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 A B S T R A C T

Detecting causality or the ‘‘happened before’’ relation between events in an asynchronous distributed system 
is a widely used building block in distributed applications. To the best of our knowledge, this problem has 
not been examined in a system with Byzantine processes. We prove the following results for an asynchronous 
system with Byzantine processes. (1) We prove that it is impossible to determine causality between events 
in the presence of even a single Byzantine process when processes communicate by unicasting. (2) We also 
prove a similar impossibility result when processes communicate by broadcasting. (3) We also prove a similar 
impossibility result when processes communicate by multicasting. (4–5) In an execution where there exists 
a causal path between two events passing through only correct processes, we prove that it is possible to 
detect causality between such a pair of events when processes communicate by unicasting or broadcasting. 
(6) However, when processes communicate by multicasting and there exists a causal path between two events 
passing through only correct processes, we prove that it is impossible to detect causality between such a 
pair of events. (7–9) Even with the use of cryptography, we prove that the impossibility results of (1–3) for 
unicasts, broadcasts, and multicasts, respectively, hold. (10–12) With the use of cryptography, when there 
exists a causal path between two events passing through only correct processes, we prove it is possible to 
detect causality between such a pair of events, irrespective of whether the communication is by unicasts, 
broadcasts, or multicasts. Our results are significant because Byzantine systems mirror the real world.
1. Introduction

Causality is an important tool in understanding and reasoning about 
distributed system executions [2]. In a seminal paper, Lamport for-
mulated the ‘‘happened before’’ or the causality relation, denoted →, 
between events in an asynchronous distributed system [3]. Given two 
events 𝑒 and 𝑒′, the causality determination problem asks to determine 
whether 𝑒 → 𝑒′. Applications of causality determination include de-
termining consistent recovery points in distributed databases, deadlock 
detection, termination detection, distributed predicate detection, dis-
tributed debugging and monitoring, the detection of race conditions 
and other synchronization errors [4].

The causality relation between events can be captured by track-
ing causality graphs [5], scalar clocks [3], vector clocks [6–8], ma-
trix and higher-dimensional clocks [9] and numerous other variants 
(such as hierarchical clocks [10,11], plausible clocks [12], incremental 
clocks [13], dotted version vectors [14], interval tree clocks [15], 
logical physical clocks [16], encoded vector clocks [17], and Bloom 
clocks [18,19] to mention a few), proposed since Lamport’s seminal 
paper [3]. Indirections in knowledge about local logical times can be 

I An earlier version of this result appeared in Proceedings of IEEE NCA 2022, Misra and Kshemkalyani (2022) [1].
∗ Corresponding author.
E-mail address: ajay@uic.edu (A.D. Kshemkalyani).

captured by the abstraction in [9]. See [2,4] or a more recent survey in-
cluded in [20]. Some of these variants track causality accurately while 
others introduce approximations and inaccuracies as trade-offs in the 
interest of savings on the space and/or time and/or message complexity 
overheads. As enunciated by Schwarz and Mattern [2], the search for 
the holy grail of the ideal causality tracking mechanism is on. However, 
all these works in the literature assume that processes are correct.

To the best of our knowledge, there has been no work on detecting 
the causality relation between events in the presence of Byzantine 
processes in the system. It is important to solve this problem under the 
Byzantine failure model as opposed to a failure-free setting because it 
mirrors the real world.

The related problem of causal ordering of messages asks that if the 
send event of message 𝑚 happened before the send event of message 
𝑚′, then 𝑚′ should not be delivered before 𝑚 at all common destinations 
of 𝑚 and 𝑚′ [21]. Causal ordering of messages has numerous applica-
tions such as in distributed data stores, fair resource allocation, and 
collaborative applications such as social networks, multiplayer online 
gaming, group editing of documents, event notification systems, and 
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Table 1
Detecting causality between events under different communication modes. 𝐹𝑃 is false positive, 𝐹𝑁 is false negative. 𝐹𝑃𝐵 is false positive under 𝐵←←←←←←←→. 𝐹𝑁𝐵 is false negative under 
𝐵
←←←←←→. 𝐹𝑃 , 𝐹𝑃𝐵 , 𝐹𝑁𝐵 indicate that the corresponding false positives under →, false positives under 𝐵←←←←←←←→, false negatives under 𝐵←←←←←←←→ cannot occur. Next to each result, the relation between 
𝑡 (number of Byzantine processes) and 𝑛 (total number of processes) is given.
 Mode of Detecting ‘‘happened Detecting ‘‘Byzantine Detecting ‘‘happened Detecting ‘‘Byzantine  
 communication before’’ 𝑒→ 𝑒′ happened before’’ 𝑒 𝐵

←←←←←←←→ 𝑒′ before’’ 𝑒→ 𝑒′ using happened before’’ 𝑒 𝐵
←←←←←←←→ 𝑒′ 

 cryptography using cryptography  
 Unicasts Impossible, Theorem  3 Possible, Theorem  6 Impossible, Theorem  10 Possible, Theorem  12  
 𝐹𝑃 (𝑡 > 0), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 < 𝑛), 𝐹𝑁𝐵 (𝑡 < 𝑛) 𝐹𝑃 a (𝑡 < 𝑛∕3), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 < 𝑛), 𝐹𝑁𝐵 (𝑡 < 𝑛)  
 Broadcasts Impossible, Theorem  4 Possible, Theorem  7 Impossible, Theorem  11 Possible, Theorem  13  
 𝐹𝑃 (𝑡 < 𝑛∕3), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 < 𝑛), 𝐹𝑁𝐵 (𝑡 < 𝑛) 𝐹𝑃 (𝑡 < 𝑛∕3), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 < 𝑛), 𝐹𝑁𝐵 (𝑡 < 𝑛)  
 Multicasts Impossibleb,c, Theorem  5 Impossibleb, Theorem  8 Impossible, Theorem  9 Possible, Theorem  14  
 𝐹𝑃 (𝑡 > 0), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 > 0), 𝐹𝑁𝐵 (𝑡 > 0) 𝐹𝑃 a (𝑡 < 𝑛∕3), 𝐹𝑁 (𝑡 > 0) 𝐹𝑃𝐵 (𝑡 < 𝑛), 𝐹𝑁𝐵 (𝑡 < 𝑛)  
a False positive 𝐹𝑃 holds if the semantics of the message content in a message dependency matters.
b Without using cryptography, it is impossible to implement Byzantine Reliable Multicast (BRM) in multiple groups as this entails identifying the Byzantine processes to satisfy 
𝑡𝐺 < |𝐺|∕3, where 𝑡𝐺 is the number of Byzantine processes in group 𝐺.
c Even with access to a black box that implements BRM within groups, 𝐹𝑃 and 𝐹𝑁 hold.
distributed virtual environments. Causal ordering of messages under 
the Byzantine failure model has recently been examined in [22] for 
broadcast communication and in [23–28] for unicast, multicast, as well 
as broadcast communication. An algorithm for Byzantine causal order 
of broadcast messages was given in [22]; this was based on a definition 
of Byzantine causal order on broadcast messages. This definition was 
modified in several ways to account for the purest (weakest) notion 
of safety [23], and several possibility and impossibility results about 
Byzantine causal order of unicast, multicast, and broadcast messages 
were proved [23]. The algorithm in [22] is an instantiation for one of 
the many results proved in [23] on causal ordering of messages. Several 
algorithms for causal ordering of messages under varied settings and 
assumptions on the system model were given in [24–28]. In contrast, 
this paper uses a definition of Byzantine causal order on events that can 
be viewed as an adaptation of the definition in [23].

Contributions: Our main result is that it is impossible to (determin-
istically) determine the causality relation → between two events 𝑒1 and 
𝑒2 when there is even a single Byzantine process in an asynchronous 
distributed system. False negatives and/or false positives are possible. A 
false negative means that 𝑒 → 𝑒′ whereas 𝑒 ↛ 𝑒′ is perceived/detected. 
A false positive means that 𝑒 ↛ 𝑒′ whereas 𝑒 → 𝑒′ is detected. In light 
of this negative result, we investigate whether any positive result can 
be shown in a system with stronger assumptions.

• First, we introduce the Byzantine happened before relation 𝐵←←←←←←←←→, 
where 𝑒1 𝐵

←←←←←←←←→ 𝑒2 if 𝑒1 → 𝑒2 and there exists a causal path from 𝑒1
to 𝑒2 via the transitive closure of the local order of events and the 
order of message-passing send and corresponding receive events, 
going through only correct (non-Byzantine) processes. If 𝑒1 𝐵

←←←←←←←←→ 𝑒2, 
then we show that causality can be determined for unicasts and 
broadcasts but not for multicasts.

• Second, we show that even with the use of cryptography, the im-
possibility results for unicasts, multicasts, and broadcasts remain.

• Third, with the use of cryptography, we show possibility results 
for unicasts, broadcasts, and multicasts under 𝐵←←←←←←←←→.

We prove the following results for an asynchronous system with 
Byzantine processes.

1. We prove that it is impossible to determine causality between 
events in the presence of even a single Byzantine process when 
processes communicate by unicasting (Theorem  3). This is be-
cause both false positives and false negatives can occur.

2. We also prove a similar impossibility result when processes 
communicate by broadcasting (Theorem  4). In this case, false 
positives cannot occur but false negatives can occur.

3. We also prove a similar impossibility result when processes 
communicate by multicasting (Theorem  5). Both false positives 
and false negatives can occur.
2 
4. In an execution where there exists a causal path between two 
events passing through only correct processes, i.e., 𝐵←←←←←←←←→ holds be-
tween the two events, and processes communicate by unicasting, 
we prove that it is possible to detect causality between such 
a pair of events (Theorem  6). Neither false positives nor false 
negatives can occur under 𝐵←←←←←←←←→. But under the → relation, false 
positives and false negatives can occur.

5. We also prove a similar possibility result when processes com-
municate by broadcasting and there exists a causal path between 
two events passing through only correct processes, i.e., 𝐵←←←←←←←←→ holds 
between the two events (Theorem  7). Neither false positives nor 
false negatives can occur under 𝐵←←←←←←←←→. Under the → relation, false 
positives cannot occur but false negatives can occur.

6. We prove an impossibility result when processes communicate 
by multicasting and there exists a causal path between two 
events passing through only correct processes, i.e., 𝐵

←←←←←←←←→ holds 
between the two events (Theorem  8). False positives and false 
negatives may occur under 𝐵←←←←←←←←→ and under the → relation.

7. We prove that is impossible to determine causality between 
events in the presence of even a single Byzantine process when 
processes communicate by multicasting, even when crypto-
graphic techniques are used (Theorem  9). False positives do not 
occur (provided the semantics of contents of messages are not 
accounted for) but false negatives can occur.

8. We also prove that the same above impossibility result holds 
when processes communicate by unicasting despite the use of 
cryptography (Theorem  10).

9. We prove an impossibility result for broadcasts allowing the 
use of cryptography and show it is the same as that without 
cryptography (Theorem  11) — false positives do not occur but 
false negatives can occur.

10. With the use of cryptography, when there exists a causal path 
between two events passing through only correct processes, we 
prove it is possible to detect causality between such a pair of 
events, irrespective of whether the communication is by unicasts 
(Theorem  12), broadcasts (Theorem  13), or multicasts (Theorem 
14). Neither false positives nor false negatives can occur under 
𝐵
←←←←←←←←→ while no false positives but false negatives can occur under 
→.

Table  1 summarizes these results. For each result, the relationship 
between the number of Byzantine processes 𝑡 and the total number of 
processes 𝑛 is also stated. The key technical difficulty was in identifying 
and analyzing the various cases, and proving the results. An earlier 
version of this paper was published as [1]. It has been significantly en-
hanced and has added details and reworked, formal proofs. New results 
in a new Section 4.1 and on the solvability of detecting causality using 
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cryptography in a new Section 4.4 are added. A new Section 5 gives 
certain relationships between the causality determination problem in 
asynchronous systems and related problems/models.

Roadmap. Section 2 gives the system model. Section 3 formulates 
the problem of detecting causality. Section 4 proves the results out-
lined under ‘‘Contributions’’ above. Section 5 proves some relationships 
between the causality detection problem and other related problems. 
Section 6 gives a discussion and concludes.

2. System model

This paper deals with an asynchronous distributed system having 
Byzantine processes which are processes that can misbehave [29,30]. 
A correct process behaves exactly as specified by the algorithm whereas 
a Byzantine process may deviate arbitrarily from its protocol behavior. 
A Byzantine process cannot impersonate another process or spawn 
new processes. Besides distributed systems, Byzantine attacks have 
been extensively studied in many physical systems and multi-agent 
systems [31,32].

The distributed system is modeled as an undirected graph 𝐺 =
(𝑃 , 𝐶). Here 𝑃  is the set of processes communicating asynchronously 
in the distributed system. Let |𝑃 | = 𝑛. 𝐶 is the set of FIFO (logical) 
communication links over which processes communicate by message 
passing. 𝐺 is a complete graph.

The distributed system is assumed to be asynchronous, i.e., there 
is no fixed upper bound 𝛿 on the message latency, nor any fixed 
upper bound 𝜓 on the relative speeds of processors [33]. In contrast, a
synchronous system has been defined as one in which both 𝛿 and 𝜓 exist 
and are known. [33]. A partially synchronous system is an asynchronous 
system but with periods of synchrony [33].

We first do not consider the use of digital signatures/ cryptography 
in the system model because of the high cost. Then in a separate 
section we show results in a model that allows the use of digital 
signatures/cryptography.

Let 𝑒𝑥𝑖 , where 𝑥 ≥ 1, denote the 𝑥th event executed by process 
𝑝𝑖. An event may be an internal event, a message send event, or a 
message receive event. Let the state of 𝑝𝑖 after 𝑒𝑥𝑖  be denoted 𝑠𝑥𝑖 , where 
𝑥 ≥ 1, and let 𝑠0𝑖  be the initial state. The execution at 𝑝𝑖 is the sequence 
of alternating events and resulting states, as ⟨𝑠0𝑖 , 𝑒1𝑖 , 𝑠1𝑖 , 𝑒2𝑖 , 𝑠2𝑖 …⟩. The
execution history at 𝑝𝑖 is the finite execution at 𝑝𝑖 up to the current or 
most recent or specified local state. The happened before [3] relation, 
denoted →, is an irreflexive, asymmetric, and transitive partial order 
defined over events in a distributed execution that is used to define 
causality.

Definition 1.  The happened before relation → on events consists of 
the following rules:

1. Program Order: For the sequence of events ⟨𝑒1𝑖 , 𝑒2𝑖 ,…⟩ executed 
by process 𝑝𝑖, ∀ 𝑥, 𝑦 such that 𝑥 < 𝑦 we have 𝑒𝑥𝑖 → 𝑒𝑦𝑖 .

2. Message Order: If event 𝑒𝑥𝑖  is a message send event executed at 
process 𝑝𝑖 and 𝑒𝑦𝑗  is the corresponding message receive event at 
process 𝑝𝑗 , then 𝑒𝑥𝑖 → 𝑒𝑦𝑗 .

3. Transitive Order: If 𝑒 → 𝑒′ ∧ 𝑒′ → 𝑒′′ then 𝑒→ 𝑒′′.

Definition 2.  The causal past of an event 𝑒 is denoted as 𝐶𝑃 (𝑒) and 
defined as the set of events that causally precede 𝑒 under →.

We require an extension of the happened before relation on events 
to accommodate the possibility of Byzantine behavior. We present a 
partial order on messages called Byzantine happened before, denoted as 
𝐵
←←←←←←→, defined on the set of all events at correct processes in 𝑃 .

Definition 3.  The Byzantine happened before relation 𝐵←←←←←←←←→ on events 
at correct processes consists of the following rules:
3 
1. Program Order: For the sequence of events ⟨𝑒1𝑖 , 𝑒2𝑖 ,…⟩ executed 
by a correct process 𝑝𝑖, ∀ 𝑥, 𝑦 such that 𝑥 < 𝑦 we have 𝑒𝑥𝑖

𝐵
←←←←←←←←→ 𝑒𝑦𝑖 .

2. Message Order: If event 𝑒𝑥𝑖  is a message send event executed at 
correct process 𝑝𝑖 and 𝑒𝑦𝑗  is the corresponding message receive 
event at correct process 𝑝𝑗 , then 𝑒𝑥𝑖

𝐵
←←←←←←←←→ 𝑒𝑦𝑗 .

3. Transitive Order: If 𝑒 𝐵
←←←←←←←←→ 𝑒′ ∧ 𝑒′

𝐵
←←←←←←←←→ 𝑒′′ then 𝑒 𝐵

←←←←←←←←→ 𝑒′′.

When 𝑒 𝐵
←←←←←←←←→ 𝑒′, then there exists a causal chain from 𝑒 to 𝑒′ along 

correct processes that sent messages along that chain.
Note that the classic happened before relation (Definition  1) applies 

regardless of the failure model. However, as we prove, detecting it with-
out both false positives and false negatives is impossible in all system 
model settings considered under the Byzantine failure model. Hence a 
weaker variant – the Byzantine happened before relation (Definition 
3) – has been defined. A version of this definition was first defined on 
messages [22,23,25]. This definition weakens the causality property to 
make it detectable in some system model settings under the Byzantine 
failure model. In essence, the choice between the two relations is 
an application-level decision rather than an intrinsic property of the 
Byzantine failure model. Depending on the possibility of detection, the 
level of causal guarantees required, and costs, an application can select 
the appropriate relation to meet its requirements.

There are three modes of communication: multicast, unicast, and 
broadcast. In multicast, a message is sent to a group 𝐺 of processes 
corresponding to some subset of 𝑃 . A unicast is a multicast where 
|𝐺| = 1. A broadcast is a multicast where 𝐺 = 𝑃 . We specify the 
multicast definition formally, tailored for Byzantine-tolerant systems.

Definition 4.  Byzantine Reliable Multicast (BRM) to group 𝐺 satisfies 
the following properties:

1. (Validity:) If a correct process 𝑝𝑖 delivers message 𝑚 from a 
correct process 𝑠𝑒𝑛𝑑𝑒𝑟(𝑚) sent to group 𝐺, then 𝑠𝑒𝑛𝑑𝑒𝑟(𝑚) must 
have executed send(𝑚,𝐺) and 𝑝𝑖 ∈ 𝐺.

2. (Self-delivery:) If a correct process executes send(𝑚,𝐺), then it 
eventually delivers 𝑚.

3. (Reliability/Termination:) If a correct process delivers a message 
𝑚 from a possibly faulty process, then all correct processes in 𝐺
will eventually deliver 𝑚.

4. (Integrity:) For any message 𝑚, a correct process 𝑝𝑖 delivers 𝑚 at 
most once.

5. (No Information Leakage:) No process outside the group 𝐺 sees 
the content of 𝑚.

As a unicast has a single destination, the Reliability/Termination 
property of BRM does not apply to Byzantine Reliable Unicast (BRU). 
As the destination set of a broadcast is the set of all processes, the 
No Information Leakage property of BRM does not apply to Byzantine 
Reliable Broadcast (BRB).

In our analysis of causality detection under 𝐵
←←←←←←←←→, we use Byzan-

tine Causal Broadcast (BCB) with operations bco_broadcast() and 
bco_deliver(), where BCB is defined as BRB + a property BCO-
Causality based on the Byzantine happened before relation 𝐵

←←←←←←←←→ on 
messages sent by and delivered at correct processes [23,25,28], similar 
to [22].

• BCO-Causality: for messages 𝑚, 𝑚′ sent at events 𝑒, 𝑒′, respec-
tively, if 𝑒 𝐵

←←←←←←←←→ 𝑒′ then no correct process bco_delivers 𝑚′

before 𝑚.

3. Problem formulation

An algorithm to solve the causality determination problem collects 
the execution history of each process in the system and derives causal 
relations from it. Let 𝐸  denote the actual execution history at 𝑝  (which 
𝑖 𝑖
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was defined as the sequence of alternating events and resulting states) 
and let 𝐸 =

⋃

𝑖{𝐸𝑖}. (Here the range of 𝑖 is the set of process ids 
in 𝑃 ; here and subsequently the range of variables should be clear 
from context and is omitted to avoid excessive cluttering.) For any 
causality determination algorithm, let 𝐹𝑖 be the execution history at 
𝑝𝑖 as perceived and collected by the algorithm and let 𝐹 =

⋃

𝑖{𝐹𝑖}. 𝐹
thus denotes the execution history as collected by the algorithm. Let 
𝑇 (𝐸) and 𝑇 (𝐹 ) denote the sets of all events in 𝐸 and 𝐹 , respectively. 
Analogous to Definitions  1 and 3, we can define the happened before
and Byzantine happened before relations on 𝑇 (𝐹 ) instead of on 𝑇 (𝐸).

Let 𝑒1 → 𝑒2|𝐸 and 𝑒1 → 𝑒2|𝐹  be the evaluation (1 or 0) of 𝑒1 →
𝑒2 using 𝐸 and 𝐹 , respectively. Byzantine processes may corrupt the 
collection of 𝐹  to make it different from 𝐸. We assume that a correct 
process 𝑝𝑖 needs to determine whether 𝑒𝑥ℎ → 𝑒∗𝑖  holds and 𝑒∗𝑖  is an event 
in 𝑇 (𝐸). If 𝑒𝑥ℎ ∉ 𝑇 (𝐸) then 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 evaluates to false; note that 
𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 may evaluate to false even if 𝑒𝑥ℎ ∈ 𝑇 (𝐸). If 𝑒𝑥ℎ ∉ 𝑇 (𝐹 ) (or 
𝑒∗𝑖 ∉ 𝑇 (𝐹 )) then 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹  evaluates to false. We assume an oracle 
that is used for determining correctness of the causality determination 
algorithm; this oracle has access to 𝐸 which can be any execution 
history such that 𝑇 (𝐸) ⊇ 𝐶𝑃 (𝑒∗𝑖 ). Byzantine processes may collude as 
follows.

1. To delete 𝑒𝑥ℎ from 𝐹ℎ or in general, record 𝐹  as any alteration of 
𝐸 such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 0, while 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 1, or

2. To add a fake event 𝑒𝑥ℎ in 𝐹ℎ or in general, record 𝐹  as any 
alteration of 𝐸 such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 1, while 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 0.

Without loss of generality, we have that 𝑒𝑥ℎ ∈ 𝑇 (𝐸) ∪𝑇 (𝐹 ). Note that 𝑒𝑥ℎ
belongs to 𝑇 (𝐹 ) ⧵ 𝑇 (𝐸) when it is a fake event in 𝐹 .

Definition 5.  The causality determination problem 𝐶𝐷(𝐸, 𝐹 , 𝑒∗𝑖 ) for 
any event 𝑒∗𝑖 ∈ 𝑇 (𝐸) at a correct process 𝑝𝑖 is to devise an algorithm to 
collect the execution history 𝐸 as 𝐹  at 𝑝𝑖 such that 𝑣𝑎𝑙𝑖𝑑(𝐹 ) = 1, where

𝑣𝑎𝑙𝑖𝑑(𝐹 ) =
{

1 if ∀𝑒𝑥ℎ, 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹
0 otherwise

When 1 is returned, the algorithm output matches God’s truth and 
solves CD correctly. Thus, returning 1 indicates that the problem has 
been solved correctly by the algorithm using 𝐹 . 0 is returned if one of 
the following two cases holds.

• ∃𝑒𝑥ℎ such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 1 ∧ 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 0 (denoting a false 
negative, abbreviated 𝐹𝑁).

• ∃𝑒𝑥ℎ such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 0 ∧ 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 1 (denoting a false 
positive, abbreviated 𝐹𝑃 ).

In order to determine whether CD is solved correctly, we have to 
evaluate ∀𝑒𝑥ℎ, 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹  even if 𝑒𝑥ℎ ∈ (𝑇 (𝐸) ∪ 𝑇 (𝐹 )) ⧵ 𝑇 (𝐸)
because such an 𝑒𝑥ℎ is recorded by the algorithm as part of 𝐹 . We make 
the following crucial observation: in CD, a single Byzantine process 𝑝𝑏
can cause 𝐹  (as recorded by the algorithm) to be different from 𝐸. 
This is not just a mismatch between 𝐸𝑏 and 𝐹𝑏 at 𝑝𝑏 but also at other 
processes, and also a mismatch between other 𝐸𝑎 and 𝐹𝑎 at processes 
𝑝𝑐 , by contaminating 𝐹𝑏 and/or 𝐹𝑎 via direct and transitive message 
passing (across different messages) originated at or passing through 𝑝𝑏.

• A FN arises because a send-receive event pair (𝑒𝑢𝑓 , 𝑒𝑣𝑔) of 𝐸 in a 
causal chain from 𝑒𝑥ℎ to 𝑒∗𝑖  is missing as per 𝐹 . In addition, a FN 
may arise if 𝑒𝑥ℎ ∈ 𝑇 (𝐸) ⧵ 𝑇 (𝐹 ).

• A FP arises because a non-existent send-receive message pair 
(𝑒𝑢𝑓 , 𝑒

𝑣
𝑔) in 𝐸 appears in a causal chain from 𝑒𝑥ℎ to 𝑒∗𝑖  as per 𝐹 . 

In addition, a FP may arise if 𝑒𝑥ℎ ∈ 𝑇 (𝐹 ) ⧵ 𝑇 (𝐸).

Byzantine processes are an integral part of the system. The occur-
rence of an event at such a process, and its correct order with respect to 
other events locally, matters to correct processes because it can impact 
the causality relation among events at correct processes. Let 𝑝𝑐1 and 𝑝𝑐2
be correct processes and let 𝑝𝑏 be a Byzantine process. Let message 𝑚1
sent at 𝑒_𝑠𝑐1 be received at 𝑒_𝑟𝑏. Let message 𝑚2 sent at 𝑒_𝑠𝑏 be received 
at 𝑒_𝑟 . Consider the following scenarios.
𝑐2
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1. In 𝐸, we have 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑏 → 𝑒_𝑠𝑏 → 𝑒_𝑟𝑐2. If 𝐹  at the correct 
processes does not match this (specifically, 𝑒_𝑟𝑏 ↛ 𝑒_𝑠𝑏 due 
to 𝑝𝑏 lying), a causality detection algorithm fails to recognize 
𝑒_𝑠𝑐1 → 𝑒_𝑟𝑐2, resulting in a false negative.

2. In 𝐸, we have 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑏, 𝑒_𝑠𝑏 → 𝑒_𝑟𝑐2, and 𝑒_𝑠𝑏 → 𝑒_𝑟𝑏. If 𝐹  at 
the correct processes does not match this and reflects 𝑒_𝑟𝑏 → 𝑒_𝑠𝑏
(due to 𝑝𝑏 lying), a causality detection algorithm wrongly detects 
𝑒_𝑠𝑐1 → 𝑒_𝑟𝑐2, resulting in a false positive.

Or let 𝑝𝑏1 and 𝑝𝑏2 be Byzantine processes. Let message 𝑚1 sent at 𝑒_𝑠𝑐1
be received at 𝑒_𝑟𝑏1. Let message 𝑚2 sent at 𝑒_𝑠𝑏2 be received at 𝑒_𝑟𝑐2. 
Consider the following scenarios.

1. In 𝐸, we have 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑏1 → 𝑒_𝑠𝑏1 → 𝑒_𝑟𝑏2 → 𝑒_𝑠𝑏2 → 𝑒_𝑟𝑐2. If 
𝐹  at the correct processes does not match this (specifically, 𝑒_𝑠𝑏1
and 𝑒_𝑟𝑏2 are not revealed due to 𝑝𝑏1 and 𝑝𝑏2 lying), a causality 
detection algorithm fails to recognize 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑐2, resulting in 
a false negative.

2. In 𝐸, we have 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑏1, 𝑒_𝑠𝑏2 → 𝑒_𝑟𝑐2. If 𝐹  at the correct 
processes does not match this and reflects 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑏1 →
𝑒_𝑠𝑏1 → 𝑒_𝑟𝑏2 → 𝑒_𝑠𝑏2 → 𝑒_𝑟𝑐2 (due to 𝑝𝑏1 and 𝑝𝑏2 lying), 
a causality detection algorithm wrongly detects 𝑒_𝑠𝑐1 → 𝑒_𝑟𝑐2, 
resulting in a false positive.

Therefore it not sufficient for the correct processes to agree mutually 
on a 𝐹  that differs from 𝐸 in what happened in 𝐸 at the Byzantine 
processes; their 𝐹𝑗 must also agree with 𝐸𝑗 at all processes 𝑝𝑗 .

4. Impossibility and possibility results

4.1. Two basic results

Theorem 1.  It is impossible to prevent false negatives in solving the causal-
ity determination problem (Definition  5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in 
an asynchronous unicast/multicast/broadcast-based message passing system 
with one or more Byzantine processes.

Proof.  In the determination of 𝑒𝑥ℎ → 𝑒∗𝑖 , a false negative may arise 
when a send-receive event pair (𝑒𝑢𝑓 , 𝑒𝑣𝑔) in a causal chain from 𝑒𝑥ℎ to 
𝑒∗𝑖  is missing as per 𝐹 . The causal chain has the following subsequence: 
⟨⋯ 𝑒𝑢𝑓 , 𝑒

𝑣
𝑔 , 𝑒

𝑣′
𝑔 ⋯⟩, where 𝑒𝑣′𝑔  is a send event at 𝑝𝑔 . Both 𝑒𝑣𝑔 and 𝑒𝑣

′
𝑔  are local 

to 𝑝𝑔 . A Byzantine 𝑝𝑔 can suppress letting the rest of the system know 
of the occurrence of 𝑒𝑣𝑔 or swap the order of occurrence of 𝑒𝑣𝑔 and 𝑒𝑣

′
𝑔

in what it lets the rest of the system know about the occurrence of the 
two local events. Both actions have the effect of breaking the causality 
chain from 𝑒𝑥ℎ to 𝑒∗𝑖  which can give rise to a false negative. □

Another reason why false negatives cannot be prevented is that a 
Byzantine process pair may collude in performing out-of-band commu-
nication with each other. Such an out-of-band send-receive event pair 
(𝑒𝑢𝑓 , 𝑒

𝑣
𝑔) does establish a causal chain from 𝑒𝑥ℎ to 𝑒∗𝑖  by the composition 

of 𝑒𝑥ℎ → 𝑒𝑢𝑓 , 𝑒𝑢𝑓 → 𝑒𝑣𝑔 , and 𝑒𝑣𝑔 → 𝑒∗𝑖 , that is missing as per 𝐹  because 
𝑒𝑢𝑓 → 𝑒𝑣𝑔 is not recorded by the algorithm — it is not detectable outside 
the subsystem of the Byzantine processes if they choose not to disclose 
it.

We also have the following result about internal events at a process.

Theorem 2.  For an internal event 𝑒𝑥ℎ, it is impossible to prevent false 
negatives or false positives in determining 𝑒𝑥ℎ → 𝑒∗𝑖  at a correct process 𝑝𝑖
in an asynchronous message passing system with one or more Byzantine 
processes.

Proof.  There may be no other event in the rest of the system to cor-
roborate the occurrence of an internal event at a process. A Byzantine 
process 𝑝ℎ can choose to not reveal about an internal event 𝑒𝑥ℎ to the 
rest of the system, leading to a false negative that cannot be prevented. 
It may also choose to add a fake internal event 𝑒𝑥ℎ in what it reveals 
to the rest of the system, leading to a false positive that cannot be 
prevented. □
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In light of Theorem  2, we implicitly prove our impossibility or 
possibility results on the CD problem considering only send and receive 
events in 𝐸 and 𝐹 .

4.2. Results for ‘‘happened before’’

A main contribution in our results is relating the causality determi-
nation problem to the well-known Consensus problem [29,30]. In the
Consensus problem, each process has an initial value and all correct 
processes must agree on a single value. The solution needs to satisfy 
the following three conditions.1

• Agreement: All non-faulty processes must agree on the same 
single value.

• Validity: If all non-faulty processes have the same initial value, 
then the agreed-on value by all the non-faulty processes must be 
that same value.

• Termination: Each non-faulty process must eventually decide on 
a value.

According to the FLP impossibility result [35], it is impossible to solve
Consensus in an asynchronous message-passing system with even a 
single crash failure prone process. We show a reduction from Consensus
to CD in Byzantine systems to prove the impossibility of solving CD in 
a system with Byzantine failures. This proves that CD is at least as hard 
as Consensus in Byzantine systems. Of related but orthogonal interest, 
we also later show that CD does not reduce to Consensus in a Byzantine 
system, i.e., a solution to Consensus cannot be used to solve CD in such 
a system, thus establishing that CD is harder to solve than Consensus.

Theorem 3.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous unicast-based message 
passing system with one or more Byzantine processes.

Proof.  We prove the impossibility of solving the CD problem in two 
steps.

1. We give a reduction (denoted ⪯) from Black_Box to CD, where
Black_Box is defined below.

2. We also give a reduction from the Consensus problem (which 
by the FLP result [35] is unsolvable in the presence of a single 
Byzantine process) to the Black_Box problem.

We then transitively compose these two reductions. In more detail, after 
showing how Consensus can be solved by invoking a black box that 
solves Black_Box, and how Black_Box can be solved by solving CD, we 
argue as follows. If CD were solvable, Black_Box would be solvable, and 
then Consensus would also be solvable; however, that contradicts the 
unsolvability of Consensus. Therefore, there cannot exist any algorithm 
to solve CD.

The definition of the Black_Box problem is as follows.
Black_Box(𝑉 ,𝐸, 𝐹 , 𝑒∗𝑖 ) executed at 𝑝𝑖 takes as input a vector 𝑉  of initial 
boolean values, one per process, 𝐸, 𝐹 , and local event 𝑒∗𝑖  at a process 
𝑝𝑖. Black_Box invoked at 𝑝𝑖 acts as follows. The correct process 𝑝𝑖
broadcasts the value 𝑤 where:

𝑤 =

⎧

⎪

⎨

⎪

⎩

0 if each correct 𝑝𝑗 has 𝑉 [𝑗] = 0
1 if each correct 𝑝𝑗 has 𝑉 [𝑗] = 1
𝐶𝐷(𝐸, 𝐹 , 𝑒∗𝑖 ) otherwise

and locally returns 𝐿, a list of ids of correct processes. Solving Black_Box
requires identifying the set of correct processes; we do not claim
Black_Box is solvable.

1 In some literature, Conservation, which requires the sum of the initial 
values to equal the sum of the final values, is co-specified [34]. However, in 
general Consensus is independent of Conservation.
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Solving Black_Box at 𝑝𝑖 requires identifying the set of correct pro-
cesses and solving 𝐶𝐷. In order for any algorithm to correctly solve
CD (Definition  5), it must ensure that the collected execution history 
𝐹  (containing execution histories of potentially Byzantine processes) 
matches 𝐸, and this requires identifying all Byzantine processes as we 
prove next. From this it will follow that Black_Box ⪯ CD.

For 𝐹  to match 𝐸, the following must hold.
• (Managing false positives:) A Byzantine process may attempt to 
insert a fake entry in 𝐹ℎ (based on a fake send-receive event 
pair) and contaminate the reporting of histories in 𝐹 , leading 
to a false positive. Therefore, there needs to be a mechanism 
to prevent contamination of 𝐹  or filter out the malicious en-
tries from 𝐹  within bounded time. However, due to unicasting, 
message privacy needs to be maintained. Note that we are not 
considering the use of cryptography. Hence a message send event 
in 𝐹ℎ from a potentially Byzantine 𝑝ℎ to a potentially Byzantine 𝑝𝑔
cannot be verified within bounded time by other processes while 
collecting the reported execution history as the message itself 
cannot be broadcast or communicated to any process other than 
𝑝𝑔 to maintain its privacy. No bound on the time period exists 
because 𝑝ℎ may be Byzantine and because there is no upper bound 
on the message latency. (After event 𝑒∗𝑖 , process 𝑝𝑖 can try to 
verify with 𝑝ℎ whether the entry in 𝐹ℎ is genuine or fake but this 
may not conclude in bounded time; if treated as genuine, a fake 
send-receive event pair introduces a false positive and if treated 
as fake, a genuine send-receive event pair introduces a false 
negative. Furthermore, if both 𝑝ℎ and 𝑝𝑔 are Byzantine, a fake 
event in 𝐹ℎ can appear as genuine to 𝑝𝑖 despite any verification 
attempts.) Therefore identification of Byzantine processes, their 
actual execution histories, and causal chains from and through 
them is required.

• (Managing false negatives:) Consider a message 𝑚 sent at 𝑒𝑥ℎ from 
𝑝ℎ to 𝑝𝑔 in 𝐸ℎ. During the collection of 𝐸ℎ to 𝑝𝑖 for reporting 𝐹ℎ, 
Byzantine processes may delete information about 𝑒𝑥ℎ and 𝑚 from 
𝐹ℎ, leading to a false negative when 𝑒𝑥ℎ → 𝑒∗𝑖 . Further by Theorem 
1, a false negative may occur if the receive event of 𝑚 by 𝑝𝑔 is 
not disclosed to the rest of the system by a Byzantine 𝑝𝑔 or if 
the receive event is swapped after a subsequent send event by 𝑝𝑔
that is part of the causality chain 𝑒𝑥ℎ → 𝑒∗𝑖 , in what 𝑝𝑔 discloses 
to the rest of the system thereby breaking the causality chain of 
𝐸 in 𝐹 . Therefore, either deletion of information from 𝐸 in 𝐹  or 
alteration of 𝐸 in 𝐹  has to be prevented, or such deletions and 
alterations from 𝐸 when presented with 𝐹  have to be recognized 
within bounded time. This requires identification of the Byzantine 
processes, their actual execution histories, and causal chains from 
and through them.

If there were an algorithm to make 𝐹  match 𝐸, it requires identifying 
whether each of the processes that input their execution histories is correct 
or Byzantine, and tracing and dealing with/resolving the impact of contam-
ination via message passing by the Byzantine processes from and through 
those Byzantine processes on the execution histories of processes at other 
processes. Thus, Black_Box ⪯ CD.

Now we give the reduction from Consensus to Black_Box. To solve
Consensus(𝑉 ) at (a correct process) 𝑝𝑖, we invoke Black_Box(𝑉 ,𝐸, 𝐹 , 𝑒∗𝑖 )
locally (and likewise to solve Consensus(𝑉 ) at (each process) 𝑝𝑗 , in-
voke Black_Box(𝑉 ,𝐸, 𝐹 , 𝑒∗𝑗 ) at each 𝑝𝑗). Each correct process computes 
min(𝐿) from the locally returned list 𝐿 and outputs as its consensus 
value the broadcast value that it receives from 𝑝min(𝐿) and terminates. 
The conditions of Consensus – Agreement, Validity, and Termination – 
can be seen to be satisfied. So Consensus ⪯ Black_Box.

If CD is (correctly) solvable, it returns 1 for ∀𝑒𝑥ℎ, 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 𝑒𝑥ℎ →

𝑒∗𝑖 |𝐹 , (and implicitly for all 𝑒∗𝑖 ). This gives:
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 ⪯ 𝐵𝑙𝑎𝑐𝑘_𝐵𝑜𝑥 ⪯ 𝐶𝐷.
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Transitivity of reductions implies that if the CD problem is solvable, 
then Consensus is also solvable. However, that contradicts the FLP 
impossibility result [35] when applied to a Byzantine system, hence
CD cannot be solvable. □

When the communication pattern is by broadcasts, the proof ana-
lyzing the CD problem uses Byzantine Reliable Broadcast (BRB) [36,37] 
as a layer beneath the broadcast invocation. Without loss of generality, 
this proof considers the strongest form of broadcast that gives the 
highest resilience to Byzantine behavior, namely BRB. BRB requires 
that the number of Byzantine processes 𝑡 be such that 𝑛 > 3𝑡. BRB 
is an instantiation of Definition  4 having 𝐺 = 𝑃  and without the No 
Information Leakage Property, and satisfies the following properties.

• Validity: If a correct process delivers a message 𝑚 from a correct 
process 𝑝𝑠, then 𝑝𝑠 must have executed broadcast(𝑚).

• Self-delivery: If a correct process executes broadcast(𝑚), then it 
eventually executes deliver(𝑚).

• Integrity: For any message 𝑚, a correct process executes
deliver(𝑚) at most once.

• Reliability (or Termination): If a correct process executes
deliver(𝑚), then every other correct process also (eventually) 
executes deliver(𝑚).

Theorem 4.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous broadcast-based message 
passing system with one or more Byzantine processes.

Proof.  The overall structure of the proof is along the lines of that for 
Theorem  3. We outline the logic that CD (Definition  5) cannot be solved 
for when the underlying send events are broadcasts. Specifically, we 
show that 𝐹  cannot be made to match 𝐸.

• (Managing false positives:) By doing broadcasts using the Byzantine 
Reliable Broadcast (BRB) [36,37] layer, false positives can be 
prevented by ensuring no fake events/ causal dependencies are 
added to 𝐹 . Consider the case that a Byzantine process 𝑝𝑏 attempts 
to insert a fake entry about broadcast of 𝑚 by 𝑝ℎ in 𝐹ℎ (whether 
ℎ = 𝑏 or ℎ ≠ 𝑏) at a correct process 𝑝𝑔 via a message 𝑚′ sent to 
𝑝𝑔 . As broadcasts are sent over the underlying BRB, 𝑝𝑔 can verify 
whether or not this insertion is valid — based on the Reliability 
(or Termination) property of BRB, 𝑚 must get delivered by the 
BRB layer at all correct processes including 𝑝𝑔 if the insertion is 
valid. Only if 𝑚 is delivered to 𝑝𝑔 is authenticity of 𝑚 verified 
and the entry about 𝑚 can be inserted in 𝐹ℎ. Now in particular, 
𝑝𝑔 may be 𝑝𝑖 because it is correct. Therefore, correct processes 
including 𝑝𝑖 have a mechanism to prevent fake send events (and 
their corresponding fake receive events) from being inserted in 𝐹 , 
ensuring no false positives.
A fake receive event 𝑟ℎ for message 𝑚 cannot be inserted in 𝐹ℎ at 
𝑝𝑔 , using the mechanism outlined next. 𝑟ℎ is included as a causal 
dependency on the next broadcast by 𝑝ℎ and only on the receipt of 
such a broadcast by 𝑝𝑔 is 𝑝𝑔 allowed to include 𝑟ℎ in 𝐹ℎ at 𝑝𝑔 . This 
inclusion is done only if the send event of 𝑚 can be verified by 𝑝𝑔
using BRB. 𝑝ℎ could learn of 𝑟ℎ by receiving 𝑚 (or information of 
𝑚 from a colluding Byzantine 𝑝𝑘 that has received 𝑚). If multiple 
identical 𝑟ℎ are reported to 𝑝𝑔 , the first is included in 𝐹ℎ.

• (Managing false negatives:) However, a Byzantine process 𝑝𝑔 can 
delete from 𝐹𝑔 information about a broadcast of 𝑚 by 𝑝ℎ at 𝑒𝑥ℎ
that it has received, despite doing broadcasts using the BRB layer. 
Even if 𝑒𝑥ℎ → 𝑒∗𝑖  where the causality chain passes through a 
message broadcast event subsequently at 𝑝𝑔 after receiving 𝑚, 𝑝𝑖
has no way of knowing about this chain or about the receive event 
of 𝑚 at 𝑝𝑔 if 𝑝𝑔 so chooses. Further by Theorem  1, a false negative 
may occur if the receive event of 𝑚 by 𝑝𝑔 is not disclosed to the 
rest of the system by a Byzantine 𝑝𝑔 or if the receive event is 
swapped after a subsequent broadcast event by 𝑝  that is part of 
𝑔
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the causality chain 𝑒𝑥ℎ → 𝑒∗𝑖 , in what 𝑝𝑔 discloses to the rest of the 
system thereby breaking the causality chain of 𝐸 in 𝐹 . To prevent 
such false negatives, Byzantine processes, their actual execution 
histories, and causal chains from and through such processes need 
to be identified.
Note that in the bullet above regarding prevention of false posi-
tives, if 𝑚 is not delivered to 𝑝𝑔 within the time to report 𝐹 , the 
entry about sending of 𝑚 is not added to 𝐹ℎ even though 𝑚 might 
have been sent. However the message 𝑚′ carrying information 
about sending of 𝑚 is considered received/delivered, and hence 
𝑒𝑥ℎ → 𝑒∗𝑖 . So this scenario contributes to a false negative.

Thus, to solve CD, it is necessary to identify Byzantine processes, their 
actual execution histories, and causal chains from and through them. So 
we have Black_Box ⪯ CD and, as Consensus ⪯ Black_Box, hence Consensus
⪯ CD. As Consensus is unsolvable in a system with Byzantine processes,
CD is also unsolvable. □

When processes communicate by multicasting, each send event 
sends a message to a group 𝐺 consisting of processes in a subset of 
𝑃 . Different send events can send to different subsets of processes in 𝑃 . 
The number of possible groups is 2|𝑃 | − 1. Communicating via unicasts 
and communicating via broadcasts are special cases of multicasting.

Theorem 5.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous multicast-based message 
passing system with one or more Byzantine processes.

Proof.  Unicast mode of communication is a special case of multicast 
where each group is of size 1 (or 2 if the sender is included in the 
multicast group). Theorem  3 proved that causality determination in the 
presence of even a single Byzantine process under unicast communica-
tion is impossible to solve. As the special case of group size 1 (or 2) is 
not solvable, the general case of multicast is also not solvable. □

4.3. Results for ‘‘Byzantine happened before’’

The CD problem (Definition  5) defined in terms of the → relation 
is now redefined in terms of the 𝐵←←←←←←←←→ relation for the correctness criteria 
for causality determination.

From Definition  3, we have that 𝑒 𝐵
←←←←←←←←→ 𝑒′ is equivalent to (𝑒 → 𝑒′ ∧

there is a causal path from event 𝑒 to event 𝑒′ going through correct processes 
in the execution). We define 𝑒 𝐵

←←←←←←←←→ 𝑒′|𝐸 and 𝑒
𝐵
←←←←←←←←→ 𝑒′|𝐹  as follows. 𝑒

𝐵
←←←←←←←←→ 𝑒′|𝐸

is defined as (𝑒 → 𝑒′|𝐸 ∧ there is a causal path from 𝑒 to 𝑒′ going through 
correct processes in the execution). 𝑒 𝐵

←←←←←←←←→ 𝑒′|𝐹  is defined as (𝑒 → 𝑒′|𝐹 ∧
there is a causal path from 𝑒 to 𝑒′ going through correct processes in the 
execution). Note that evaluating 𝑒 𝐵

←←←←←←←←→ 𝑒′|𝐹  does not involve determining 
whether there actually exists the causal path going through correct 
processes; also the process at which 𝑒′ occurs does not know that the 
process at which 𝑒 occurs is correct.

Definition 6.  The causality determination problem 𝐶𝐷_𝐵(𝐸, 𝐹 , 𝑒∗𝑖 ) for 
any event 𝑒∗𝑖 ∈ 𝑇 (𝐸) at a correct process 𝑝𝑖 is to devise an algorithm 
to collect the execution history 𝐸 as 𝐹  at 𝑝𝑖 such that 𝑣𝑎𝑙𝑖𝑑_𝐵(𝐹 ) = 1, 
where

𝑣𝑎𝑙𝑖𝑑_𝐵(𝐹 ) =
{

1 if ∀𝑒𝑥ℎ, 𝑒𝑥ℎ
𝐵
←←←←←←←←→ 𝑒∗𝑖 |𝐸 = 𝑒𝑥ℎ

𝐵
←←←←←←←←→ 𝑒∗𝑖 |𝐹

0 otherwise

The problem is solved correctly iff 1 is returned. Value 0 is returned 
if one of the following two cases holds.

• ∃𝑒𝑥ℎ such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 1 ∧ 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 0∧ there exists a causal 
path from 𝑒𝑥ℎ to 𝑒∗𝑖  going through correct processes (denoting a false 
negative under 𝐵←←←←←←←←→, abbreviated 𝐹𝑁 ).
𝐵
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• ∃𝑒𝑥ℎ such that 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 = 0 ∧ 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹 = 1∧ there exists a causal 
path from 𝑒𝑥ℎ to 𝑒∗𝑖  going through correct processes (denoting a false 
positive under 𝐵←←←←←←←←→, abbreviated 𝐹𝑃𝐵). This case cannot occur as 
the first and third terms cannot both be true. Hence 𝐹𝑃𝐵 cannot 
occur.

Theorem 6.  It is possible to solve causality determination (Definition  6) 
as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, in 
an asynchronous unicast-based message passing system with one or more 
Byzantine processes.

Proof.  A process sends a unicast via a point-to-point message, satisfy-
ing the properties of BRU.

• (Managing false positives:) Let each process 𝑝𝑗 be responsible for 
adding its local history in the 𝐹𝑗 at other processes. This can 
be achieved by doing a broadcast, simulated as point-to-point 
messages, after an application unicast send event, of control in-
formation about the application unicast send event’s ID and other 
local (internal and receive) events’ IDs since the previous such 
simulated broadcast. The local histories of the correct processes 
will be correctly recorded in 𝐹  at 𝑝𝑖; no Byzantine processes can 
cause deletion of or addition to this information. Thus, if there 
are no Byzantine processes along some causal path from 𝑒𝑥ℎ to 
𝑒∗𝑖 , 𝑒𝑥ℎ

𝐵
←←←←←←←←→ 𝑒∗𝑖  will be correctly detected at 𝑝𝑖. Thus, false positives 

under 𝐵←←←←←←←←→ can be prevented and hence 𝐹𝑃𝐵 .
• (Managing false negatives:) Consider a message 𝑚 from correct 
process 𝑝ℎ to 𝑝𝑔 sent at 𝑒𝑥ℎ in 𝐸ℎ. During the collection of 𝐸ℎ
to 𝑝𝑖 for reporting 𝐹ℎ, if there are no Byzantine processes along 
some causal path from 𝑒𝑥ℎ to 𝑒∗𝑖 , it is possible to ensure by faithful 
propagation of causal dependency information along that path 
that no Byzantine processes can cause deletion of information 
about 𝑒𝑥ℎ from 𝐹ℎ or about other events in 𝐹  that can negate 
𝑒𝑥ℎ

𝐵
←←←←←←←←→ 𝑒∗𝑖 . Thus, false negatives under 

𝐵
←←←←←←←←→ can be prevented and 

hence 𝐹𝑁𝐵 .

The theorem follows. □

Theorem 7.  It is possible to solve causality determination (Definition  6) 
as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, in 
an asynchronous broadcast-based message passing system with one or more 
Byzantine processes.

Proof.  The proof structure is similar to that of Theorems  4, 6. Similar 
to Theorem  4, we assume that a broadcast is sent via BRB. We outline 
the logic that CD_B (Definition  6 with → replaced by 𝐵←←←←←←←←→) can be solved 
when the underlying send events are broadcasts.

• (Managing false positives:) False positives cannot occur. Same rea-
soning as in the first bullet in Theorem  4 (thus 𝐹𝑃  holds and it 
implies 𝐹𝑃𝐵) or similar to that in the first bullet of Theorem  6. 
In fact, by the second bullet after Definition  6, 𝐹𝑃𝐵 .

• (Managing false negatives:) False negatives cannot occur. Similar 
reasoning as in the second bullet of Theorem  6. Let a message 𝑚
be broadcast at 𝑒𝑥ℎ. During the collection of 𝐸ℎ to 𝑝𝑖 for reporting 
𝐹ℎ, if 𝑒𝑥ℎ

𝐵
←←←←←←←←→ 𝑒∗𝑖  there are no Byzantine processes along some causal 

path from 𝑒𝑥ℎ to 𝑒∗𝑖 , hence it is possible to ensure that no Byzantine 
process can cause deletion of information of 𝑒𝑥ℎ from 𝐹ℎ or of other 
events in 𝐹  that can negate 𝑒𝑥ℎ

𝐵
←←←←←←←←→ 𝑒∗𝑖 . Both 𝐹𝑁𝐵 and 𝐹𝑁 hold. □

It follows that to solve CD_B under unicasts and broadcasts, it is not 
necessary to identify whether each process is Byzantine. As a result,
Black_Box  CD_B and hence Consensus  CD_B.

Although Theorems  6, 7 are positive results, in practice it is not 
possible to know whether the 𝐵

←←←←←←←←→ relation holds between 𝑒𝑥 and 𝑒∗
ℎ 𝑖
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because knowing it requires identifying each process as being either 
Byzantine or non-Byzantine. All it can be used for is to guarantee that if 
the 𝐵←←←←←←←←→ relation holds, then it is possible to determine causality between 
the corresponding two events.

Theorem 8.  It is impossible to solve causality determination (Definition  6) 
as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, in 
an asynchronous multicast-based message passing system with one or more 
Byzantine processes.

Proof.  The properties of BRM cannot be satisfied without doing 
BRB within multicast group 𝐺, where 𝑡𝐺 < |𝐺|∕3 and 𝑡𝐺 is the 
number of Byzantine processes within group 𝐺. However to satisfy 
this condition for (multiple) groups implicitly requires identifying the 
Byzantine processes, which is not possible. Therefore, since BRM is 
impossible to achieve (without cryptography), detecting causality over 
Byzantine Reliable Multicast is also impossible to achieve. Hence we 
say technically that false positives and false negatives can occur under 
𝐵
←←←←←←→, even though, by definition, false positives cannot occur as discussed 
earlier.

However, if a multicast is done via point-to-point messages, without 
satisfying BRM properties, then 𝐹𝑃𝐵 and 𝐹𝑁𝐵 can be prevented based 
on Theorem  6. □

Section 4.3.2 gives an algorithm for 𝐹𝑃𝐵 and 𝐹𝑁𝐵 for unicasts 
satisfying BRU and for multicasts without satisfying BRM.

4.3.1. Algorithm outline for CD_B of Byzantine happened before under 
broadcasts

Each process 𝑝𝑖 maintains 𝐹𝑧(∀𝑧) in which it tracks 𝑝𝑧’s execution 
history. The goal is to make 𝐹𝑧 match 𝐸𝑧 for correct 𝑝𝑧, at each 𝑝𝑖.

• Byzantine Causal Broadcast (BCB) [22] defined using the 𝐵←←←←←←←←→ rela-
tion on messages sent by correct processes [23,25,28], is run over 
Byzantine Reliable Broadcast (BRB) [36,37]. The 𝑎th broadcast 
by 𝑝𝑖 of message 𝑚 is denoted (𝑚, 𝑖, 𝑎) and is done by invoking 
BCB(𝑚, 𝑖, 𝑎, 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡) where 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 is the local incremental history 
since its last broadcast (𝑎−1). For the delivery event of a message 
𝑚′ in 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡, 𝑝𝑖 also includes entry (𝑚′, 𝑗, 𝑏), where 𝑚′ was deliv-
ered locally by the BCB layer at 𝑝𝑖 and it was the 𝑏th broadcast 
by 𝑝𝑗 .

• When 𝑝𝑘 BCB-delivers message (𝑚, 𝑖, 𝑎, 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡), 𝑝𝑘 verifies
whether each (𝑚′, 𝑗, 𝑏) corresponding to a delivery event in the 
received 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 has already been locally BCB-delivered. It should 
have been delivered by the causal order property of the BCB layer 
via a previously executed BCB-deliver, if it is not a fake entry in 
𝑖𝑛𝑐_ℎ𝑖𝑠𝑡; if it has not been BCB-delivered locally, 𝑝𝑖 is a Byzantine 
process trying to enter a fake entry (about a receive event of 
message (𝑚′, 𝑗, 𝑏)) which is to be ignored. This prevents false 
positives. (Any event executed by a Byzantine 𝑝𝑖 can be ignored 
because it is not considered by the definition of 𝐵←←←←←←←←→.) For each 
(𝑚′, 𝑗, 𝑏) that has been BCB-delivered locally the corresponding 
receive/deliver event at 𝑝𝑖 and internal events at 𝑝𝑖 up to the send 
event for (𝑚, 𝑖, 𝑎) in 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 at 𝑝𝑖 and the send event for (𝑚, 𝑖, 𝑎) are 
inserted in 𝐹𝑖 at 𝑝𝑘. Note that the BCB layer delivers a message 
(𝑚, 𝑖, 𝑎, 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡) only when all the causal dependencies in its causal 
barrier have been BCB-delivered (as they must be delivered by the 
BRB layer at 𝑝𝑘 if they are not fake) but 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 sent by 𝑝𝑖 may 
contain a fake entry about an older delivery event for (𝑚′, 𝑗, 𝑏) that 
has dropped out of the causal barrier [22]. Hence this verification 
by 𝑝𝑘 is done.

• False negatives while determining 𝑒𝑥ℎ
𝐵
←←←←←←←←→ 𝑒∗𝑖  at 𝑝𝑖 cannot occur as 

Byzantine processes cannot modify/delete events from the causal 
histories reported by correct processes via broadcasting.
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The above logic can be seen to be correct due to the properties of 
the BRB layer, on top of which the BCB layer is run and invoked while 
doing an application-layer broadcast. We now have that for a correct 
process 𝑝𝑖:

𝑒𝑥ℎ
𝐵
←←←←←←←←→ 𝑒∗𝑖 ⟺ 𝑒𝑥ℎ exists in 𝐹ℎ at 𝑝𝑖.

Additionally, 𝑒𝑥ℎ in 𝐹ℎ at 𝑝𝑖 implies 𝑒𝑥ℎ → 𝑒∗𝑖  when 𝑒𝑥ℎ is a send or 
receive event. This is because a Byzantine process 𝑝𝑏 cannot insert fake 
send and receive events 𝑒𝑦𝑏 in 𝐹𝑏 at a correct process 𝑝𝑖 (follows from 
Theorem  4). Note that a Byzantine process can delete an actual internal 
event as well as insert a fake internal event (follows from Theorem  2).

4.3.2. Algorithm outline for CD_B of Byzantine happened before under 
unicasts (and under multicasts without satisfying BRM)

Unicasts are sent point-to-point, satisfying BRU. (Multicasts are sent 
point-to-point without satisfying BRM.) After sending the unicast/mul-
ticast, the sender does BCB(𝑒𝑥ℎ_𝑖𝑑, 𝑖, 𝑎, 𝐺, 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡) over BRB of control 
information only. The BCB over BRB is like in Section 4.3.1; however 
(a) the event identifier 𝑒𝑥ℎ_𝑖𝑑 of the send event is used instead of the 
message 𝑚 that was sent via BRB to 𝐺, (b) 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 also specifies event 
identifiers, not actual events or messages, and (c) for the receive event 
ID 𝑒𝑧𝑖 _𝑖𝑑 in 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡, the event ID of the corresponding send event 𝑒𝑤𝑗  is 
used as (𝑒𝑤𝑗 _𝑖𝑑, 𝑗, 𝑏). On BCB-delivery of (𝑒𝑥ℎ_𝑖𝑑, 𝑖, 𝑎, 𝐺, 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡) at 𝑝𝑘, 𝑝𝑘
inserts 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡 in 𝐹𝑖 at 𝑝𝑘; each process 𝑝𝑖 is responsible for including 
its 𝑖𝑛𝑐_ℎ𝑖𝑠𝑡s in 𝐹𝑖 at each other process.

If there exists a causal path 𝑒𝑥ℎ
𝐵
←←←←←←←←→ 𝑒∗𝑖  through correct processes, there 

will be no false positive under 𝐵←←←←←←←←→ detected at 𝑝𝑖. Similarly, there will be 
no false negative under 𝐵←←←←←←←←→ as correct processes along the path would 
have caused the insertion of the actual local histories in 𝐹  at 𝑝𝑖. Thus 
𝐹𝑃𝐵 and 𝐹𝑁𝐵 .

If the BCB over BRB is replaced by a regular (point-to-point) broad-
cast, still 𝐹𝑃𝐵 and 𝐹𝑁𝐵 once the broadcasts by the correct processes 
are delivered; here 𝑡 < 𝑛 instead of 𝑡 < 𝑛∕3 as required by BRB.

4.4. Results for ‘‘happened before’’ allowing cryptography

4.4.1. Use of group encryption

Theorem 9.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous multicast-based message 
passing system with one or more Byzantine processes even when using 
cryptography.

Proof.  The proof structure is similar to that for Theorem  3 but 
combines elements from Theorem  4. We outline the logic that CD
(Definition  5) cannot be solved for when the underlying send events are 
multicasts. In particular, we show that the collected execution history 
𝐹  cannot be made to match 𝐸.

A send-receive dependency induced by a multicast send event 𝑒𝑥ℎ by 
𝑝ℎ when it sends message 𝑚 to multicast group 𝐺 needs to be verified 
by other processes before insertion in 𝐹ℎ while not disclosing contents 
of 𝑚 to processes outside 𝐺 for confidentiality. So the ciphertext 𝐶𝑚 of 
𝑚 signed by the group key 𝐾𝐺 is created (to maintain confidentiality) 
and sent via Byzantine Reliable Broadcast (BRB) so that other processes 
can verify that the message was indeed sent. It is assumed that each 
multicast group shares a unique symmetric key for encryption and 
decryption of messages intended for processes in that group. (𝐺,𝐶𝑚) are 
the parameters of a BRB broadcast. On arrival of (𝐺,𝐶𝑚) at 𝑝𝑏, there are 
2 cases.

1. 𝑝𝑏 ∈ 𝐺: 𝑝𝑏 decrypts 𝐶𝑚 using the group key 𝐾𝐺. (a) If the 
decrypted 𝑚 is valid (and 𝑝𝑏 is non-Byzantine), a receive event 
𝑒𝑦𝑏 occurs and 𝑝𝑏 can include the send event 𝑒𝑥ℎ and receive event 
𝑒𝑦𝑏 of 𝐶𝑚 (in the form of control information, ⟨𝑒𝑥ℎ, 𝑒

𝑦
𝑏 , (𝐺,𝐶𝑚)⟩) on 

the next message it sends to help build causal chains. (b) If 𝐶  is 
𝑚
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encrypted by a group key other than that for 𝐺 (by a Byzantine 
sender 𝑝ℎ) and hence the decrypted 𝑚 is garbage, a correct 𝑝𝑏
ignores it, but a Byzantine 𝑝𝑏 may still include the send event 
of 𝑚 (i.e., of 𝐶𝑚) on a later message 𝑚′ (i.e., 𝐶𝑚′ ) it sends. We 
treat the dependency of 𝐶𝑚 preceding 𝐶𝑚′  at 𝑝𝑏 as valid or true 
if we ignore the semantics of the content of 𝑚 which is private 
to the sender 𝑝ℎ of 𝑚 and members of 𝐺. (If the semantics of the 
message matters, this is a fake dependency being introduced by 
𝑝𝑏.) This dependency is never valid and a non-Byzantine 𝑝𝑏 will 
never include this dependency.

2. 𝑝𝑏 ∉ 𝐺: (a) If 𝑝𝑏 is correct, there is no receive event at the 
application and 𝑝𝑏 does not include the send event of 𝐶𝑚 on any 
later message. (b) A Byzantine 𝑝𝑏 may include the send event of 
𝐶𝑚 on a later message 𝑚′ it sends in order to introduce a fake 
causal dependency of 𝐶𝑚 preceding 𝐶𝑚′  but as other (correct) 
processes learn via the BRB of (𝐺,𝐶𝑚) that 𝑝𝑏 ∉ 𝐺, they will not 
be tricked into adding this fake dependency of 𝐶𝑚 before 𝐶𝑚′ . (c) 
If both sender 𝑝ℎ and receiver 𝑝𝑏 are Byzantine and 𝑝ℎ shared 
the group key with 𝑝𝑏 even though 𝑝𝑏 ∉ 𝐺, 𝐶𝑚 is decryptable 
by 𝑝𝑏 and there is a dependency from 𝑝ℎ to 𝑝𝑏. As 𝑝𝑏 ∉ 𝐺, 
no other correct process will be able to verify this dependency, 
resulting in a false negative. The dependency and the resulting 
false negative is due to out-of-band communication.

Thus we have the following.
• (Managing false positives:) By doing broadcasts using the Byzan-
tine Reliable Broadcast (BRB) [36,37] layer, false positives can 
be prevented by ensuring no fake events are added to 𝐹 . If a 
Byzantine process 𝑝𝑏 attempts to insert a fake entry (𝑒𝑥ℎ, 𝐺, 𝐶𝑚)
about multicast send event of 𝑚 by 𝑝ℎ in 𝐹ℎ (whether ℎ = 𝑏 or 
ℎ ≠ 𝑏) at a correct process 𝑝𝑔 via a message (𝐺′, 𝐶𝑚′ ) sent to 𝑝𝑔 , 
𝑝𝑔 can verify whether or not this insertion is valid as based on 
the Reliability (or Termination) property of BRB, (𝐺,𝐶𝑚) must be 
delivered by the BRB layer at all correct processes including 𝑝𝑔 . 
Only if (𝐺,𝐶𝑚) is delivered to 𝑝𝑔 and 𝑝𝑏 ∈ 𝐺 is authenticity of 𝐶𝑚
verified (similarly for other messages in the control information 
of (𝐺′, 𝐶𝑚′ )).
Once (𝐺′, 𝐶𝑚′ ) is BRB delivered, the sequence of receive events 
like 𝑒𝑦𝑏 of (𝐺,𝐶𝑚) (and other similar messages) at 𝑝𝑏 up to the 
send event of (𝐺′, 𝐶𝑚′ ), whose authenticity is verified, and that 
send event of (𝐺′, 𝐶𝑚′ ), can be inserted in 𝐹𝑏. The entry about the 
send event of 𝑚 (that is, of 𝐶𝑚, to 𝐺) would be inserted in 𝐹ℎ
because/when 𝐶𝑚 is BRB delivered at 𝑝𝑔 (whether or not 𝑝𝑔 ∈ 𝐺). 
The receive event of (𝐺′, 𝐶𝑚′ ) occurs and is added to 𝐹𝑔 only if 
𝑝𝑔 ∈ 𝐺′. Now in particular, 𝑝𝑔 may be 𝑝𝑖 because it is correct. 
Therefore, correct processes including 𝑝𝑖 have a mechanism to 
prevent fake send events (and fake receive events) from being 
inserted in 𝐹 , ensuring no false positives.
Note that there is no false positive only in the sense that the 
dependency of 𝐶𝑚 before 𝐶𝑚′  is valid and not fake, i.e., 𝐶𝑚 was 
sent to 𝑝𝑏 and was delivered to 𝑝𝑏 before 𝑝𝑏 sent 𝐶𝑚′ . However, 
a correct process 𝑝𝑔 can never know whether the content of 𝐶𝑚
is decryptable by the group key 𝐾𝐺 and is semantically sound. If 
semantic validity is a requirement, then this dependency of 𝐶𝑚
before 𝐶𝑚′  may be fake and false positives cannot be prevented 
even with cryptography.

• (Managing false negatives:) Two types of false negatives can occur.
1. A Byzantine process 𝑝𝑔 can delete from 𝐹𝑔 information 
about a multicast of 𝑚 (i.e., of (𝐺,𝐶𝑚)) by 𝑝ℎ at 𝑒𝑥ℎ that 
it has received and such that 𝑝𝑔 ∈ 𝐺, despite doing 
broadcasts using the BRB layer. Even if 𝑒𝑥ℎ → 𝑒∗𝑖  where the 
causality chain passes through a message multicast event 
subsequently at 𝑝𝑔 after receiving 𝑚, 𝑝𝑖 has no way to know 
about this causality chain if 𝑝𝑔 chooses not to disclose it. 
Further by Theorem  1, a false negative may occur if the 
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receive event of 𝑚, i.e., of (𝐺,𝐶𝑚), by 𝑝𝑔 where 𝑝𝑔 ∈ 𝐺, is 
not disclosed to the rest of the system by a Byzantine 𝑝𝑔 or 
if the receive event is swapped after a subsequent multicast 
event by 𝑝𝑔 that is part of the causality chain 𝑒𝑥ℎ → 𝑒∗𝑖 , in 
what 𝑝𝑔 discloses to the rest of the system thereby breaking 
the causality chain of 𝐸 in 𝐹 .

2. A false negative may occur due to out-of-band communica-
tion, one form of which is as follows. If both sender 𝑝ℎ and 
receiver 𝑝𝑏 are Byzantine and 𝑝ℎ shared the group key with 
𝑝𝑏 even though 𝑝𝑏 ∉ 𝐺, 𝐶𝑚 is decryptable by 𝑝𝑏 and there 
is a dependency from 𝑝ℎ to 𝑝𝑏. As 𝑝𝑏 ∉ 𝐺, no other correct 
process will be able to verify this dependency, resulting in 
a false negative.

To prevent all such false negatives, Byzantine processes, their 
actual execution histories, and causal chains from and through 
such processes need to be identified.
Note that in the bullet above regarding prevention of false pos-
itives, if 𝐶𝑚 is not delivered to 𝑝𝑔 within the time to report 𝐹 , 
the entry about sending of 𝐶𝑚 is not added to 𝐹ℎ even though 𝐶𝑚
might have been sent. However the message 𝐶𝑚′  carrying infor-
mation about sending of 𝐶𝑚 is considered received/delivered, and 
hence 𝑒𝑥ℎ → 𝑒∗𝑖 . So this particular scenario contributes to a false 
negative.

Thus, to solve CD, it is necessary to identify Byzantine processes, 
their actual execution histories, and causal chains from and through 
them. Therefore Black_Box ⪯ CD and, as Consensus ⪯ Black_Box, hence
Consensus ⪯ CD. As Consensus is unsolvable, CD is also unsolvable. □

In the proof of Theorem  9, the number of Byzantine processes 𝑡 <
𝑛∕3 due to BRB of Bracha [37].

Theorem 10.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous unicast-based message 
passing system with one or more Byzantine processes even when using 
cryptography.

Proof.  The proof of Theorem  9 carries over identically where each 
multicast group consists of two processes — the sender and the receiver. 
False positives can be prevented only if the semantics of the message 
content of a message do not matter. Otherwise false positives cannot 
be prevented. False negatives cannot be prevented. □

Theorem 11.  It is impossible to solve causality determination (Definition 
5) as specified by CD(𝐸, 𝐹 , 𝑒∗𝑖 ) in an asynchronous broadcast-based message 
passing system with one or more Byzantine processes even when using 
cryptography.

Proof.  The proof of Theorem  4 which is for broadcast mode of message 
passing without cryptography carries over mostly identically with the 
two observations that

1. (Managing false positives:) False positives can be prevented even 
without cryptography, and

2. (Managing false negatives:) False negatives cannot be prevented 
due to Theorem  1 whose proof is independent of whether or not 
cryptography is used. □

4.4.2. Use of recursive hash histories
In an alternate cryptography-based approach, we can use event 

hashes, message hashes, and recursive hash histories (hash taken over 
the current event and the current state) [38–41] to provide a proof 
of the causal past in 𝐹 . However, solutions based on this approach 
conform to the results shown in Section 4.4.1. This is because the 
hashes reported by Byzantine processes and those reported by correct 
processes impacted by the Byzantine processes may be in conformity 
to the events, messages and execution histories reported in 𝐹  and not 
match 𝐸. In particular, while matching 𝐹 ,
9 
• hashes over fake events can lead to FPs,
• hashes over a swapped order of (local) events can lead to FNs, 
and

• hashes not taken/reported over actual events that occurred can 
lead to FNs,

because they corroborate 𝐹  and do not help to prevent contamination 
of 𝐹  or filter out malicious entries in 𝐹 .

Consider the encoding of the causal past using recursive hash his-
tories as follows. Let 𝐻 be a (cryptographic) collision-resistant hash 
function such that computationally it is not feasible to find 𝑦 such that 
𝐻(𝑦) = 𝐻(𝑥). Let 𝑠̂𝑥𝑖  denote the hash associated with state 𝑠𝑥𝑖 .

• Initialize: 𝑠̂0𝑖 = 𝐻(⟨𝑠0𝑖 ⟩).
• At internal event 𝑒𝑥𝑖 : 𝑠̂𝑥𝑖 = 𝐻(⟨𝑠̂𝑥−1𝑖 , 𝑒𝑥𝑖 ⟩).
• At send event 𝑒𝑥𝑖  of 𝑚 to 𝑝𝑗 :
𝑠̂𝑥𝑖 = 𝐻(⟨𝑠̂𝑥−1𝑖 , 𝑚⟩); send (𝑚, 𝑠̂𝑥𝑖 ) to 𝑝𝑗 .

• At receive event 𝑒𝑥𝑖  of (𝑚, 𝑠̂𝑤𝑗 ) from 𝑝𝑗 :
process 𝑚; 𝑠̂𝑥𝑖 = 𝐻(⟨𝑠̂𝑥−1𝑖 , 𝑠̂𝑤𝑗 , 𝑚⟩).

The second component 𝑠̂𝑥𝑖  sent with a message acts as a (recursive) 
proof. For a process 𝑝𝑔 to claim that it has received a message (sent at a 
send event 𝑒𝑥ℎ that did not occur) it has to create the proof that encodes 
the causal history (causal past) up to the supposed send event. This is 
checked against the proof of 𝑒𝑥ℎ that 𝑝ℎ provides and the hashes of the 
events in the causal past of 𝑒𝑥ℎ. The Byzantine processes can collude to 
create an alternate execution history/causal past that they have agreed 
on among themselves and executed, and corresponding event hashes 
and recursive hash histories that support the alternate reality of 𝑝𝑔 . 
If 𝑛 > 2𝑡, where 𝑡 is the upper bound on the number of Byzantine 
processes, such Byzantine behavior can be detected by taking a majority 
view. Thus such ensuing false positives can be prevented. However, 
false negatives will still occur because hashes taken over a swapped 
order of events and hashes not taken/reported over actual events that 
occurred, with a matching 𝐹 , break causal chains of 𝐸 in 𝐹 .

4.5. Results for ‘‘Byzantine happened before’’ allowing cryptography

To detect 𝑒 𝐵
←←←←←←←←→ 𝑒′, from Theorems  6, 7, false positives and false neg-

atives can be prevented for unicasts and broadcasts even without cryp-
tography. For multicasts, from the proof of Theorem  9, Section 4.3.2, 
and the fact that there is a causal path through only correct processes 
from 𝑒 to 𝑒′, only all true causal dependencies are faithfully transmitted 
and hence 𝐹𝑁𝐵 and 𝐹𝑃𝐵 . For 𝐹𝑃𝐵 , note that semantic validity is also 
guaranteed when 𝑒 𝐵

←←←←←←←←→ 𝑒′. This gives the following results. 

Theorem 12.  It is possible to solve causality determination (Definition 
6) as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, 
in an asynchronous unicast-based message passing system with one or more 
Byzantine processes when using cryptography.

Theorem 13.  It is possible to solve causality determination (Definition  6) 
as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, in 
an asynchronous broadcast-based message passing system with one or more 
Byzantine processes when using cryptography.

Theorem 14.  It is possible to solve causality determination (Definition  6) 
as specified by CD_B(𝐸, 𝐹 , 𝑒∗𝑖 ), now defined in terms of the 𝐵←←←←←←←←→ relation, in 
an asynchronous multicast-based message passing system with one or more 
Byzantine processes when using cryptography.

5. Auxiliary results on relationships of CD to other problems

5.1. Relationship to consensus

We show two auxiliary results about the relationship of CD to
Consensus in this section. First, in asynchronous systems with Byzantine 
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failures, we show that CD is harder than Consensus by (i) showing 
that even if Consensus were solvable, CD cannot be solved, i.e., 𝐶𝐷 
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, and (ii) combining with Theorems  3–5 and Theorems  9–11 
which showed that Consensus ⪯ 𝐶𝐷 under Byzantine failures. Second, 
we show that under crash failures in asynchronous systems, CD is 
solvable but Consensus is not solvable by the FLP result [35]; thus 
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠  𝐶𝐷 and 𝐶𝐷 ⪯ 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠.

Theorem 15.  In an asynchronous system with Byzantine failures, 𝐶𝐷 
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 and the CD problem is harder than Consensus.

Proof.  Let there exist an oracle accessible to each process that identi-
fies each other process as being either correct or Byzantine. This allows 
each correct process to know the identity of all other correct processes. 
It now broadcasts its initial value of the Consensus problem and waits 
for the corresponding broadcasts from the set of other correct processes. 
After obtaining the initial values of all other correct processes, a correct 
process runs a local algorithm to decide on the consensus output — if 
the initial values are all the same, output that value, otherwise output 
a default value. This satisfies Agreement, Validity, and Termination 
clauses of Consensus. Thus, knowing the identities of all Byzantine 
processes, Consensus can be solved. The oracle is a sufficient condition 
to solve Consensus.

Let us revisit the proof of Theorem  1. In the determination of 𝑒𝑥ℎ →

𝑒∗𝑖 , a false negative may arise when a send-receive event pair (𝑒𝑢𝑓 , 𝑒𝑣𝑔) in 
a causal chain from 𝑒𝑥ℎ to 𝑒∗𝑖  is missing as per 𝐹 . The causal chain has 
the following subsequence: ⟨⋯ 𝑒𝑢𝑓 , 𝑒

𝑣
𝑔 , 𝑒

𝑣′
𝑔 ⋯⟩, where 𝑒𝑣′𝑔  is a send event 

at 𝑝𝑔 . Both 𝑒𝑣𝑔 and 𝑒𝑣
′
𝑔  are local to 𝑝𝑔 . A Byzantine 𝑝𝑔 can suppress letting 

the rest of the system know of the occurrence of 𝑒𝑣𝑔 or swap the order of 
occurrence of 𝑒𝑣𝑔 and 𝑒𝑣

′
𝑔  in what it lets the rest of the system know about 

the occurrence of the two local events. Both actions have the effect of 
breaking the causality chain from 𝑒𝑥ℎ to 𝑒∗𝑖  which can give rise to a false 
negative. With the oracle we assumed (a sufficient condition for solving
Consensus), 𝑝𝑖 can know whether or not 𝑝𝑔 is Byzantine. Knowing that 
𝑝𝑔 is Byzantine when the causality chain is not detected by 𝑝𝑖 as per 
𝐹  does not help in knowing whether 𝑝𝑔 has broken the causality chain 
from 𝑒𝑥ℎ to 𝑒∗𝑖 , or whether the causality does not exist in 𝐸. Thus, a 
false negative can occur if 𝑝𝑖 infers from 𝐹  and this argument holds 
for unicasts, multicasts, and broadcasts. If 𝑝𝑖 wrongly guesses that the 
causality chain exists in 𝐸 but was broken by 𝑝𝑔 in 𝐹  and assumes the 
causality chain existed, then a false positive can occur. Also observe 
that if a causality chain does not exist in 𝐸 but is observed in 𝐹 , a false 
positive can occur. This argument holds for unicasts and multicasts but 
not for broadcasts. Refer to the results in Table  1 and Theorems  3, 4, 5. 
In whichever mode of communication, false negatives and possibly false 
positives can occur and therefore knowing the identity of the Byzantine 
processes does not help to solve CD. Thus CD  Consensus. Combining 
this with Theorems  3–5 and Theorems  9–11 that showed that Consensus
⪯ 𝐶𝐷, it follows that CD is harder than Consensus. □

Theorem 16.  In an asynchronous system with crash failures, CD is 
solvable but Consensus is not solvable; thus 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠  𝐶𝐷 and 𝐶𝐷 ⪯
𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠.

Proof.  To solve CD does not require identifying the crashed processes; 
their (correct) execution histories can be faithfully transmitted to other 
processes (transitively) via the execution messages sent in the execution 
history itself as it grows and be present at the other (correct) processes’ 
execution histories and in in-transit messages. The execution histories 
of senders that might crash can transitively propagate beginning via 
messages they sent before their crash to other non-crashed processes. 
By this logic, for a process 𝑝ℎ that crashes, 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐹  is equal 
to 𝑒𝑥ℎ → 𝑒∗𝑖 |𝐸 for correct process 𝑝𝑖. So it suffices to consider the 
execution histories 𝐸𝑗 of non-crashed processes (that include 𝑝𝑖) to 
determine 𝑒𝑥 → 𝑒∗ and solve CD without having to identify the crashed 
ℎ 𝑖
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processes. However, solving Consensus in the crash failure model re-
quires identifying the crashed processes in asynchronous systems — 
which is impossible by the FLP impossibility result [35]. Hence, solv-
ing Consensus is impossible while solving CD is possible under crash 
failures.

It follows that Consensus  CD and CD ⪯ Consensus under crash 
failures. □

5.2. Causal ordering of messages (CO)

We consider the relationship of CD to the problem of causal ordering 
of messages CO.

Definition 7.  The happened before relation → on (application-level) 
messages consists of the following rules:

1. If 𝑝𝑖 sent or delivered message 𝑚 before sending message 𝑚′, then 
𝑚→ 𝑚′.

2. If 𝑚→ 𝑚′ and 𝑚′ → 𝑚′′, then 𝑚 → 𝑚′′.

Definition 8.  The causal past of message 𝑚 is denoted as 𝐶𝑃 (𝑚) and 
defined as the set of messages that causally precede message 𝑚 under 
→.

The CO problem is specified as follows.

Definition 9.  A causal ordering algorithm (for unicast/multicast/
broadcast messages) must ensure the following:

1. Strong Safety: ∀𝑚′ ∈ 𝐶𝑃 (𝑚) such that 𝑚′ and 𝑚 are sent to the 
same (correct) process, no correct process delivers 𝑚 before 𝑚′.

2. Liveness: Each message sent by a correct process to another 
correct process will be eventually delivered.

When correct process 𝑝𝑟 receives 𝑚2, it needs to correctly determine 
whether to deliver 𝑚2 before a message 𝑚1 or to wait for 𝑚1 before 
delivery of 𝑚2. To formulate this, we rephrase the causal ordering 
problem (Definition  9) as CO(𝐸, 𝐹 , 𝑚2) as follows [23,25]. 

Definition 10.  The causal ordering problem 𝐶𝑂(𝐸, 𝐹 , 𝑚2) for a 
message 𝑚2 received by a correct process 𝑝𝑟 is to devise an algorithm to 
collect the execution history 𝐸 as 𝐹  at 𝑝𝑟 such that 𝐶𝑂_𝐷𝑒𝑙𝑖𝑣(𝑚2) = 1, 
where

𝐶𝑂_𝐷𝑒𝑙𝑖𝑣(𝑚2) =
{

1 if ∀𝑚1, 𝑚1 → 𝑚2|𝐸 = 𝑚1 → 𝑚2|𝐹
0 otherwise

𝐶𝑂_𝐷𝑒𝑙𝑖𝑣(𝑚2) returns 1 iff ∀𝑚1, 𝑚1 → 𝑚2|𝐸 = 𝑚1 → 𝑚2|𝐹 . When 1 is 
returned, the algorithm output matches the actual truth and solves CO
correctly. Thus, returning 1 indicates that the problem has been solved 
correctly by the algorithm using 𝐹 . 0 is returned if either

1. ∃𝑚1 such that 𝑚1 → 𝑚2|𝐸 = 1 and 𝑚1 → 𝑚2|𝐹 = 0, denoting 
a strong safety violation because 𝑝𝑟 will not wait for 𝑚1 before 
delivery of 𝑚2, or

2. ∃𝑚1 such that 𝑚1 → 𝑚2|𝐸 = 0 and 𝑚1 → 𝑚2|𝐹 = 1, denoting a 
liveness violation because 𝑝𝑟 may continue waiting indefinitely 
for a fake 𝑚1 to arrive before delivering the arrived 𝑚2.

Theorem 17.  In an asynchronous system with Byzantine processes, 𝐶𝑂 ⪯
𝐶𝐷 ∧ 𝐶𝐷 ⪯ 𝐶𝑂.

Proof.  We first show 𝐶𝑂 ⪯ 𝐶𝐷. For instance 𝐶𝑂(𝐸, 𝐹 , 𝑚2), let 𝑚2 be 
received at 𝑝𝑟 at event 𝑒∗𝑟 . Invoke 𝐶𝐷(𝐸, 𝐹 , 𝑒∗𝑟 ). If this can be solved, 
then it is straightforward to observe that 𝐶𝑂(𝐸, 𝐹 , 𝑚2) is solved as 𝑝𝑟
now knows which non-fake messages 𝑚1 to wait for before delivering 
𝑚2. Thus 𝐶𝑂 ⪯ 𝐶𝐷.

Next we show 𝐶𝐷 ⪯ 𝐶𝑂. Consider instance 𝐶𝐷(𝐸, 𝐹 , 𝑒∗𝑖 ). Let 
𝑚 (𝑗) (∀𝑗 ∈ 𝑃 ) be the most recent message received from 𝑝  at 𝑒ℎ𝑗
2 𝑗 𝑖
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at or before 𝑒∗𝑖 . If 𝐶𝑂(𝐸, 𝐹 , 𝑚) can be solved, all (𝑛 − 1) instances 
𝐶𝑂(𝐸, 𝐹 , 𝑚2(𝑗)) can be solved. This implies that all (and only all) send 
and receive events causally preceding 𝑒ℎ𝑗𝑖  and hence 𝑒∗𝑖  can be correctly 
identified. Thus there are no false negatives and no false positives, and 
𝐶𝐷(𝐸, 𝐹 , 𝑒∗𝑖 ) can be solved. Thus 𝐶𝐷 ⪯ 𝐶𝑂. □

Theorem 18 ([42]). In a system with even one Byzantine process, the CO 
problem is subject to the same limitations (exposure to false positives and 
false negatives) as the CD problem, resulting in liveness and safety violations.

Proof.  Let 𝑒𝑥ℎ be a send event of a message 𝑚1 to 𝑝𝑖, 𝑒𝑧𝑗  be an event 
where 𝑝𝑗 sends a message 𝑚2 to 𝑝𝑖, 𝜙 be a predicate on when/whether 
𝑝𝑖 can safely deliver 𝑚2 sent at 𝑒𝑧𝑗  to itself (i.e., has received and 
determines it is safe to give 𝑚2 with respect to all other messages 
(like 𝑚1) sent to itself in the execution to the application), 𝑒𝑦̂𝑖  be an 
event where 𝑝𝑖 delivers the message 𝑚2 from 𝑝𝑗 , and → be defined on 
application messages.

The formula 𝛷𝐶𝑂(𝑒𝑦̂𝑖 ) needs to be satisfied in order to solve CO, 
where:

𝛷𝐶𝑂(𝑒
𝑦̂
𝑖 )

𝑑𝑒𝑓
=

⋀

𝑒𝑥ℎ∈𝐸 ∪𝐹
(𝑒𝑥ℎ → 𝑒𝑧𝑗 |𝐸 = 𝑒𝑥ℎ → 𝑒𝑧𝑗 |𝐹 ) ∧ 𝜙(𝑒

𝑦̂
𝑖 ).

As 𝑒𝑥ℎ is a send event, detecting 𝑒𝑥ℎ → 𝑒𝑧𝑗  is susceptible to false 
positives and/or false negatives (refer Table  1). Thus it cannot be 
guaranteed that the predicate 𝑒𝑥ℎ → 𝑒𝑧𝑗 |𝐸 = 𝑒𝑥ℎ → 𝑒𝑧𝑗 |𝐹  in the formula 
𝛷𝐶𝑂 can be satisfied. Hence, CO cannot be solved.

A false positive of the CD problem can result in a liveness violation 
– waiting indefinitely at 𝑝𝑖 for the delivery of 𝑚2 until the prior delivery 
of 𝑚1 that was never sent by 𝑝ℎ – in the CO problem. A false negative 
of the CD problem is a safety violation – not waiting for the delivery 
of 𝑚1 that was sent by 𝑝ℎ at 𝑒𝑥ℎ to 𝑝𝑖 – in the CO problem. □

6. Discussion and conclusions

We proved the results about possibility or impossibility of deter-
mining causality between events in the presence of Byzantine pro-
cesses using executions, independent of specific implementations such 
as causality graphs, vector clocks and their variants, and other clock 
systems. The impossibility of being able to determine causal order 
between a pair of events under the → relation in the presence of even a 
single Byzantine process when message communication takes place by 
unicasting or by multicasting or by broadcasting are negative results. 
Only in the cases of unicasting and broadcasting can there be a weak 
positive result in that if there exists a causal path going through events 
at only correct processes between the two events, i.e., the 𝐵←←←←←←←←→ relation 
holds, then the causality relation can be determined correctly. How-
ever, it is impossible to ascertain whether such a path going through 
events at non-Byzantine processes exists, so this result is of questionable 
practical use. This is also an expensive operation because each broad-
cast must be done via Byzantine Reliable Broadcast which requires 
𝑂(𝑛) control message broadcasts per application message broadcast and 
an increased latency that depends on the particular implementation 
of BRB used. We also showed that the impossibility results under the 
→ relation remain despite allowing the use of cryptography. However 
in contrast, we showed possibility results under the 𝐵←←←←←←←←→ relation for 
unicasts, broadcasts, and multicasts using cryptography.

One way out of the impossibility results then is to either assume the 
‘‘Byzantine’’ process or a parallel process can run in a OS-controlled 
(user) library not subject to Byzantine influence or use trusted compo-
nents (such as hardware) or assume a Trusted Execution Environment 
(TEE) to curtail the Byzantine behavior of processes [43]. For example, 
trusted components (TC) can issue timestamps to events correctly — 
however the assumption that the processes are Byzantine is negated. 
Such assumptions about a Validator can solve problems such as Byzan-
tine Agreement (BA) and Consensus that are known to be unsolvable 
in asynchronous systems. More specifically, the correctness of such 
approaches hinges on the following assumption.
11 
• Assumption: What the process in the library/TEE does is outside 
Byzantine influence (and reigns in/negates actions by Byzantine 
processes by forcing them to do exactly as the process in the 
library/TEE dictates or be ignored).

If the assumption can be justified one could trivially solve problems 
known to be unsolvable. For example,

• Claim: It is possible to solve BA deterministically, with Byzantine 
failures bounded at (𝑛 − 2).

• Reasoning: The Validator is assumed to be reliable. Its backend ex-
ecutes in a TEE and can act as a correct process whose correctness 
is known to all processes. This Validator can receive the initial 
value from the initiator process and broadcast it to all processes, 
solving BA in 𝑂(1) time (2 message hops). Any values sent by 
processes that contradict (only Byzantine processes’ values may 
contradict) the values of the Validator are ignored.

• Contradiction: This contradicts FLP impossibility [35] because BA 
cannot be solved deterministically in an asynchronous fault-prone 
system. It also contradicts the bound (a maximum of 𝑡 Byzantine 
processes in a system of at least 3𝑡+1 processes) for synchronous 
systems  [30].

• Conclusion: The assumption about a reliable Validator reduces a 
Byzantine-prone system into a sequential system with a reliable 
and centralized oracle — the Validator.

Detecting causality between a pair of events is a fundamental prob-
lem [2]. Other problems that use this as a building block include the 
following:

• detecting causality relation between two ‘‘meta-events’’ [44], 
each of which spans multiple events across multiple processes 
[45,46],

• detecting the interaction type between a pair of intervals at 
different processes [47],

• detecting the fine-grained modality of a distributed predicate 
[48–50], and data-stream based global event monitoring using 
pairwise interactions between processes [51].

Impossibility results analogous to the ones we have shown also hold for 
these problems. A reduction from CD to each of the above problems can 
be established; the impossibility of solving these above problems would 
directly follow.

In light of the impossibility results in asynchronous systems, we 
showed that the CD problem can be solved in synchronous systems 
[52,53] using the replicated state machine (RSM) based approach 
[54]. As RSMs can be implemented deterministically even in partially 
synchronous systems, the solvability of CD also extends to such systems.

Based on the impossibility of solving CD in asynchronous sys-
tems, several other Byzantine-tolerant state observation, synchroniza-
tion, and graph computation problems in asynchronous distributed 
systems have also been shown impossible to solve using distributed 
algorithms [42].
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