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ABSTRACT
Causal ordering is widely used in distributed systems to maintain

validity and correctness of data across concurrent updates. Previous

work has shown that it is impossible to solve the causal ordering

problem under the strong safety condition in cryptography-free

Byzantine-prone systems. It has also been shown that it is impossi-

ble to solve deterministic causal ordering for unicasts/multicasts

in asynchronous systems even under a weaker notion of safety

called weak safety. However, inherently asynchronous (round-free)

protocols solve causal ordering for unicasts/multicasts in synchro-

nous systems under the weak safety condition. In this paper, we

first examine the causal ordering problem under the notion of

synchronous rounds. We examine whether causal ordering is solv-

able by simulating rounds in synchronous systems under fault-

free, crash-failure and Byzantine failure models. We then provide a

round-based synchronous algorithm for causal ordering of unicast-

s/multicasts/broadcasts under the strong safety condition. Finally,

we provide an overall analysis of solvability of causal ordering in

synchronous systems for a variety of system model settings.
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1 INTRODUCTION
Causality is an important tool in understanding and reasoning

about distributed executions [12]. Causality is defined by the hap-
pens before [6] relation on the set of events, and by extension, on the
set of messages. Causal communication is essential for distributed

applications because it provides the ability to concurrently execute

operations while protecting correctness of the computation. In the

broadcast case, reliable broadcast primitives can provide intrinsic

causal ordering in the failure-free and crash failure settings, how-

ever, Byzantine processes can break this causal ordering [7]. In

the case of atomic broadcast, while it provides a total ordering of

messages, it does not preserve causal ordering. Under the Byzantine

failure model, causal ordering has recently been studied in [1] for

broadcast communication and an algorithm for causal ordering

under the weak safety condition was presented. In [8, 10, 11] causal

ordering was studied for unicast, multicast, as well as broadcast

communication. In these papers, it has been established that causal

ordering cannot be solved for multicasts/unicasts deterministically

in asynchronous systems under Byzantine failures. Byzantine fault-

tolerant deterministic algorithms for causal ordering of multicast-

s/unicasts in synchronous systems under the weak safety condition

were provided in [10, 11]. In [8] it was shown that strong safety of

causal ordering cannot be achieved in a cryptography-free setting.

Although previous research has examined causal order of messages

in both asynchronous and synchronous systems, the possibility

of causal ordering under round based communication in synchro-

nous systems has not been examined. In this paper, we establish

a relationship between synchronous rounds and causal ordering.

Specifically, we make the following contributions.

(1) We investigate the relationship between synchronous rounds

and causal ordering. We discover that synchronous rounds

inherently provide causal ordering accross messages in a

failure-free system (Theorem 1).

(2) We also discover that synchronous rounds provide causal

ordering even under crash failures (Theorem 2).

(3) Further, while Byzantine processes can disrupt causal or-

dering under the strong safety requirement (Theorem 3),

synchronous rounds provide causal ordering under the weak

safety requirement despite the presence of Byzantine pro-

cesses (Theorem 4).

(4) We present an algorithm providing strong safety for Byzan-

tine causal multicast using synchronous rounds and cryp-

tography.

(5) We present a table of results on the solvability of BFT causal

ordering in synchronous systems across various system set-

tings.
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Problem Model Weak Safety + Liveness Weak Safety - Liveness Strong Safety + Liveness Strong Safety - Liveness
Unicast Crypto-free Yes [10, 11] (R-f, D) Yes [8] (R-f, D) No, Theorem 3 No, Theorem 3

Unicast Threshold Crypto. Yes [9] (R-f, D) Yes (R-f, D) Yes [9] (R-f, D) Yes [9] (R-f, D)
Multicast Crypto-free Yes [10, 11] (R-f, D) Yes [8] (R-f, D) No, Theorem 3 No, Theorem 3

Multicast Threshold Crypto. Yes [9] (R-f, P) Yes (R-f, D) Yes, Algo. 2 (R, D) Yes, Algo. 2 (R, D)
Broadcast Crypto.-free Yes [1] (R-f, D) Yes [1] (R-f, D) No, Theorem 3 No, Theorem 3

Broadcast Threshold Crypto. Yes [4] (R-f, P) for asynch.;
Yes, Algo. 2 (R, D)

Yes [4] (R-f, P) for asynch.;
Yes, Algo. 2 (R, D)

Yes [4] (R-f, P) for asynch.;
Yes, Algo. 2 (R, D)

Yes [4] (R-f, P) for asynch.;
Yes, Algo. 2 (R, D)

Legend: R = with rounds, R-f = round-free, D = deterministic, P = probabilistic, crypto. = cryptography, asynch. = asynchronous systems.

Table 1: Solvability of BFT Causal Ordering in Synchronous Systems.

Table 1 summarizes the solvability of causal ordering in synchro-

nous systems under Byzantine failures across a variety of system

settings/variables. We consider the solvability in terms of com-

munication model (unicast/multicast/broadcast), cryptography (al-

lowed/not allowed), safety condition (strong vs weak) and whether

liveness is a requirement.

2 SYSTEM MODEL
The distributed system is modelled as a complete directed graph

𝐺 = (𝑃,𝐶). 𝑃 is the set of processes communicating synchronously

over a network.𝐶 is the set of communication channels over which

processes communicate by message passing over FIFO channels.

For a message send event𝑚 at time 𝑡1, the corresponding receive

event occurs at time 𝑡2 ∈ [𝑡1, 𝑡1 + 𝛿), where 𝛿 is a known upper

bound on message transmission time. A correct process behaves

exactly as specified by the algorithm whereas a Byzantine process

may exhibit arbitrary behaviour. A Byzantine process cannot imper-

sonate another process or spawn new processes. The execution in

a synchronous system may proceed in lock-step in rounds, where

messages sent in a round are received in that same round. The local

sequence of events in a round contains send events, followed by

receive events, followed by internal events. However, simulating

rounds has its own overheads and reduces concurrency.

The happens before [6] relation, denoted →, is an irreflexive,

asymmetric, and transitive partial order defined over events in

a distributed execution that is used to define causality. Next, we

define the→ relation on the set of all application-level messages 𝑅.

Definition 1. The happens before relation → on messages con-
sists of the following rules:

(1) If 𝑝𝑖 sent or delivered message𝑚 before sending message𝑚′,
then𝑚 →𝑚′.

(2) If𝑚 →𝑚′ and𝑚′ →𝑚′′, then𝑚 →𝑚′′.

Definition 2. The causal past of message𝑚 is denoted as𝐶𝑃 (𝑚)
and defined as the set of messages in 𝑅 that causally precede message
𝑚 under →.

We require an extension of the happens before relation on mes-

sages to accommodate the possibility of Byzantine behaviour. We

present a partial order on messages called Byzantine happens before,

denoted as

𝐵−→, defined on 𝑆 , the set of all application-level messages

that are both sent by and delivered at correct processes in 𝑃 .

Definition 3. The Byzantine happens before relation
𝐵−→ on mes-

sages in 𝑆 consists of the following rules:

(1) If 𝑝𝑖 is a correct process and 𝑝𝑖 sent or delivered message𝑚
(to/from another correct process) before sending message𝑚′ to

a correct process, then𝑚
𝐵−→𝑚′.

(2) If𝑚
𝐵−→𝑚′ and𝑚′ 𝐵−→𝑚′′, then𝑚

𝐵−→𝑚′′.

The Byzantine causal past of a message is defined as follows:

Definition 4. The Byzantine causal past of message𝑚, denoted
as 𝐵𝐶𝑃 (𝑚), is defined as the set of messages in 𝑆 that causally precede

message𝑚 under
𝐵−→.

The correctness of Byzantine causal order unicast/multicast/broad-

cast is specified on (𝑅,→) and (𝑆, 𝐵−→) as follows.

Definition 5. A causal ordering algorithm for unicast/multicas-
t/broadcast messages must ensure the following:

(1) Strong Safety: ∀𝑚′ ∈ 𝐶𝑃 (𝑚) such that𝑚′ and𝑚 are sent to
the same (correct) process, no correct process delivers𝑚 before
𝑚′.

(2) Liveness: Each message sent by a correct process to another
correct process will be eventually delivered.

Definition 6. A causal ordering algorithm for unicast/multicas-
t/broadcast messages must ensure the following:

(1) Weak Safety: ∀𝑚′ ∈ 𝐵𝐶𝑃 (𝑚) such that𝑚′ and𝑚 are sent to
the same (correct) process, no correct process delivers𝑚 before
𝑚′.

(2) Liveness: Each message sent by a correct process to another
correct process will be eventually delivered.

When𝑚
𝐵−→ 𝑚′

, then there exists a causal chain from𝑚 to𝑚′

along correct processes that sent messages along that chain.

3 BACKGROUND
3.1 Some Cryptographic Basics
We utilize non-interactive threshold cryptography as a means to

guarantee strong safety of multicasts [13]. Threshold cryptography

consists of an initialization function to generate keys, message

encryption, sharing decrypted shares of the message and finally

combining the decrypted shares to obtain the original message

from ciphertext. The following functions are used in a threshold

cryptographic scheme:

Definition 7. The dealer executes the generate() function to ob-
tain the public key 𝑃𝐾 , Verification key𝑉𝐾 and the private keys 𝑆𝐾0,
𝑆𝐾1, ... , 𝑆𝐾𝑛−1.
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The dealer shares private key 𝑆𝐾𝑖 with each process 𝑝𝑖 while 𝑃𝐾

and 𝑉𝐾 are publicly available.

Definition 8. When process 𝑝𝑖 wants to send a message 𝑚 to
𝑝 𝑗 , it executes 𝐸 (𝑃𝐾,𝑚, 𝐿) to obtain 𝐶𝑚 . Here 𝐶𝑚 is the ciphertext
corresponding to𝑚, 𝐸 is the encryption algorithm and 𝐿 is a label to
identify𝑚. 𝑝𝑖 then broadcasts 𝐶𝑚 to the system of processes.

Definition 9. When process 𝑝𝑙 receives ciphertext𝐶𝑚 , it executes
𝐷 (𝑆𝐾𝑙 ,𝐶𝑚) to obtain 𝜎𝑚

𝑙
where 𝐷 is the decryption share generation

algorithm and 𝜎𝑚
𝑙

is 𝑝𝑙 ’s decryption share for message𝑚.

When process 𝑝 𝑗 receives a cipher message 𝐶𝑚 intended for it,

it has to wait for 𝑘 decryption shares to arrive from the system to

obtain𝑚. The value of 𝑘 depends on the security properties of the

system. It derives the message from the ciphertext as follows:

Definition 10. When process 𝑝 𝑗 wants to generate the original
message𝑚 from ciphertext𝐶𝑚 , it executes𝐶 (𝑉𝐾,𝐶𝑚, 𝑆) where S is a
set of 𝑘 decryption shares for𝑚 and 𝐶 is the combining algorithm for
the 𝑘 decryption shares.

The following function is used to verify the authenticity of a

decryption share:

Definition 11. When a decryption share 𝜎 is received for message
𝑚, the Share Verification Algorithm is used to ascertain whether 𝜎 is
authentic : 𝑉 (𝑉𝐾,𝐶𝑚, 𝜎) = 1 if 𝜎 is authentic, 𝑉 (𝑉𝐾,𝐶𝑚, 𝜎) = 0 if
𝜎 is not authentic.

3.2 Byzantine Causal Multicast via Byzantine
Reliable Broadcast

We propose a causal order multicast algorithm for synchronous

systems. In a multicast, a message is sent to a subset of processes

forming a process group. Different multicast send events can send

to different process groups. Byzantine-tolerant causal multicast is

invoked as BC_multicast(𝑚,𝐺), where 𝐺 is the multicast group,

and delivers a message through BC_deliver(𝑚).

Definition 12. Byzantine Causal Multicast satisfies the following
properties:

(1) (BCM-Validity:) If a correct process 𝑝𝑖 BC_delivers message
𝑚 from 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚) to group 𝐺 , then 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚) must have
BC_multicast𝑚 to 𝐺 and 𝑝𝑖 ∈ 𝐺 .

(2) (BCM-Termination-1:) If a correct process BC_multicasts a
message 𝑚 to 𝐺 , then some correct process in 𝐺 eventually
BC_delivers𝑚.

(3) (BCM-Agreement or BCM-Termination-2:) If a correct process
BC_delivers a message𝑚 from a possibly faulty process, then
all correct processes in 𝐺 will eventually deliver𝑚.

(4) (BCM-Integrity:) For any message𝑚, every correct process 𝑝𝑖
BC_delivers𝑚 at most once.

(5) (BCM-Causal-Order:) If 𝑚 → 𝑚′, then no correct process
BC_delivers𝑚′ before𝑚.

BCM-Causal-Order is the Strong Safety property of Definition 5.

BCM-Termination-1 and BCM-Agreement imply the liveness prop-

erty of Definitions 5, 6.

Definition 13. A Byzantine-tolerant causal multicast algorithm
must satisfy BCM-Validity, BCM-Termination-1, BCM-Agreement,
BCM-Integrity, and BCM-Causal-Order.

The Byzantine-tolerant Reliable Broadcast (BRB) [2, 3] is invoked

by BR_broadcast and its message is delivered by BR_deliver, and
satisfies the properties given below.

Definition 14. Byzantine-tolerant Reliable Broadcast (BRB) pro-
vides the following guarantees [2, 3]:

(1) (BRB-Validity:) If a correct process BR_delivers a message𝑚
from 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚), then 𝑠𝑒𝑛𝑑𝑒𝑟 (𝑚) must have BR_broadcast
𝑚.

(2) (BRB-Termination-1:) If a correct process BR_broadcasts a
message𝑚, then it eventually BR_delivers𝑚.

(3) (BRB-Agreement or BRB-Termination-2:) If a correct process
BR_delivers a message𝑚 from a possibly faulty process, then
all correct processes eventually BR_deliver𝑚.

(4) (BRB-Integrity:) For any message𝑚, every correct process BR_-
delivers𝑚 at most once.

4 CAUSAL ORDERING AND SYNCHRONOUS
ROUNDS

Algorithm 1 serves as a reference point for synchronous round-

based communication. Without loss of generality, we assume that

all processes send their messages at the beginning of each round,

all messages arrive in the same round that they are sent out and

messages are delivered at the end of each round.

Algorithm 1: Synchronous round-based message passing

protocol

Data: Each process locally maintains two FIFO queues 𝑄𝑠

and 𝑄𝑑 for storing outgoing/incoming messages

respectively

1 when round 𝑟 starts:

2 multicast all messages in FIFO order after dequeuing

from 𝑄𝑠

3 when round 𝑟 ends:

4 deliver all messages in FIFO order after dequeuing from

𝑄𝑑

5 when the application is ready to multicast message𝑚 to

group 𝐺 : ⊲ Unicast and broadcast are special

cases

6 𝑄𝑠 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (⟨m,G⟩)
7 when message𝑚 arrives:

8 𝑄𝑑 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑚)

Theorem 1 establishes a relationship between causal ordering

and synchronous rounds. Theorem 2 establishes the relationship

for crash prone systems as well. Theorems 3 and 4 prove that under

Byzantine failures synchronous rounds can only guarantee causal

ordering under the weak safety condition.

Theorem 1. In a failure-free setting, synchronous rounds (as demon-
strated in Algorithm 1) solve the problem of causal ordering of mes-
sages under strong/weak safety.

Proof. Let𝑚1 →𝑚𝑥 , where𝑚1 and𝑚𝑥 are sent by 𝑝𝑖 and 𝑝 𝑗 ,

respectively, and 𝑝𝑑 is a common destination of both multicasts.

There are two cases.
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(1) 𝑗 = 𝑖 . Since 𝑝𝑖 sends𝑚1 before𝑚𝑥 , due to FIFO communica-

tion channels,𝑚1 will always arrive before𝑚𝑥 at a common

destination 𝑝𝑑 . Therefore𝑚1 will be enqueued before𝑚𝑥 in

the FIFO delivery queue at 𝑝𝑑 and ultimately be delivered

before𝑚𝑥 . This ensures causal order delivery.

(2) 𝑗 ≠ 𝑖 . As𝑚1 →𝑚𝑥 , there must exist a sequence of (correct)

processes delivering and sendingmessages𝑚1,𝑚2,𝑚3 . . .𝑚𝑞 ,

(𝑚𝑞 =𝑚𝑥 ), starting with the send event of𝑚1 and ending

at the send event of 𝑚𝑥 . Each correct process along this

sequence sends messages at the beginning of a round and

delivers messages at the end of a round. Consider the fol-

lowing sequence (where𝑚𝑎
𝐷−→ 𝑚𝑏 means that a process

delivers𝑚𝑎 and then sends𝑚𝑏 at a later time):

𝑚1

𝐷−→𝑚2

𝐷−→ ...
𝐷−→𝑚𝑞−1

𝐷−→𝑚𝑞

Since all processes executing send/deliver events across this

sequence are correct, the protocol described in Algorithm

1 will be followed. Therefore, any message𝑚𝑘 , 𝑘 ∈ [2, 𝑞] is
sent at least one round after𝑚𝑘−1 in the sequence. Therefore,
𝑚𝑥 will certainly arrive after𝑚1 at all common destinations,

thereby preserving strong (and weak) safety.

Based on the above, the notion of rounds ensures that any message

𝑚 such that𝑚′ →𝑚 gets delivered after𝑚′
at all common destina-

tions, thereby ensuring strong/weak safety. Liveness is ensured by

the assumption of a failure-free system. □

Theorem 2. Under crash failures, synchronous rounds (as demon-
strated in Algorithm 1) solve the problem of causal ordering of mes-
sages under strong/weak safety with a tolerance of (𝑛 − 2) failures.

Proof. Let the number of processes that fail be 𝑡 , where 𝑡 ≤
(𝑛 − 2).

Safety. Any process 𝑝𝑖 may fail only during one of the following

times:

(1) At the beginning of a round: In this case 𝑝𝑖 will not be

able to send its multicast message𝑚 to all members of its

intended group 𝐺 . Let the group of processes that receive

message𝑚 be 𝐺 ′
, where 𝐺 ′ ⊂ 𝐺 . The result of Theorem 1

still holds, because it is independent of the size and members

of the multicast groups involved in message passing in a

system of processes executing Algorithm 1. In this case the

safety guarantees of Algorithm 1 apply to any subsequent

message𝑚′
sent by members of𝐺 ′

. Therefore, any𝑚′′
such

that𝑚′′ → 𝑚′
will arrive at a common destination before

𝑚′
.

(2) During a round: Here, 𝑝𝑖 is neither sending nor delivering

any messages, therefore no safety violation can occur after

𝑝𝑖 crashes.

(3) At the end of a round: Here, 𝑝𝑖 fails while delivering mes-

sages that have arrived during the round. Any messages

delivered from 𝑄𝑑 prior to 𝑝𝑖 crashing will be done without

violating safety as per Theorem 1. Messages remaining in

𝑄𝑑 after 𝑝𝑖 fails will not be delivered, thereby eliminating

any chance of a safety violation.

Liveness. By definition, liveness requires that messages to/from

correct processes are delivered. Since 𝑡 ≤ (𝑛 − 2), two correct

processes will always be able to send/deliver messages to/from

each other, thereby ensuring liveness. □

Theorem 3. In the Byzantine failure model, synchronous rounds
(as demonstrated in Algorithm 1) cannot solve the problem of causal
ordering of messages under strong safety condition in a cryptography-
free setting.

Proof. Let 𝑝𝑖 be a Byzantine process in a system of processes

executing Algorithm 1. 𝑝𝑖 can read a multicast𝑚1 by 𝑝 𝑗 prior to the

end of round 𝑟 and based on the contents of𝑚1, multicast message

𝑚2 during round 𝑟 . Consider a common destination of𝑚1 and𝑚2,

𝑝𝑘 . 𝑝𝑘 may receive𝑚2 prior to𝑚1 depending on network delays. If

that is the case, 𝑝𝑘 will deliver𝑚2 before𝑚1 at the end of round 𝑟

resulting in a strong safety violation because𝑚1 →𝑚2 and so𝑚2

should not have been delivered before𝑚1. □

Theorem 4. In the Byzantine failure model, synchronous rounds
(as demonstrated in Algorithm 1) solve the problem of causal ordering
of messages under weak safety with a tolerance of (𝑛 − 2) failures.

Proof. Weak Safety. Given𝑚1

𝐵−→ 𝑚𝑥 , there must exist a se-

quence of correct processes delivering and sending messages, start-

ing with the send event of𝑚1 and ending at the send event of𝑚𝑥 .

The proof of Theorem 1 now applies to this sequence of correct

processes, thereby showing that weak safety is preserved.

Liveness. By definition, liveness requires that messages to/from

correct processes are delivered. Since 𝑡 ≤ (𝑛 − 2), two correct

processes will always be able to send/deliver messages to/from

each other, thereby ensuring liveness. □

5 SYNCHRONOUS ROUND-BASED
BYZANTINE CAUSAL MULTICAST

A synchronous system can assume lock-step execution in rounds.

Within a round, a process can sendmessages, then receive messages,

and lastly have internal events; further a message sent in a round is

received in the same round at all its destinations. Threshold cryptog-

raphy in conjunction with the execution in rounds and Byzantine

Reliable Broadcast is used to ensure strong safety. A multicast is

sent via BR_broadcast to ensure BCM-Validity, BCM-Termination-

1, BCM-Termination-2 and BCM-Integrity of the BC_multicast. Let
𝛽 and 𝛾 denote the maximum and minimum number of rounds (se-

quential steps) respectively in a BRB protocol. For example, Bracha’s

BRB has 𝛽 = ∞, 𝛾 = 3 and requires 𝑛 > 3𝑓 [2, 3] whereas Imbs-

Raynal [5] has 𝛽 = ∞, 𝛾 = 2 and requires 𝑛 > 5𝑓 . However, 𝛽 = ∞
is the case when a Byzantine process initiates broadcast and the

Byzantine processes do not follow the protocol in its entirety.When-

ever a correct process initiates BRB, it is delivered in 𝛾 rounds. In

the case of a Byzantine broadcaster, the message will either not

be delivered or in case it is delivered some correct processes may

deliver the message after others as we will show in Lemma 1.

Although a message𝑚 sent in a round is delivered after all mes-

sages sent in previous rounds, a Byzantine process can peek into

the buffer to read𝑚 before its receive event and send a causally

dependent message𝑚′
in the same round to initiate a multicast

send via its own BR_broadcast.𝑚′
may be BR_delivered before𝑚 at

some process, thus violating strong safety. To prevent a Byzantine

process from peeking into the content of a message in violation
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of causal ordering, the message is encrypted using threshold en-

cryption. The required number of decryption shares to decrypt a

message is (𝑡 +1) (the total number of processes is (3𝑡 +1)). In round
(𝑟 + 𝑘), where 𝑘 ≥ 𝛾 and the message is BR_broadcasted in round

𝑟 , each process that has BR_delivered the encrypted message sends

its decryption share to the destinations of the multicast. A message

cannot get revealed before round (𝑟 + 𝑘). Any message sent before

that cannot be causally dependent on this revealed message𝑚, and

the only messages that the process sends that are causally depen-

dent on the above message𝑚 can get sent (and hence delivered)

only in later rounds. This guarantees strong safety and liveness.

Algorithm 2 formalizes the logic. We prove the correctness of Al-

gorithm 2 implementing BC_multicast, including its strong safety
and liveness. This algorithm does not use BA_broadcast (atomic

broadcast) used in [4, 13].

Algorithm 2: Round-based Synchronous Causal Multicast

Data: Each process has access to 𝑃𝐾 (global public key), 𝑉𝐾

(global verification key). Each process 𝑝𝑖 has access to

a local secret key 𝑆𝐾𝑖 . Each process uses FIFO queues

𝑄𝑠 , 𝑄𝑑 for outgoing and incoming application

messages, resp.. All processes in a multicast group 𝐺

locally store the group key 𝐾𝐺 .

1 when round 𝑟 starts:

2 while 𝑄𝑠 .ℎ𝑒𝑎𝑑 () ≠ 𝜙 do
3 ⟨𝐶𝑚,𝐺𝑖𝑑𝑚 ⟩ = 𝑄𝑠 .𝑝𝑜𝑝 ()
4 BR_broadcast(𝐶𝑚,𝐺𝑖𝑑𝑚 )

5 when round 𝑟 ends:

6 while 𝑄𝑑 .ℎ𝑒𝑎𝑑 () is decrypted do
7 𝐶

′
𝑚 = 𝑄.𝑝𝑜𝑝 ()

8 𝑚 = 𝐷𝑒𝑐 (𝐾𝐺𝑖𝑑𝑚
,𝐶

′
𝑚)

9 BC_deliver(𝑚)

10 when 𝑝𝑖 sends𝑚 to 𝐺𝑖𝑑𝑚 via BC_multicast(𝑚,𝐺𝑖𝑑𝑚 ) in round 𝑟 :

11 𝐶
′
𝑚 = 𝐸𝑛𝑐 (𝐾𝐺𝑖𝑑𝑚

,𝑚)
12 𝐶𝑚 = 𝐸 (𝑃𝐾,𝐶 ′

𝑚, 𝑖𝑑𝑚)
13 𝑄𝑠 .𝑝𝑢𝑠ℎ(⟨𝐶𝑚,𝐺𝑖𝑑𝑚 ⟩)
14 when ⟨𝐶𝑚,𝐺𝑖𝑑𝑚 ⟩ is BR_delivered in round 𝑟 :

15 𝜎𝑚
𝑖

= 𝐷 (𝑆𝐾𝑖 ,𝐶𝑚)
16 if 𝑝𝑖 ∈ 𝐺𝑖𝑑𝑚 then
17 𝑄𝑑 .𝑝𝑢𝑠ℎ(𝐶𝑚)
18 for ∀ 𝑝 𝑗 ∈ 𝐺𝑖𝑑𝑚 do
19 send 𝜎𝑚

𝑖
to 𝑝 𝑗 in round (𝑟 + 1)

20 when 𝑝𝑖 receives (𝑡 + 1)th valid ⟨𝜎𝑚𝑥 ⟩ message by round 𝑟 :

21 Store (𝑡 + 1) decryption shares in set 𝑆

22 𝐶
′
𝑚 = 𝐶 (𝑉𝐾,𝐶𝑚, 𝑆)

23 replace 𝐶𝑚 in 𝑄𝑑 with 𝐶
′
𝑚

Lemma 1. In a system following the BRB protocol in [2], if a correct
process BR_delivers message𝑚 in round 𝑟 , it will be BR_delivered at
all correct processes at or before round (𝑟 + 1).

Proof. Let 𝑝𝑖 be the first correct process to BR_deliver𝑚; let it

do so in round 𝑟 . For this to be the case, 𝑝𝑖 must have received at

least (2𝑡 +1) 𝑅𝐸𝐴𝐷𝑌 (𝑚) messages by round 𝑟 . At least (𝑡 +1) of the
𝑅𝐸𝐴𝐷𝑌 (𝑚) messages were sent by correct processes. Therefore,

at the end of round 𝑟 , all correct processes will have received at

least (𝑡 + 1) 𝑅𝐸𝐴𝐷𝑌 (𝑚) messages. At the start of round (𝑟 + 1), all
correct processes will broadcast 𝑅𝐸𝐴𝐷𝑌 (𝑚) and will receive (2𝑡+1)
𝑅𝐸𝐴𝐷𝑌 (𝑚) messages before the end of the round. Therefore, all

correct processes will BR_deliver𝑚 at or before round (𝑟 + 1). □

Theorem 5. In the synchronous systemmodel where cryptography
is permitted, Algorithm 2 solves the problem of causal ordering of
messages under strong safety condition with a tolerance of ⌊(𝑛−1)/3⌋
Byzantine failures.

Proof. Strong Safety. Consider messages𝑚1 and𝑚2 such that

𝑚1 →𝑚2. Let 𝑝 𝑗 (possibly Byzantine) be the sender of𝑚1 and 𝑝𝑘
(possibly Byzantine) be the sender of𝑚2.𝑚1 is sent at round 𝑟

𝑠
𝑚1

and𝑚2 at round 𝑟
𝑠
𝑚2

. 𝑝𝑖 (correct process) is a common destination

for𝑚1 and𝑚2.𝑚1 (𝑚2) is BC_delivered at 𝑝𝑖 in round 𝑟𝑑𝑚1

(𝑟𝑑𝑚2

).

The send event occurs at line 10 of Algorithm 2, and the deliver

event occurs at line 9 of Algorithm 2. The following holds in a

system of processes executing Algorithm 2:

(1) 𝑟𝑑𝑚1

−1 ≤ 𝑟𝑠𝑚2

: Let 𝑝𝑙 be the first correct process to BR_deliver
𝑚 and it does so in round 𝑟 . As shown by Lemma 1, any cor-

rect 𝑝𝑖 BR_delivers𝑚1 at most 1 round after 𝑝𝑙 BR_delivers
𝑚1, in round (𝑟 + 1). Since 𝑝𝑖 is a correct process and follows
Algorithm 2, it will BC_deliver𝑚1 in the next round after

BR_delivering it, in round (𝑟 + 2). The earliest that 𝑝𝑘 can

send𝑚2 is the round in which it reads𝑚1. And 𝑝𝑘 cannot

read𝑚1 before 𝑝𝑙 has BR_delivered𝑚1, and sent its decryp-

tion share in round (𝑟 +1). Therefore, 𝑝𝑘 can send𝑚2 at most

1 round before𝑚1 is BC_delivered at a common destination

process 𝑝𝑖 .

(2) 𝑟𝑑𝑚2

≥ 𝑟𝑠𝑚2

+ 𝛾 : This is the minimum latency to BC_deliver a
message.

Combining the equations, we get the following:

𝑟𝑑𝑚2

≥ 𝑟𝑑𝑚1

+ 𝛾 − 1

this reduces to: 𝑟𝑑𝑚2

> 𝑟𝑑𝑚1

.

Liveness. The termination property of BR_broadcast guarantees
that all messages sent by correct processes will be BR_delivered at

all other processes as long as 𝑡 ≤ ⌊(𝑛 − 1)/3⌋. Any message𝑚 that

arrives at line 14 will eventually be enqueued at line 17 by all valid

recipients and all correct processes send their decryption shares 𝜎𝑚∗
at lines 18-19. This ultimately leads to BC_delivery of𝑚 by correct

processes at line 9, thereby ensuring liveness. □

It can be seen that Algorithm 2 guarantees BCM-Validity, BCM-

Termination-1, BCM-Agreement, BCM-Integrity as a direct conse-

quence of using the BR_broadcast primitive on line 4.

Corollary 1. Algorithm 2 implements Byzantine causal multi-
cast.
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6 DISCUSSION
We established a direct relationship between synchronous rounds

and causal ordering. As a consequence of our results, given a fault-

free or crash failure prone synchronous rounds-based system, there

is no need to execute a causal ordering protocol. This is because syn-

chronous rounds inherently guarantee causal ordering of messages.

Even in a system with Byzantine failures, round-based communi-

cation ensures causal ordering under the weak safety condition.

The only system setting where we anticipate the need of a causal

ordering protocol is when the application needs causal ordering

under the strong safety condition. Algorithm 2 fulfils this require-

ment by using cryptography in round-based communication. A

important point to note is that although synchronous systems have

synchronized clocks, they cannot be used for causal ordering. There

are two reasons for this — Byzantine processes can always obfus-

cate timestamps on their messages and even if the timestamps they

provide are correct, only a total-ordering of messages which does

not preserve causal relationships can be established with this. Fi-

nally, we provided an analysis in Table 1 specifying the solvability

of Byzantine fault-tolerant causal ordering under various system

settings. Our results are fundamental and significant for causal

ordering in synchronous systems, given the impossibility results

for causal ordering in asynchronous systems [8, 10].
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