2 respec-
tively, with m1 → m2. From Definition 5, t1 → t2. Let pmj

(possibly Byzantine)
be the sender of m2. pmj

BC delivers m1 and views t1 in line 36 of Algorithm 2.
The earliest that m2 can be broadcasted to the system is in round r itself (this
is Byzantine behaviour, a correct miner would broadcast m2 in round (r + 1)).
The fastest delivery time of m2 at any miner would be the minimum latency of
BRB (γ) + decryption share latency (1 round) + sending round (r). Therefore,
the earliest m2 can be BC delivered at any miner is at round rm2 = (r + γ + 1).
Whereas the latest that m1 is BC delivered at any miner is rm1 = (r+2). This is
because from Lemma 1, m1 must be BR delivered at all correct processes within
round (r + 1) because it must have been BR delivered at at least (t + 1) cor-
rect processes by round r for BC delivery to be possible at pmj

. And in round
(r+2) all correct processes will receive the required number of decryption shares,
(2t + 1) to BC deliver m1 because all correct processes broadcast their decryp-
tion shares in the very next round of BR delivering a message. Therefore, at any
correct miner pMl

, we have the following:

rm1 ≤ (r + 2)
rm2 ≥ (r + γ + 1)

rm1 < rm2 (since γ > 1)

Since rm1 < rm2 , m1 will be BC delivered before m2 and t1 will be in the
memory pool (MP ) prior to the extraction of t2 (lines 33–38). Therefore, when
t2 will be included in MP at all correct miners, CP (t2) will include t1 (lines
36–38). Any block B containing t2 will be rejected by correct miners if t1 is not
recorded in blockchain BT (lines 23–26). Consequently, no such block B can be
added to the blockchain until t1 is recorded in BT . Therefore, given t1 → t2, t1
will be recorded in BT prior to t2. �

Theorem 3. All transactions broadcasted to blockchain BT via Algorithm 2 will
be added to each correct miner’s memory pool MP within bounded time.

Proof. Let client pci send message m (containing transaction tm) to BT via
Algorithm 2 in round r. pci sends m’s ciphertext Cm via BRB in lines 1–4 to the
system of miners. By BRB-Termination-1 and BRB-Agreement from Definition
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19, it can be seen that all correct miners will BR deliver Cm in γ rounds (since
pci is following the protocol in Algorithm 2, BRB will terminate in γ rounds)
at line 29 and broadcast their respective decryption shares in the next round
in lines 30–32. In the next round all correct processes will receive the required
number of decryption shares to decrypt Cm in line 33. All correct miners will
proceed to decrypt message m and store its transaction tm in MP in the same
round (lines 34–38). Therefore, a transaction tm sent in round r via Algorithm
2 will arrive at every correct miner’s memory pool in round (r + γ + 1). �

Corollary 1 follows from Theorems 2 and 3.

Corollary 1. Algorithm 2 guarantees causal ordering as defined in Definition
9.

Theorem 4. Any blockchain constructed by Algorithm 2 is resilient to front-
running attacks.

Proof. Follows from Theorem 1 and Corollary 1. �

A critical observation about Algorithm 2 is that any transaction t
BC delivered in round r will be added to the causal past of every transaction
BC delivered in rounds (r+1), (r+2), ...(r+k), where (r+k) is the round where
t is recorded to the blockchain. Consequently, any transaction t′ added to the
memory pool after t cannot be added to the blockchain until t is added to it.
This forces miners to mine and add existing transactions in the memory pool to
the blockchain in order to ensure that future transactions do not end up waiting
in the memory pool, thereby preventing wastage of both resources and time.
This leads us to Observation 2.

Observation 2. Any blockchain constructed by Algorithm 2 guarantees intrin-
sic fairness to clients.

6 Discussion

Front-Running Attacks. In this paper we studied front-running attacks and
proved that all front-running attacks are causal ordering violations accross trans-
actions. The reason that front-running attacks are feasible against existing block-
chains is because blockchains provide a total ordering of transactions by solving
Byzantine-tolerant consensus but do not preserve causality when building this
total ordering. We conclude that solving consensus is not enough from an appli-
cation semantics perspective in a Byzantine environment.

Stronger Blockchains. In light of our findings, we defined the notion of a strong
blockchain, which is a blockchain that provides a causality-preserving total order
across transactions. This eliminates the feasibility of front-running attacks by
Byzantine processes and guarantees application semantics. We proposed a causal
ordering protocol to be used in conjunction with the consensus protocol to build
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a strong blockchain. This approach is modular because it does not interfere with
the consensus protocol of the blockchain. Instead, the causal ordering protocol on
transactions runs prior to the consensus protocol on blocks of transactions. That
is, the causal ordering protocol ensures that transactions added to blocks do not
have causal dependencies in the memory pool. This makes it straightforward to
incorporate causal ordering as a pre-consensus protocol to existing blockchains.
Our blockchain protocol keeps track of causal dependencies of every transaction
added to the memory pool of every miner. BRB ensures that all correct miners
have correct knowledge of the causal dependencies. This allows our protocol to
stop any transactions from being mined whose causal dependencies have not
been added to the blockchain.

Related Work. Recently, a technique to make sandwich attacks unprofitable to
rational Byzantine processes in the permissionless setting was proposed [1]. This
technique involves changing the blockchain protocol itself by making random
reorderings of transactions within proposed blocks. Fair ordering of transactions
at the consensus level has been formalized in [6,15]. However, this approach does
not completely rule out front-running attacks. Commit reveal schemes to pre-
vent front-running attacks have been explored in [7] along with a game-theoretic
analysis of the same. However, this protocol cannot prevent suppression attacks
and impedes smart contract composability. The work presented in [32] works on
detection of front-running attacks via a mining algorithm and presents a solution
to detect the possibility of front-running attacks at the smart contract level. It
also provides an experimental analysis of techniques for preventing front-running
attacks. This paper is experimental and runs orthogonal to the fundamental find-
ing in our paper. The work in [16] presents the notion of batch-order-fairness,
and prevents front-running attacks as long as a pre-determined fraction of hon-
est nodes have seen the correct transaction ordering. The work in [2] presents
a consensus protocol promoting fairness of transaction ordering while utilizing
threshold cryptography to prevent censorship by Byzantine nodes. Our protocol
also uses threshold cryptography, which has previously been used in a probabilis-
tic algorithm based on atomic (total order) broadcast for secure causal atomic
broadcast (liveness and strong safety) in an asynchronous system [5]. This algo-
rithm used acknowledgements and effectively processed the atomic broadcasts
serially. This protocol would force miners to see transactions in a total order
inhibiting parallel mining of transactions sent concurrently. Additionally, this
protocol in conjunction with blockchain would solve consensus twice, wasting
time and resources. More recently, threshold cryptography has been used to
develop a non-deterministic multicast algorithm for causal ordering in asyn-
chronous systems [22].

Causality Preserving Blockchain Protocol. We proposed a strong block-
chain protocol and proved its correctness in this paper. Our protocol provides
deterministic causal ordering in a synchronous communication model. Since our
protocol operates in a synchronous setting, the consensus protocol will also be
deterministic. Our protocol assumes that there are (3t + 1) miners out of which



Towards Stronger Blockchains: Security Against Front-Running Attacks 185

at most (t − 1) can be Byzantine1. This means that this protocol is suited for
a permissioned blockchain, with a static number of miners. Our protocol has a
message complexity of O(n2) and has an upper bound on latency (time for a
transaction to arrive in all correct miners’ memory pools) of (γ + 1) rounds.

Asynchronous Systems. In this paper we provided a deterministic solution
for synchronous systems. However, most real-world applications do not have
the luxury of synchronized clocks which are essential for providing synchrony.
Therefore, future work involves devising solutions for asynchronous systems. It
is important to note that the result of Theorem 1 is system model agnostic
and applies to all blockchain systems including asynchronous and permission-
less blockchains because the proof does not assume any particular system model
settings. Second, neither consensus nor causal ordering are deterministically solv-
able in asynchronous systems. Therefore, any solutions preventing front-running
attacks by addressing the root cause—causal ordering violations—will be non-
deterministic. The main takeaway for asynchronous systems that we provide in
this paper is that the best solution to address the issue of front-running attacks
in blockchains is to use a Byzantine-tolerant causal ordering protocol indepen-
dent of the consensus mechanism. Further, a probabilistic version of Algorithm
2 can be tailored for asynchronous systems using a Byzantine-tolerant clock
synchronization protocol [17,20] to approximate synchrony. Note that the clock
synchronization protocol has to be chosen based on the system settings assumed
by the blockchain. This task is non-trivial and is left as future work.

7 Conclusions

This paper established that causal ordering is critical for blockchain security
and maintaining application semantics and provided a causal ordering solution
for synchronous permissioned blockchains. To the best of our knowledge, this is
the first work that addressed the root cause that makes front-running attacks
possible, and proved that front-running attacks are causal violations. Addition-
ally, we provided a solution that can be adopted by existing blockchains without
interfering with the blockchain protocol. Our solution for synchronous systems
is deterministic; it is not possible to develop a deterministic strong blockchain
in an asynchronous system [23,24]. Our result in Theorem 1, stating that front-
running attacks are causal violations is independent of the system model of our
protocol. Therefore, front-running attacks are not feasible against our notion of
a strong blockchain regardless of the system model assumptions (permissioned
vs. non-permissioned, synchrony vs. asynchrony). Future work comprises devel-
oping protocols for strong blockchain in different system settings such as non-
permissioned blockchains and blockchains with asynchronous communication.
1 BRB requires an upper bound of t Byzantine processes out of (3t + 1) processes. In

our case, the client becomes the (3t + 2)th process in the system when broadcasting
to the system of miners via BRB. In case the broadcasting client is Byzantine,
correctness of the protocol can only be guaranteed when at most (t − 1) miners are
Byzantine.
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