
Theoretical Computer Science 1044 (2025) 115272

Available online 23 April 2025
0304-3975/© 2025 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Dispersion of mobile robots on graphs in the asynchronous model

Ajay D. Kshemkalyani
Department of Computer Science, University of Illinois Chicago, Chicago, IL 60607, USA

A R T I C L E I N F O A B S T R A C T 

Section Editor: Pinyan Lu

Handling Editor: Jialin Zhang

Keywords:

Distributed algorithm

Dispersion

Graph algorithm

Graph exploration

Mobile robot

The dispersion problem on graphs requires 𝑘 robots placed arbitrarily at the 𝑛 nodes of an 
anonymous graph, where 𝑘 ≤ 𝑛, to coordinate with each other to reach a final configuration 
in which each robot is at a distinct node of the graph. The dispersion problem is important 
due to its relationship to graph exploration by mobile robots, scattering on a graph, and load 
balancing on a graph. Prior work on solving dispersion assumed the synchronous model. We 
propose four algorithms to solve dispersion on graphs in the asynchronous model. The first two 
algorithms require 𝑂(𝑘 logΔ) bits at each robot and 𝑂(min(𝑚,𝑘Δ)) steps running time, where 
𝑚 is the number of edges and Δ is the maximum degree of the graph. The algorithms differ in 
what, where, and how data structures are maintained. The third algorithm has a space usage 
of 𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) bits at each robot and uses 𝑂(Δmin(𝐷,𝑘)+1) steps, where 𝐷 is 
the graph diameter. The fourth algorithm has a space usage of 𝑂(max(log𝑘, logΔ)) bits at each 
robot and uses 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps. In contrast with existing works which all assume the 
synchronous model, these are the first algorithms to solve dispersion in the weaker but more 
realistic asynchronous model.

1. Introduction

1.1. Background and motivation

The problem of dispersion of mobile robots, which requires the robots to spread out evenly in a region, has been explored in the 
literature [1,2]. The dispersion problem on graphs, formulated by Augustine and Moses Jr. [3], requires 𝑘 robots placed arbitrarily 
at the 𝑛 nodes of an anonymous graph, where 𝑘 ≤ 𝑛, to coordinate with each other to reach a final configuration in which each 
robot is at a distinct node of the graph. This problem has various applications; for example, an intrinsic application of dispersion has 
been shown to be the relocation of self-driven electric cars (robots) to recharge stations (nodes) [3]. Recharging is a time-consuming 
process and it is better to search for a vacant recharge station than to wait. In general, the problem is applicable whenever we want 
to minimize the total cost of 𝑘 agents sharing 𝑛 resources, located at various places, subject to the constraint that the cost of moving 
an agent to a different resource is much smaller than the cost of multiple agents sharing a resource.

The dispersion problem is also important due to its relationship to graph exploration by mobile robots, scattering on a graph, and 
load balancing on a graph. These are fundamental problems that have been well-studied by varying the system model and assumptions 
[4,5]. Although some works consider these problems in general graphs, others consider specific graphs like grids, trees, and rings.

E-mail address: ajay@uic.edu.

URL: https://www.cs.uic.edu/~ajayk.

https://doi.org/10.1016/j.tcs.2025.115272

Received 6 September 2019; Received in revised form 16 April 2025; Accepted 20 April 2025 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:ajay@uic.edu
https://www.cs.uic.edu/~ajayk
https://doi.org/10.1016/j.tcs.2025.115272
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115272&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115272
http://creativecommons.org/licenses/by/4.0/


Theoretical Computer Science 1044 (2025) 115272

2

A.D. Kshemkalyani 

Table 1
Comparison of the proposed algorithms for dispersion on graphs in the asynchronous model. No knowledge of graph parameters 𝑚, 𝑛, 
Δ, and 𝐷 is required.

Algorithm Bit Complexity 
at each robot

Time Complexity Help others 
after docking

Terminate after 
docking

Helping-Async 𝑂(𝑘 log Δ) 𝑂(min(𝑚,𝑘Δ)) steps Yes No 
Independent-Async 𝑂(𝑘 log Δ) 𝑂(min(𝑚,𝑘Δ)) steps No No 
Independent-Bounded-Async 𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) 𝑂(Δmin(𝐷,𝑘)+1) steps No Yes 
Tree-Switching-Async 𝑂(max(log𝑘, logΔ)) 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps Yes No 

1.2. Our results

Our results assume that robots have no visibility and can only communicate with other robots present at the same node as 
themselves. The robots are deterministic, and are distinguishable. The undirected graph, with 𝑚 edges, 𝑛 nodes, diameter 𝐷, and 
maximum degree Δ, is anonymous, i.e., nodes have no labels. Nodes also do not have any memory but the ports (leading to incident 
edges) at a node have locally unique labels.

We provide four efficient algorithms to solve dispersion in the asynchronous system model. These are the first algorithms to solve 
dispersion in the asynchronous system model. The first two algorithms require 𝑂(𝑘 logΔ) bits at each robot, and 𝑂(min(𝑚,𝑘Δ)) steps 
running time. The third algorithm has a space usage of 𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) bits at each robot but uses 𝑂(Δmin(𝐷,𝑘)+1)
steps. The fourth algorithm has a space usage of 𝑂(max(log𝑘, logΔ)) bits at each robot and uses 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps. We assume 
that the robots do not know any of the graph parameters 𝑛, 𝑚, 𝐷, or Δ in the algorithms. The robots also do not need to know 𝑘. It 
is sufficient if a number of bits as specified by the memory bounds are provisioned at each robot. The motivation for providing four 
algorithms is that they offer different trade-offs between memory complexity, time complexity, and features, as contrasted in Table 1. 
No one algorithm is superior to the others in all respects. The following is an overview of our algorithms; the upper bound results are 
given in Table 1.

1. Algorithm Helping-Async has a time complexity 𝑂(min(𝑚,𝑘Δ)) and space complexity of 𝑂(𝑘 logΔ) bits per robot. In this algorithm, 
docked robots, defined as robots that have reached their nodes in the final configuration, help visiting robots by maintaining data 
structures on their behalf. This algorithm requires each docked robot to remain active and help other visiting robots.

2. Algorithm Independent-Async has the same complexity (𝑂(min(𝑚,𝑘Δ)) time steps and 𝑂(𝑘 logΔ) bits per robot) as Algorithm 
Helping-Async; it differs in what, how, and where data structures are maintained. Here, each robot maintains its own data struc

tures, as opposed to Helping-Async where docked robots help visiting robots by maintaining data structures on their behalf. Yet, 
this algorithm also requires each docked robot to remain active to relay its ID to other visiting robots.

3. Algorithm Independent-Bounded-Async has a bit complexity of 𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) at each robot and a time complexity 
𝑂(Δmin(𝐷,𝑘)+1) steps. Each robot runs its algorithm independently and there is no helping among robots. Unlike Helping-Async 
and Independent-Async, a robot can terminate after docking.

4. Algorithm Tree-Switching-Async has a bit complexity of 𝑂maxlog𝑘 logΔ)) bits at each robot and a time complexity 
𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps. The algorithm instance run by a robot is dependent on the algorithm instances run by other robots, 
and a robot switches between these algorithm instances in a structured manner. The algorithm requires a docked robot to remain 
active and help visiting robots.

Although the algorithms Helping-Async, Independent-Async, and Tree-Switching-Async, technically speaking, do not terminate because 
the docked robots need to be awake to relay local information to visiting robots, we state their time complexity. This is because at 
most the time complexity number of steps are required for each robot to perform active computations and movements until it docks 
at a node; after that, a docked robot merely passively helps visiting robots (until they find a node to dock).

A preliminary version of these results was given in [6].

Organization: Section 2 describes related work. In Section 3, we give the system model. In Section 4, we present some bounds and an 
analysis of these bounds. Sections 5, 6, 7, and 8 give the four algorithms Helping-Async, Independent-Async, Independent-Bounded-Async, 
and Tree-Switching-Async, along with their correctness and complexity proofs, respectively. Section 9 gives the conclusions.

2. Related work

The dispersion problem on graphs was formulated by Augustine and Moses Jr. [3]. They showed a lower bound of Ω(𝐷) on the 
time complexity, and an independent lower bound of Ω(log 𝑛) bits per robot, to solve dispersion. They then gave several dispersion 
algorithms for specific types of graphs for the synchronous computation model. Besides giving dispersion algorithms for paths, rings, 
trees, rooted trees (a rooted tree has all the robots at the same node in the initial configuration), and rooted graphs (a rooted graph has 
all the robots at the same node in the initial configuration), they gave two algorithms for general graphs (in which the robots can be 
at arbitrary nodes in the initial configuration) assuming the synchronous system model. The first algorithm uses 𝑂(log 𝑛) bits at each 
robot and 𝑂(Δ𝐷) rounds, whereas the second algorithm uses 𝑂(𝑛 log 𝑛) bits at each robot and 𝑂(𝑚) rounds. These algorithms work 
in synchronous systems, and additionally require robots to know the graph parameters 𝑚 and 𝑛. However, both these algorithms are 
incorrect. Both algorithms use variants of Depth First Search (DFS), but may backtrack incorrectly. This can lead to getting caught in 



Theoretical Computer Science 1044 (2025) 115272

3

A.D. Kshemkalyani 

cycles while backtracking and failure in searching the graph completely. The problems arise because the algorithms fail to coordinate 
correctly concurrent searches of the graph by different robots, which interfere with one another. The backtracking strategy is not 
consistent with the forward exploration strategy. Further, while backtracking from a node, a robot uses the parent pointer of the 
docked robot without any coordination. Acknowledging these errors that were pointed out [7], the authors gave revised versions of 
these algorithms in a revised report [8]. Their revision to the first algorithm, having 𝑂(𝑚𝑛 + 𝑛2) rounds, is based on an inefficient 
way to convert from one DFS tree to another. Kshemkalyani et al. [9] proposed a fast algorithm for dispersion in the synchronous 
model. The algorithm has 𝑂(min(𝑚,𝑘Δ) ⋅ log𝑘) steps runtime using 𝑂(log𝑛) bits of memory at each robot. Recently, Kshemkalyani et 
al. [10] proposed two algorithms for dispersion on arbitrary graphs in the synchronous model assuming global communication. (i) The 
first algorithm is based on a DFS traversal and guarantees 𝑂(min(𝑚,𝑘Δ)) steps runtime using Θ(log(max(𝑘,Δ))) bits at each robot. 
(ii) The second algorithm is based on a BFS traversal and guarantees 𝑂(max(𝐷,𝑘)Δ(𝐷 +Δ)) steps runtime using 𝑂(max(𝐷,Δlog𝑘))
bits at each robot. We note again that all the above works on dispersion assume the synchronous model. There is no prior work on 
dispersion assuming the weaker but more realistic asynchronous model.

The dispersion problem on graphs is close to the problem of graph exploration by robots. In the graph exploration problem, the 
objective is to visit all the nodes of the graph. There are many results for this problem. Several works assume specific topologies such 
as trees [11,12]. Fraigniaud et al. [13] showed that using only memory at a robot, the robot can explore an anonymous graph using 
𝜃(𝐷 logΔ) bits based on a 𝐷-depth restricted DFS. They did not analyze the time complexity, which turns out to be 

∑𝐷

𝑑=1
∑𝑑

𝑖=1 Δ
𝑖 =

𝑂(Δ𝐷+1). Their algorithm has no mechanism to avoid getting caught in cycles other than the depth-restriction on the DFS. The robot 
also requires knowledge of 𝐷 to terminate. Reingold [14] gave a log-space deterministic algorithm for exploring undirected graphs. 
The space complexity is the best possible because the exploration of undirected graphs requires Ω(log 𝑛) space [13]. Cohen et al. [15] 
gave two DFS-based algorithms with 𝑂(1) memory at the nodes. The first algorithm uses 𝑂(1) memory at the robot and 2 bits memory 
at each node to traverse the graph. The 2 bits memory at each node is initialized by short labels in a pre-processing phase which 
takes time 𝑂(𝑚𝐷). Thereafter, each traversal of the graph takes up to 20𝑚 time steps. The second algorithm uses 𝑂(logΔ) bits at the 
robot and 1 bit at each node to traverse the graph. The 1 bit memory at each node is initialized by short labels in a pre-processing 
phase which takes time 𝑂(𝑚𝐷). Thereafter, each traversal of the graph takes up to 𝑂(Δ10𝑚) time steps. The problem of how much 
knowledge a robot has to have a priori, termed as advice that is provided by an oracle, in order to explore the graph in a given time, 
using a deterministic algorithm was considered in [16].

Dereniowski et al. [17] studied the trade-off between graph exploration time and the number of robots. The authors considered 
results in both the local communication model, as well as the global communication model. The main contribution is an exploration 
strategy for a polynomial number of robots 𝐷𝑛1+𝜖 < 𝑛2+𝜖 to explore graphs in an asymptotically optimal number of steps 𝑂(𝐷). Using 
the Rotor-Router algorithm allowing only logΔ bits per node, an oblivious robot (i.e., robot that is not allowed any memory) that also 
has no knowledge of the entry port when it enters a node, can explore an anonymous port-labeled graph in 2𝑚𝐷 time steps [18,19]. 
Menc et al. [20] proved a lower bound of Ω(𝑚𝐷) on the exploration time steps for the Rotor-Router algorithm.

The dispersion problem is similar to the problem of scattering or uniform deployment of 𝑘 robots on a 𝑛 node graph (and in 
contrast to the gathering problem [4,21,22]). The scattering problem was examined on rings [23--25], and on grids [26,27], under 
different system assumptions than those that we make for the dispersion problem.

The dispersion problem is also similar to the load balancing problem, wherein a given load has to be (re-)distributed among several 
processors. In this analogy, the robots are the load, and it is these active loads rather than the passive nodes that make decisions about 
movements in the graph. Load balancing in graphs has been studied extensively. Load balancing algorithms use either a diffusion

based approach [28--30], which is somewhat similar to our algorithms, or a dimension-exchange approach [31] wherein a node can 
balance with either a single neighbor in a round, or concurrently with all its neighbors in a round.

3. System model

We are given an undirected graph 𝐺 with 𝑛 nodes, 𝑚 edges, and diameter 𝐷. The maximum degree of any node is Δ. The graph is 
anonymous, i.e., nodes do not have unique identifiers. At any node, its incident edges are uniquely identified by a label in the range 
[0, 𝛿 − 1], where 𝛿 is the degree of that node. We refer to this label of an edge at a node as the port number at that node. We assume 
no correlation between the two port numbers of an edge. There is no memory at the nodes.

In our algorithms, we consider the asynchronous model. Time complexity is measured in steps. Each robot executes its steps/it

erations at an independent pace. In any step, a robot stationed at a node does some computation, perhaps after communication with 
local robots, and then optionally does a move along one of the incident edges to an adjacent node. We assume that each edge is a 
single-lane edge, in the sense that robots can move along the edge sequentially. As a result, if multiple robots make a move along an 
edge, they will enter the node in sequential order which can be captured by a real-time synchronized clock. When a robot determines 
that it will occupy a particular node in the final configuration, it docks at that node (by entering 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑒𝑡𝑡𝑙𝑒𝑑).

The 𝑘 robots are distinguished from each other by a unique ⌈log 𝑘⌉-bit label from the range [1, 𝑘]. The robots are also endowed 
with a real-time synchronized clock. A robot can communicate only with other robots that are present at the same node as itself. No 
robot has knowledge of the graph or its parameters 𝑛, 𝑚, 𝐷, and Δ. The robots also need not know 𝑘; it suffices if a number of bits 
as specified by the memory bounds are provisioned at each robot. For the asynchronous algorithms Helping-Async, Independent-Async, 
and Tree-Switching-Async, the main for loop could be replaced by a while-true loop. This is because a robot breaks out of the 
loop once it docks at a node, and is guaranteed to dock within a finite, bounded number of steps. The for loop bounds are specified 
using 𝑚, 𝑛, 𝑘, and Δ but those are only upper bounds on the number of steps and for convenience to express the time complexity. 
The parameters are not known to the robots.



Theoretical Computer Science 1044 (2025) 115272

4

A.D. Kshemkalyani 

Fig. 1. An illustration of DFS. 𝑟 is the root of DFS. The edges are explored in the numbered sequence. The non-tree edge (𝑥, 𝑧) is traversed 4 times in the DFS -- twice 
in the forward direction and twice in the backward direction.

We note that the system model in prior works that used the synchronous model [3,9,10] also assumed that robots are distinguish

able and that the nodes in the graph are anonymous.

When robots contend to dock at a node, they invoke a MUTEX(node) call that guarantees that only one robot succeeds in docking. 
The MUTEX call returns the identifier of the robot that has docked. The MUTEX may be implemented in various ways. For example, 
the earliest robot (among the contending robots) that arrived at the node can win the MUTEX; if there is a tie in case of multiple 
robots arriving simultaneously along different ports, then the tie is broken by choosing the robot arriving along the lowest numbered 
port as the winner. Or, the robots can compare their labels and the robot with the smallest label wins the MUTEX. Alternatively, the 
MUTEX can be implemented by a hardware device to which the winner robot physically connects when it docks.

Problem Description: We are given an initial configuration of 𝑘 robots, where 𝑘 ≤ 𝑛, distributed arbitrarily at the 𝑛 nodes of a graph. 
The robots need to move around to reach a final configuration in which there is at most one robot at any node in the graph.

4. Bounds and a general analysis

For the graph dispersion problem, a lower bound of Ω(𝐷) on the running time was shown in [3]. (Note that this prior work [3] 
required 𝑘 = 𝑛 whereas we allow 𝑘 ≤ 𝑛.) We present a different lower bound.

Theorem 4.1. The dispersion problem on graphs requires Ω(𝑘) steps as its running time.

Proof. Consider a line graph and all 𝑘 robots colocated at one end node in the initial configuration. In order for the robots to dock 
at distinct nodes, some robot must travel 𝑘− 1 hops. □

Our algorithms use variants of the DFS. Although the standard DFS takes 2𝑚 edge traversals or steps, such an implementation 
requires Δ bits memory at each node to track the visits on each of the Δ ports. We choose to do the tracking function using only 
logΔ bits. However, this savings comes at the cost of using 2(𝑛− 1) + 4(𝑚− (𝑛− 1)) = 4𝑚− 2𝑛+ 2 edge traversals -- 2 traversals for 
each of the 𝑛− 1 DFS tree edges, and 2 traversals each in the forward and backward directions on each of the 𝑚− (𝑛− 1) back edges 
of the graph. This is justified by the following example.

Example. Consider a graph 𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝑟, 𝑥, 𝑦, 𝑧, 𝑎}, 𝐸 = {(𝑟, 𝑥), (𝑥, 𝑦), (𝑦, 𝑧) (𝑧,𝑥) (𝑟, 𝑎)}, as illustrated in Fig. 1. Let the 
DFS begin from 𝑟. The sequence of edges explored are labeled in numerical order in the figure. Let forward edges of DFS tree be 
explored in sequence (𝑟, 𝑥), (𝑥, 𝑦), (𝑦, 𝑧). From 𝑧, (𝑧,𝑥), which is a back edge (or non-tree) edge of the DFS tree, is explored in forward 
direction and then the robot backtracks along (in the direction of) (𝑥, 𝑧). Backtracking continues on (in the direction of) (𝑧, 𝑦) and then 
(𝑦,𝑥). From 𝑥, the robot traverses (𝑥, 𝑧) in the forward direction, not knowing that it had previously traversed (𝑧,𝑥) in the forward 
direction and then (𝑥, 𝑧) in backward direction. On visiting 𝑧 the robot learns that it had already visited 𝑧. So it backtracks along (in 
the direction of) (𝑧,𝑥). Thus in this example, there are 4 traversals along the non-tree edge (𝑥, 𝑧):

• (i) (𝑧,𝑥) in forward direction, (ii) (𝑥, 𝑧) in backward direction, (iii) (𝑥, 𝑧) in forward direction, (iv) (𝑧,𝑥) in backward direction.

In 4𝑚 − 2𝑛 + 2 edges traversals, all the edges and hence all the nodes of the graph are visited and hence the 𝑘 ≤ 𝑛 robots can 
dock. We have an alternate time bound in terms of 𝑘. As each edge of the graph is traversed at most 4 times in the DFS traversal, the 
maximum number of visits to a node is 4Δ. Thus within 𝑘 ⋅ 4Δ steps, at least 𝑘 unique nodes get visited and all the 𝑘 robots can find 
a node to dock. Thus, the overall number of steps for docking all 𝑘 robots is min(4𝑚− 2𝑛+ 2,4𝑘Δ), which is 𝑂(min(𝑚,𝑘Δ)).

A lower bound of Ω(log 𝑛) bits on the memory of robots was shown in [3]. In the rest of this section, we analyze the memory 
bound of robots assuming that a 𝑂(min(𝑚,𝑘Δ)) time algorithm, based on independent DFS by each robot, is to be used. This analysis 
is useful for Helping-Async and Independent-Async. There are two challenges:



Theoretical Computer Science 1044 (2025) 115272

5

A.D. Kshemkalyani 

1. To determine whether a node has been visited before. Note that nodes have no memory in our system model. Although there are 
𝑛 nodes, we observe that a node has been visited before if and only if there is a robot docked at the node and there is a record 
of having encountered that robot before. As there are 𝑘(≤ 𝑛) robots, it suffices to track whether or not each of the 𝑘 robots has 
been encountered before. This imposes a bound of 𝑂(𝑘) bits.

2. If it is determined that a node has been visited before, backtracking is in order to meet the 𝑂(min(𝑚,𝑘Δ)) time bound. During 
the backtracking phase, to determine which port to use for backtracking requires identifying the parent node from which that 
robot first entered a particular node. Such a parent node can be identified by the local port number of the edge leading to the 
parent node. A port at a node can be encoded in log Δ bits. Further, we need to track ports at at most 𝑘−1 nodes because only a 
node with a docked robot requires other visiting robots to backtrack, and up to 𝑘− 1 nodes may be occupied by docked robots. 
This imposes a bound of 𝑂(𝑘 logΔ) bits.

Thus, the overall bound on memory at a robot is 𝑂(𝑘 logΔ) bits, assuming a 𝑂(min(𝑚,𝑘Δ)) time algorithm using independent DFS 
by each robot. The algorithms Helping-Async and Independent-Async that we propose meet these bounds.

As part of the robot memory-running time tradeoff, we also propose (i) algorithm Independent-Bounded-Async that uses 
𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) bits at each robot with a running time of 𝑂(Δmin(𝐷,𝑘)+1), and (ii) algorithm Tree-Switching-Async 
that uses 𝑂(max(log𝑘, logΔ)) bits at each robot and a running time of 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘). In (i), we use potentially lesser memory 
than 𝑘 logΔ by using increasing depth-bounded search, and in (ii) we use lesser memory than 𝑘 logΔ by having the robots run DFSs 
that are not independent.

5. Dispersion using helping in the asynchronous model

In Algorithm Helping-Async (Algorithm 1) each robot begins a DFS-variant traversal of the graph, seeking to identify a node where 
no other robot has docked. If multiple robots arrive at about the same time at a node at which no other robot is docked, they use the 
MUTEX(node) function, explained in Section 3, to uniquely determine which of those robots can dock at the node. The other robots 
continue their search for a free node. During this search, a robot needs to determine if the node it visits has been visited before by 
it. (This is needed to determine whether to backtrack to avoid getting caught in cycles, or continue its forward exploration of the 
graph.) A node has been visited before if and only if the robot docked there has encountered the visiting robot after it docked. A 
robot that docks at a node helps other robots to determine whether they have visited this node before. A robot that docks initializes 
and maintains a boolean array 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘]. It sets 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] to true if and only if it has encountered robot 𝑗 after docking. It helps a 
visiting robot 𝑗 by communicating to it the value 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗].

While backtracking, in order for a robot to determine whether to backtrack from a (already visited) node or resume forward 
exploration, it needs to know the port leading to the DFS-parent node of the current node. It is helped in determining this as follows. 
A robot that docks initializes and maintains an array 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[1, 𝑘]. Subsequently, when a robot 𝑗 first visits the node, determined 
using 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] = 0 of the docked node, the 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗] entry of the docked robot is set to the entry port used by the visiting robot. 
The docked robot also communicates 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗] (in addition to 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗]) to a visiting robot 𝑗 to help it determine whether to 
backtrack further or resume forward exploration.

A robot uses the following variables:

• 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 and 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 of type port can take values from {−1,0,1,… , 𝛿 −1} (⌈log(Δ+ 1)⌉ bits each); 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 indicates 
the port number at the current node through which the robot entered the current node on the latest visit whereas 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 is 
used to track the port through which the robot entered the current node on the first visit;

• 𝑠𝑡𝑎𝑡𝑒 (2 bits) can take values from {explore, backtrack, and settled}; and

• 𝑠𝑒𝑒𝑛 (1 bit) is a boolean to track whether the current node has been seen/visited before.

• 𝑟𝑜𝑢𝑛𝑑 is used as a round counter (log 𝑚 =𝑂(log 𝑛) bits).

In addition, a robot initializes the following two arrays once it docks at a node and enters state 𝑠𝑒𝑡𝑡𝑙𝑒𝑑:

• 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘] of type boolean (𝑘 bits), and

• 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[1, 𝑘] of type port (𝑘⌈log(Δ + 1)⌉ bits).

The semantics of these two arrays was explained above.

In Algorithm 1, lines (30-35): a docked robot 𝑖 helps visiting robot 𝑗 by sending it 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗], and updating the 
locally maintained 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗] if this is the first visit of the robot 𝑗.

When robot 𝑖 has 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 when it visits a node (line 5), there are two possibilities.

1. If some robot 𝑗 is already docked (line 6), it receives 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from 𝑗 (line 7). If the node is not already visited 
(line 8), 𝑖 sends 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 to 𝑗 (line 9) which records it in 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] (lines 33-34). Whereas if the node is already visited 
(line 10), 𝑖 backtracks through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 (line 11).

2. Robot 𝑖 contends for the MUTEX (line 13) if there is no robot docked at the node. If 𝑖 wins the MUTEX and docks, it (i) initializes 
the data structures 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘] and 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑[1, 𝑘] (lines 13-15) and (ii) for other robots 𝑗 concurrently at this node, it sends 
them 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗], receives 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 from 𝑗, and fills in their entries in the newly created data structures 



Theoretical Computer Science 1044 (2025) 115272

6

A.D. Kshemkalyani 

Algorithm 1 Helping-Async, asynchronous execution, code at robot 𝑖.
1: Initialize: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← −1; 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒;𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← −1; 𝑠𝑒𝑒𝑛← 0
2: for 𝑐𝑜𝑢𝑛𝑡 = 0,min(4𝑚− 2(𝑛− 1),4𝑘Δ) do

3: if 𝑐𝑜𝑢𝑛𝑡 > 0 then

4: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← entry port; 𝑠𝑒𝑒𝑛← 0
5: if 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then ⊳ forward exploration mode

6: if node has a robot 𝑗 docked then

7: 𝑠𝑒𝑒𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← receive 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖], 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from 𝑗 ⊳ receive info from docked robot

8: if 𝑠𝑒𝑒𝑛 = 0 then ⊳ send info to previously unseen docked robot

9: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑; send 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 to 𝑗
10: if 𝑠𝑒𝑒𝑛 = 1 then

11: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘; move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
12: else

13: if 𝑖 = (𝑟←)𝑤𝑖𝑛𝑛𝑒𝑟(𝑀𝑈𝑇𝐸𝑋(𝑛𝑜𝑑𝑒)) then ⊳ 𝑖 wins MUTEX contention

14: 𝑖 docks at node; 𝑠𝑡𝑎𝑡𝑒← 𝑠𝑒𝑡𝑡𝑙𝑒𝑑

15: Initialize 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘]← 0; 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[1, 𝑘]← −1; break()

16: else

17: 𝑠𝑒𝑒𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← receive 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖], 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from 𝑟 ⊳ receive info from winner robot

18: if 𝑠𝑒𝑒𝑛 = 0 then ⊳ send info to previously unseen winner robot

19: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑; send 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 to 𝑟
20: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
21: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then

22: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘

23: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
24: else if 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 then ⊳ backtrack mode

25: 𝑠𝑒𝑒𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← receive 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖], 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from docked robot 𝑗 ⊳ receive info from docked robot

26: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
27: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 ≠ 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then

28: 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒

29: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
30: repeat ⊳ 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑒𝑡𝑡𝑙𝑒𝑑
31: for all other robot 𝑗 that is/arrives at the node do

32: send 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗] to 𝑗 ⊳ docked robot sends info to visiting/loser robot

33: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] = 0 then ⊳ docked robot updates info for previously unseen robot

34: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗]← 1; 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑗]← receive 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 from 𝑗
35: until true

(lines 31-34). Whereas if 𝑖 loses the MUTEX contention to 𝑗, it receives 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from 𝑗, sets its 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 to 
𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑, and sends 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 to 𝑗 (lines 17-19). (Lines (17-18) are seemingly redundant but are given so that a docked 
robot can interact uniformly with both newly arrived robots, and concurrently arrived robots that have lost MUTEX contention 
to it.)

If 𝑖 has not backtracked and not docked, 𝑠𝑡𝑎𝑡𝑒= 𝑒𝑥𝑝𝑙𝑜𝑟𝑒. In this case (line 20), 𝑖 increases 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 in a modulo fashion (mod 𝛿) 
and moves forward to the next node, but switches 𝑠𝑡𝑎𝑡𝑒 to 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 if the port to move forward (new value of 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑) is the 
same as the entry port (in line 19, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 was set to the old value of 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑, which was set to the entry port in line 4) (lines 
20-23).

If 𝑖 has 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 when it visits a node (line 24), it implies some robot 𝑗 is already docked, and 𝑖 receives 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑖] and 
𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖] from 𝑗 (line 25). Robot 𝑖 increases 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 in a modulo fashion (mod 𝛿) and moves forwards to the next node while 
switching 𝑠𝑡𝑎𝑡𝑒 to 𝑒𝑥𝑝𝑙𝑜𝑟𝑒, unless the port to move along (new value of 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑) is the parent pointer port (set to 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡[𝑖]), 
in which case 𝑖 keeps 𝑠𝑡𝑎𝑡𝑒 as 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 and backtracks instead of moving forward (lines 26-29).

When a robot 𝑖 docks, for all robots 𝑗 that are at the node (after losing contention to 𝑖) or later visit the node, 𝑖 sends them their 
𝑣𝑖𝑠𝑖𝑡𝑒𝑑 and 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑟𝑡 entries, and updates these entries if this is 𝑗 ’s first visit to the node (lines 31-34).

Theorem 5.1. Algorithm 1 (Helping-Async) achieves dispersion in an asynchronous system in 𝑂(min(𝑚,𝑘Δ)) steps with 𝑂(𝑘 logΔ) bits at 
each robot.

Proof. Observe that each robot executes a variant of a DFS in the search for a free node. Each robot may need to traverse each edge 
of its DFS tree two times (once forward, once backward), and each non-tree edge four times (once for exploration in each direction, 
and once for backtracking in each direction). So for a total of 4(𝑚− (𝑛− 1)) + 2(𝑛− 1) = 4𝑚− 2𝑛+ 2 times until each edge and each 
node of the graph is visited. The robot executes for at most these many steps until it finds a free node to dock, so the running time is 
at most 4𝑚− 2𝑛+ 2. Also, in the DFS traversal, each edge is traversed at most 4 times. So within 4𝑘Δ steps, at least 𝑘 distinct nodes 
are visited, a free node will be found, and the robot will dock there. Hence, dispersion is achieved.



Theoretical Computer Science 1044 (2025) 115272

7

A.D. Kshemkalyani 

To show that dispersion is achieved in 4𝑚 − 2𝑛 + 2 steps, observe that the 𝑘 robots do a collective search of the graph, using 
individual DFS variants. Within 4𝑚 − 2𝑛+ 2 steps, if a robot is not yet docked, it will visit each node at least once, and since 𝑘 ≤ 𝑛, 
each robot will find a free node and dock there. Also within 4𝑘Δ steps, at least 𝑘 unique nodes will be visited, and the robot will find 
a free node to dock. So the running time is min(4𝑚− 2𝑛+ 2,4𝑘Δ).

From the description and analysis of the variables above, it follows that the memory of each robot is bounded by 𝑂(𝑘 logΔ)
bits. □

Note that a docked robot needs to loop forever, waiting to help any other robot that might arrive at the node later. Thus, termination 
is not possible.

It is possible to transform the algorithm into its synchronous version, Helping-Sync. In the synchronous algorithm, a robot can 
terminate after min(4𝑚 − 2(𝑛 − 1),4𝑘Δ) steps, as it is guaranteed that every other robot would have found a free node by then. 
However, robots would need to know 𝑚, 𝑛, 𝑘, and Δ.

Algorithm 2 Independent-Async, asynchronous execution, code at robot 𝑖.
1: Initialize: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← −1; 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒; 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘]← 0; 𝑠𝑡𝑎𝑐𝑘←⟂
2: for 𝑐𝑜𝑢𝑛𝑡 = 0,min(4𝑚− 2(𝑛− 1),4𝑘Δ) do

3: if 𝑐𝑜𝑢𝑛𝑡 > 0 then

4: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← entry port

5: if 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then

6: if node is free then

7: if 𝑖 =𝑤𝑖𝑛𝑛𝑒𝑟(𝑀𝑈𝑇𝐸𝑋(𝑛𝑜𝑑𝑒)) then

8: 𝑖 docks at node; 𝑠𝑡𝑎𝑡𝑒← 𝑠𝑒𝑡𝑡𝑙𝑒𝑑; break()

9: if 𝑗 is docked at node AND 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] = 0 then

10: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗]← 1
11: 𝑝𝑢𝑠ℎ(𝑠𝑡𝑎𝑐𝑘, 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑)
12: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
13: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑡𝑜𝑝(𝑠𝑡𝑎𝑐𝑘) then

14: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘;𝑝𝑜𝑝(𝑠𝑡𝑎𝑐𝑘)
15: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
16: else if 𝑗 is docked at node AND 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] = 1 then

17: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘; move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
18: else if 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 then

19: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
20: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 ≠ 𝑡𝑜𝑝(𝑠𝑡𝑎𝑐𝑘) then

21: 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒

22: else

23: 𝑝𝑜𝑝(𝑠𝑡𝑎𝑐𝑘)
24: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑

6. Independent dispersion in the asynchronous model

In Algorithm 2 (Independent-Async) for the asynchronous model, the DFS-like traversal of the graph by each robot is the same as 
in algorithm Helping-Async. However, there is no helping of undocked robots by docked robots. In addition to 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 and 𝑠𝑡𝑎𝑡𝑒, 
an undocked robot maintains the following additional data structures:

• array of boolean 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘] to determine by checking 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑟] whether it has visited the node where robot 𝑟 is docked.

• 𝑠𝑡𝑎𝑐𝑘 of type port number, to determine the parent pointer of the nodes it has visited. Specifically, the port numbers in the stack 
(from top to bottom) help the robot to backtrack from the current node all the way to its origin node in the initial configuration. 
When a robot explores the graph in a step, the entry port number into the current node get pushed onto the stack, and as a robot 
backtracks in a step, the port number gets popped from the stack. In addition, the top of the stack entry is used for determining 
whether a robot should switch from backtracking state to explore state, or switch from explore state to backtracking state.

Thus, undocked robots are largely independent of docked robots. However, even in this algorithm, a docked robot cannot termi

nate; it needs to stay up so that it can relay its label 𝑟 to a visiting undocked robot, which can then look up 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑟], and if necessary, 
manipulate its 𝑠𝑡𝑎𝑐𝑘, in order to take further actions for exploring the graph. This action of docked robots (once they enter 𝑠𝑒𝑡𝑡𝑙𝑒𝑑
state) is not explicitly shown in the Algorithm 2 pseudo-code.

In addition to the 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 (⌈log(Δ+1)⌉ bits) and 𝑠𝑡𝑎𝑡𝑒 (two bits) variables used by the previous algorithm, the boolean array 
𝑣𝑖𝑠𝑖𝑡𝑒𝑑[1, 𝑘] takes 𝑂(𝑘) bits and the 𝑠𝑡𝑎𝑐𝑘 takes 𝑂(𝑘 logΔ) bits, because the maximum depth of the stack is 𝑘 − 1, the maximum 
number of nodes at which there is a docked robot encountered.

In Algorithm 2, when robot 𝑖 visits a node and 𝑠𝑡𝑎𝑡𝑒= 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (line 5):



Theoretical Computer Science 1044 (2025) 115272

8

A.D. Kshemkalyani 

1. (lines 6-8): if the node is free, 𝑖 contends for the MUTEX to dock. If 𝑖 wins, it docks and breaks from the loop.

2. (lines 9-15): if (possibly after having lost MUTEX contention) 𝑖 finds that robot 𝑗 is docked at the node but the node has not been 
visited before, robot 𝑖 marks 𝑣𝑖𝑠𝑖𝑡𝑒𝑑[𝑗] as true and increments 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 in a modulo fashion (mod 𝛿). If the new value of 
𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 equals its old value (which is the case when 𝛿 = 1), 𝑖 changes 𝑠𝑡𝑎𝑡𝑒 to 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 and moves through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑; 
else the old value of 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 is pushed onto the 𝑠𝑡𝑎𝑐𝑘 and 𝑖 moves through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 to continue the forward exploration 
of the graph.

3. (lines 16-17): if a robot 𝑗 is docked and the node has been visited before, robot 𝑖 backtracks.

When robot 𝑖 visits a node and 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 (line 18), robot 𝑖 increments 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 in a modulo fashion (mod 𝛿) and moves 
forward to the next node while switching 𝑠𝑡𝑎𝑡𝑒 to 𝑒𝑥𝑝𝑙𝑜𝑟𝑒, unless the port it is going to move along is the parent pointer port (the 
top of the 𝑠𝑡𝑎𝑐𝑘), in which case 𝑖 keeps 𝑠𝑡𝑎𝑡𝑒 as 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 and pops the top of the 𝑠𝑡𝑎𝑐𝑘 before moving along (lines 19-24).

Theorem 6.1. Algorithm 2 (Independent-Async) achieves dispersion in an asynchronous system in 𝑂(min(𝑚,𝑘Δ)) steps with 𝑂(𝑘 logΔ) bits 
at each robot.

Proof. Dispersion is achieved because each robot traverses an independently built DFS tree; the correctness follows from using 
an argument similar to that in the proof of Theorem 5.1. The proof that the running time is 𝑂(min(𝑚,𝑘Δ)), or more specifically 
min(4𝑚− 2𝑛+ 2,4𝑘Δ) steps, is similar to that in the proof of Theorem 5.1. From the description and analysis of the variables above, 
it follows that the memory of each robot is bounded by 𝑂(𝑘 logΔ) bits. □

Note that due to the nature of the asynchronous system, a docked robot needs to loop forever, waiting to relay its label to any 
other robot that might arrive at the node later. (This action is not explicitly shown in Algorithm 2.) Thus, termination is not possible.

It is possible to transform the algorithm into its synchronous version, Independent-Sync. In the synchronous algorithm, a robot 
can terminate after min(4𝑚 − 2(𝑛 − 1),4𝑘Δ) steps, as it is guaranteed that every other robot would have found a free node by then. 
However, robots would need to know 𝑚, 𝑛, 𝑘, and Δ.

7. Depth-bounded independent dispersion in the asynchronous model

Algorithm 3 Independent-Bounded-Async, asynchronous execution, code at robot 𝑖.
1: Initialize: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← −1; 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒; 𝑑𝑒𝑝𝑡ℎ← −1; 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑← 1; 𝑠𝑡𝑎𝑐𝑘←⟂
2: while 𝑡𝑟𝑢𝑒 do

3: if 𝑑𝑒𝑝𝑡ℎ > −1 then

4: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← entry port

5: if 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then

6: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ+ 1
7: if node is free then

8: if 𝑖 =𝑤𝑖𝑛𝑛𝑒𝑟(𝑀𝑈𝑇𝐸𝑋(𝑛𝑜𝑑𝑒)) then

9: 𝑖 docks at node; 𝑠𝑡𝑎𝑡𝑒← 𝑠𝑒𝑡𝑡𝑙𝑒𝑑; break()

10: if 𝑑𝑒𝑝𝑡ℎ < 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 then

11: 𝑝𝑢𝑠ℎ(𝑠𝑡𝑎𝑐𝑘, 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑)
12: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
13: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝑡𝑜𝑝(𝑠𝑡𝑎𝑐𝑘) then

14: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘;𝑝𝑜𝑝(𝑠𝑡𝑎𝑐𝑘)
15: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
16: else if 𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 then

17: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘; move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
18: else if 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 then

19: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ− 1
20: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿
21: if 𝑡𝑜𝑝(𝑠𝑡𝑎𝑐𝑘) = −1 AND 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 0 then

22: 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 = 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 + 1
23: if 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 ≠ 𝑡𝑜𝑝(𝑠𝑡𝑎𝑐𝑘) then

24: 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒

25: else

26: 𝑝𝑜𝑝(𝑠𝑡𝑎𝑐𝑘)
27: move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑

Algorithm 3 (Independent-Bounded-Async) improves on the memory requirement of Algorithm 2 (Independent-Async), assuming 
𝐷 < 𝑘. It leverages the idea that a 𝑑-depth-bounded search of the graph can reduce the size of the stack from a maximum of 𝑘 entries 
to a maximum of 𝑑 entries, while being able to explore all the nodes in the graph as long as 𝑑 ≥𝐷 (the diameter of the graph). Since 



Theoretical Computer Science 1044 (2025) 115272

9

A.D. Kshemkalyani 

𝐷 is not known, the algorithm at each robot runs increasing-depth-bounded searches. The algorithms run by the different robots are 
independent. Note that we cannot use the idea of curtailing the search if a robot visits a node that it has already visited. If we curtailed 
the search using that idea, we may not be able to discover shorter paths through already visited nodes, and we will be unable to 
reach all the nodes of the graph. Thus, this algorithm cannot use the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 array and is fundamentally different from Algorithms 
Helping-Async and Independent-Async. Since we cannot curtail the search if a node has been visited before and we do an exhaustive 
search along every path rooted at the start node, there is redundancy in the algorithm and the time complexity is higher than the 
𝑂(min(𝑚,𝑘Δ)) steps of the prior algorithms. The algorithm can be seen as a modification of the algorithm by Fraigniaud et al. [13] 
and incurs the same space and time complexity.

In addition to the variables 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑, 𝑠𝑡𝑎𝑡𝑒, and 𝑠𝑡𝑎𝑐𝑘 of Algorithm Independent-Async, the following variables are used.

• 𝑑𝑒𝑝𝑡ℎ (⌈log (𝐷 + 1)⌉ bits) is used to track the current depth of the robot in the graph exploration.

• 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 (⌈log (𝐷 + 1)⌉ bits) is used to track the current depth bound in the graph exploration.

Theorem 7.1. Algorithm 3 (Independent-Bounded-Async) achieves dispersion in an asynchronous system in 𝑂(Δmin(𝐷,𝑘)+1) steps with 
𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) bits at each robot.

Proof. The algorithm uses an increasing depth-bounded search of the graph. When the depth becomes min(𝐷,𝑘), it is guaranteed 
that either all nodes of the graph can be visited (if 𝐷 is lower) or at least 𝑘 distinct nodes are visited (if 𝑘 is lower), and since 𝑘 ≤ 𝑛, 
each robot will find a free node and successfully dock there. Thus the algorithm terminates and dispersion is achieved. The running 
time is 

∑min(𝐷,𝑘)
𝑑=1

∑𝑑

𝑖=1(Δ − 1)𝑖 =𝑂(Δmin(𝐷,𝑘)+1).
From the description and analysis of the variables above, observe that 𝑠𝑡𝑎𝑐𝑘 requires 𝑂(min(𝐷,𝑘) ⋅ logΔ) bits and 𝑑𝑒𝑝𝑡ℎ and 

𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑 require ⌈log (𝐷 + 1)⌉ bits. 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 and 𝑠𝑡𝑎𝑡𝑒 require ⌈log (Δ + 1)⌉ and two bits, respectively. Thus, it follows that 
the memory of each robot is bounded by 𝑂(max(min(𝐷,𝑘) ⋅ logΔ, log𝐷)) bits. □

It is possible to transform the algorithm into its synchronous version, Independent-Bounded-Sync. In the synchronous algorithm, a 
robot can terminate within 𝑂(Δmin(𝐷,𝑘)+1) steps, as soon as it docks.

8. Prioritized tree-switching based dispersion in the asynchronous model

In the previous algorithms, each robot performed a separate DFS and the 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟s for up to 𝑘 − 1 DFSs had to be stored at a 
docked robot (in Helping-Async), or a traversing robot had to track up to the 𝑘 − 1 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟s (in Independent-Async) or up to the 
min(𝐷,𝑘)−1 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟s (in Independent-Bounded-Async) for its own DFS. Algorithm 4 (Tree-Switching-Async) uses 𝑂(max(log𝑘 logΔ))
bits at each robot. With such limited memory, 𝑂(1) 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟s can be stored. As multiple robots pass through a docked robot’s node, 
which DFS tree’s 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 should be stored at the docked robot? As a traversing robot encounters different docked robots, each 
associated with a possibly different DFS, with which tree and its local 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 should it associate? It is critical to ensure that the 
robots coordinate in associating with a DFS tree and its local 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟s. We solve this challenge as follows.

In addition to 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑, 𝑠𝑡𝑎𝑡𝑒, 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 (set by a docked robot), and 𝑑𝑒𝑝𝑡ℎ used by previous algorithms, the following variables 
are used.

• 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑, taken from the domain of robot identifiers (⌈log𝑘⌉ bits) is used to track the DFS tree instance the robot is associated 
with currently. The 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 is initialized to the robot identifier.

• 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑: used by a docked robot to point to the port along which the DFS, for the tree instance with which it is currently 
associated, should continue out from that node. 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 is initialized to (𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟+ 1) mod 𝛿 on docking at a node.

To achieve dispersion with limited memory 𝑂(max(log𝑘 logΔ)), robots perform DFS like before; however, they do not perform 
independent DFSs. Rather, a strict priority order (a total order) is defined on the robot identifiers, and hence on the DFS tree instances 
which are tracked by the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑s. As a robot traverses the graph, it induces a DFS tree identified by its 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑. Whenever two 
robots (a docked robot and a traversing robot) meet, their DFS trees intersect. The lower priority robot abandons its partially computed 
DFS tree and switches to the higher priority DFS tree. (If the two priorities, i.e., 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑s, are the same the robots share the same 
tree; no switch is needed.)

In doing a switch, the lower priority robot:

1. updates its 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 to the higher priority,

2. updates its 𝑑𝑒𝑝𝑡ℎ variable to the new depth in the higher priority tree,

3. (if docked) updates its 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 to 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 of the traversing robot, and

4. (if docked) updates its 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 to (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿, where the higher priority robot entered the node through 
𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑.

If the traversing robot (whether in explore or backtrack state) does the switch, it then continues the DFS in the newly-switched-to tree 
along the port 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑. Note that multiple robots may be executing the same tree instance possibly in different parts of the graph 
if they share the same 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑.



Theoretical Computer Science 1044 (2025) 115272

10

A.D. Kshemkalyani 

Algorithm 4 Tree-Switching-Async, asynchronous execution, code at robot 𝑖. At any node, the docked robot, if any, is denoted 𝑟.
1: Initialize: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← −1; 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒;𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← −1; 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑← 𝑖; 𝑑𝑒𝑝𝑡ℎ← −1; 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑← −1
2: for 𝑐𝑜𝑢𝑛𝑡 = 0,min(4𝑚− 2𝑛+ 2,4𝑘Δ) ∗ (𝑘− 1) do

3: if 𝑐𝑜𝑢𝑛𝑡 > 0 then

4: 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑← entry port

5: if 𝑠𝑡𝑎𝑡𝑒 = 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then ⊳ graph exploration mode

6: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ+ 1
7: if 𝑖 = (𝑟←)𝑤𝑖𝑛𝑛𝑒𝑟(𝑀𝑈𝑇𝐸𝑋(𝑛𝑜𝑑𝑒)) then

8: 𝑖 docks at node; 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑; 𝑠𝑡𝑎𝑡𝑒← 𝑠𝑒𝑡𝑡𝑙𝑒𝑑

9: 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑← (𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟+ 1) mod 𝛿; break()

10: if 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 > 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 then ⊳ 𝑖 switches to tree of 𝑟
11: 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑← 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑; 𝑑𝑒𝑝𝑡ℎ← 𝑟.𝑑𝑒𝑝𝑡ℎ

12: else if 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 < 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 then ⊳ 𝑟 switches to tree of 𝑖
13: 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟← 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑; 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑← 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑; 𝑟.𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ

14: 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑← (𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟+ 1) mod 𝛿
15: if 𝑑𝑒𝑝𝑡ℎ = 𝑟.𝑑𝑒𝑝𝑡ℎ then ⊳ 𝑖 and 𝑟 share same tree (possibly after switch); arrived on tree edge

16: if 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 = 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then

17: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘

18: move through 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑
19: else if 𝑑𝑒𝑝𝑡ℎ ≠ 𝑟.𝑑𝑒𝑝𝑡ℎ then ⊳ 𝑖 and 𝑟 share same tree (no switch); arrived on back edge

20: 𝑠𝑡𝑎𝑡𝑒← 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘; move through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑
21: else if 𝑠𝑡𝑎𝑡𝑒 = 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 then ⊳ backtracking mode

22: 𝑑𝑒𝑝𝑡ℎ← 𝑑𝑒𝑝𝑡ℎ− 1
23: if 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 > 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 then ⊳ 𝑖 switches to tree of 𝑟; 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 < 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 not possible

24: 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑← 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑; 𝑑𝑒𝑝𝑡ℎ← 𝑟.𝑑𝑒𝑝𝑡ℎ

25: else if 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 = 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 then ⊳ 𝑖 and 𝑟 share same tree and same depth

26: 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑←max(𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑, (𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 1) mod 𝛿) in the ordered sequence ⟨𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟+ 1,… , 𝛿 − 1,0,1,… , 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟⟩
27: if 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 ≠ 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then

28: 𝑠𝑡𝑎𝑡𝑒← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒

29: move through 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑
30: repeat ⊳ 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑒𝑡𝑡𝑙𝑒𝑑
31: if any other robot arrives at the node then

32: participate in the algorithm assuming the role of the docked robot 𝑟
33: until true

A 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 of a robot is the highest priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 of any robot (including itself) encountered until now in its traversal and 
docked durations. The 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 of a robot may be transitively inherited from other robots. We define a higher priority to be a lower 
valued 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑. The total order on the 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑s bounds the number of times a robot is forced to switch trees, to 𝑘− 1.

In addition to tracking only the highest-seen priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑, a robot also tracks its current depth 𝑑𝑒𝑝𝑡ℎ in the corresponding 
tree, and a docked robot also tracks its 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 and 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 in the corresponding tree. This 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 and 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 together 
store the information for backtracking on the tree corresponding to the local 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑. 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 = 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 after line 14 (after 
or without a switch). The 𝑑𝑒𝑝𝑡ℎ and 𝑟.𝑑𝑒𝑝𝑡ℎ after line 14 are used to determine whether the visiting robot should backtrack.

• If the 𝑑𝑒𝑝𝑡ℎs are the same (this happens certainly if there was a switch or possibly if there was no switch) (line 15), the visiting 
robot is deemed to have arrived on a tree edge in exploration mode and should continue as usual (lines 16-18).

• Otherwise (the 𝑑𝑒𝑝𝑡ℎs are unequal implying) no tree switch happened and the visiting robot arrived on a back edge in exploration 
mode, and therefore it should backtrack through 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 (lines 19-20).

When a robot arrives in backtracking mode, the 𝑑𝑒𝑝𝑡ℎs will always be the same after line 24 (after or without a switch). The visiting 
robot is deemed to have arrived on a tree edge in exploration mode (if a switch happened) in lines 23-34, or on a tree edge or 
back edge in backtracking mode (if no switch happened) (line 25). In this latter case, 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 is updated as shown in line 26. 
Then in either case (switch or no switch), if 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 = 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then 𝑖 moves out on 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 in backtrack mode, but if 
𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 ≠ 𝑟.𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 then 𝑖 changes state to explore mode before it moves out on 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 (lines 27-29).

In the asynchronous algorithm, we assume for simplicity that if there is more than one visiting (undocked) robot at a node, they 
execute their code serially. This can be implemented by the docked robot using a token to communicate with each visiting robot. 
Thus, a docked robot interacts with one visiting robot at a time.

Lemma 8.1. For any value of 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑, an undocked robot docks or switches to a higher priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 within min(4𝑚−2𝑛+2,4𝑘Δ)
steps.

Proof. The main steps of the proof are as follows.



Theoretical Computer Science 1044 (2025) 115272

11

A.D. Kshemkalyani 

1. Consider an undocked robot 𝑖 with 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 𝑣𝑖𝑑. Until it docks or switches to a higher priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑, it visits nodes with a 
docked robot 𝑟 having virtual id 𝑣𝑖𝑑 (if lower priority than 𝑣𝑖𝑑, then 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑← 𝑣𝑖𝑑).

2. 𝑟.𝑑𝑒𝑝𝑡ℎ is set correctly for all docked robots 𝑟 with 𝑟.𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 = 𝑣𝑖𝑑.

3. The way that 𝑑𝑒𝑝𝑡ℎ is updated, if 𝑑𝑒𝑝𝑡ℎ = 𝑟.𝑑𝑒𝑝𝑡ℎ after line 6 or 22, then the robot 𝑖 has traversed a DFS tree edge (in forward 
or backward direction), or has backtracked along a back edge. And if 𝑑𝑒𝑝𝑡ℎ ≠ 𝑟.𝑑𝑒𝑝𝑡ℎ, then the robot has traversed a back edge 
in explore mode. (In the algorithm, a back edge gets traversed twice in opposite directions in explore mode.)

4. Correct identification of tree edges and back edges leads to correct decisions about exploration and backtracking (acyclically) on 
the tree associated with 𝑣𝑖𝑑.

5. For the tree associated with 𝑣𝑖𝑑, the DFS is continued correctly by forwarding along 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑, and updating 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑
correctly in line 14 (when visiting in explore mode) and in line 26 (when visiting in backtrack mode).

6. When a robot switches to 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 𝑣𝑖𝑑 at node 𝑣, there is no free node from the root node of the tree associated with 𝑣𝑖𝑑 up 
until the DFS search exits(ed) node 𝑣 through 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 (here, 𝑟 is docked at 𝑣). So right after the switch, the search continues 
from 𝑟.𝑝𝑜𝑟𝑡_𝑓𝑤𝑑.

7. Hence, the DFS tree with 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 = 𝑣𝑖𝑑 is built/traversed correctly. A robot traverses each tree edge 2 times and each back 
edge 4 times. Thus, leading to 4(𝑚 − (𝑛 − 1)) + 2(𝑛 − 1) = 4𝑚 − 2𝑛 + 2 steps. Within these many steps, the robot will find a 
free node and dock, or encounter a docked robot associated with a higher priority tree and switch its 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 to that higher 
priority. Further, as each tree edge is traversed at most 4 times, within 4𝑘Δ steps, the robot is bound to find a free node and 
dock. Hence, the lemma follows. □

Theorem 8.2. Algorithm 4 (Tree-Switching-Async) achieves dispersion in an asynchronous system in 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps with 𝑂(max

(log𝑘 logΔ)) bits at each robot.

Proof. From Lemma 8.1, for any value of 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑, a robot docks or switches to a higher priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 tree within min(4𝑚−
2𝑛+ 2,4𝑘Δ) steps. After each switch, it takes at most min(4𝑚− 2𝑛+ 2,4𝑘Δ) steps in the newly joined DFS tree before a robot finds a 
free node and docks, or makes another switch to an even higher priority 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 tree. Such a switch can occur to a robot at most 
𝑘 − 1 times due to the total order on the bounded set of 𝑘 identifiers. In the DFS traversal after the last such switch, the robot will 
necessarily dock and hence dispersion is achieved.

From the above reasoning, it also follows that the running time is 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) steps until a robot docks.

Besides the 𝑝𝑜𝑟𝑡_𝑒𝑛𝑡𝑒𝑟𝑒𝑑 (𝑂(logΔ) bits), 𝑠𝑡𝑎𝑡𝑒 (2 bits), 𝑝𝑎𝑟𝑒𝑛𝑡_𝑝𝑡𝑟 (𝑂(logΔ) bits), and 𝑑𝑒𝑝𝑡ℎ (𝑂(log𝑘) bits) variables used in the 
earlier algorithms, this algorithm also uses 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑖𝑑 (⌈log𝑘⌉ bits) and 𝑝𝑜𝑟𝑡_𝑓𝑤𝑑 (𝑂(logΔ) bits). Thus, the memory at each robot is 
𝑂(max(log𝑘, logΔ)) bits. □

Observe that a docked robot needs to loop forever to cooperate with visiting robots.

It is possible to transform the algorithm into its synchronous version, Tree-Switching-Sync. In the synchronous algorithm, a robot 
can terminate within 𝑂(min(𝑚,𝑘Δ) ⋅ 𝑘) rounds, as it is guaranteed that every other robot would have found a free node by then. 
However, the robots would need to know 𝑚, 𝑛, 𝑘, and Δ.

9. Conclusions

For the dispersion problem on graphs, we proposed four algorithms for the asynchronous system model. These are the first algo

rithms to solve dispersion in the asynchronous model; until now, prior work considered dispersion only in the stronger synchronous 
model which is not realistic and does not model the real world. It is a challenge to design more space and time efficient algorithms 
and to prove lower bounds on the time and space complexity. Another challenge is to design dispersion algorithms for dynamically 
changing graphs.

We introduce the problem of ongoing dispersion on graphs. Rather than a one-shot dispersion, a robot, after docking and recharging, 
moves again on the graph (for an unspecified number of hops) and after some time, finds itself at some node from where it wants 
to search for a free node to dock again. Every time a docked robot moves, it creates a free node. This cycle repeats. It would be 
interesting to analyze our proposed algorithms and design new algorithms for ongoing dispersion.

CRediT authorship contribution statement

Ajay D. Kshemkalyani: Conceptualization, Methodology, Validation, Formal analysis, Writing - original draft, Writing - review 
and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.



Theoretical Computer Science 1044 (2025) 115272

12

A.D. Kshemkalyani 

References

[1] T. Hsiang, E.M. Arkin, M.A. Bender, S.P. Fekete, J.S.B. Mitchell, Algorithms for rapidly dispersing robot swarms in unknown environments, in: Algorithmic 
Foundations of Robotics V, Selected Contributions of the Fifth International Workshop on the Algorithmic Foundations of Robotics, WAFR 2002, Nice, France, 
December 15-17, 2002, 2002, pp. 77--94.

[2] J. Mclurkin, J. Smith, Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots, in: 7th International Symposium 
on Distributed Autonomous Robotic Systems (DARS), 2004.

[3] J. Augustine, W.K. Moses-Jr., Dispersion of mobile robots: a study of memory-time trade-offs, in: Proceedings of the 19th International Conference on Distributed 
Computing and Networking, ICDCN 2018, Varanasi, India, January 4-7, 2018, 2018, pp. 1:1--1:10.

[4] P. Flocchini, G. Prencipe, N. Santoro, Distributed Computing by Oblivious Mobile Robots, Synthesis Lectures on Distributed Computing Theory, Morgan & 
Claypool Publishers, 2012.

[5] P. Flocchini, G. Prencipe, N. Santoro (Eds.), Distributed Computing by Mobile Entities, Current Research in Moving and Computing, Lecture Notes in Computer 
Science, vol. 11340, Springer, 2019.

[6] A.D. Kshemkalyani, F. Ali, Efficient dispersion of mobile robots on graphs, in: Proceedings of the 20th International Conference on Distributed Computing and 
Networking, ICDCN 2019, Bangalore, India, January 04-07, 2019, 2019, pp. 218--227.

[7] A.D. Kshemkalyani, F. Ali, Efficient dispersion of mobile robots on graphs, CoRR, arXiv:1805.12242, 2018.

[8] J. Augustine, W.K. Moses-Jr., Dispersion of mobile robots: a study of memory-time trade-offs, CoRR, arXiv:1707.05629v4, 2018.

[9] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Fast dispersion of mobile robots on arbitrary graphs, in: F. Dressler, C. Scheideler (Eds.), 15th International Symposium 
on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2019, in: Lecture Notes in Computer Science, vol. 11931, Springer, 2019, pp. 23--40.

[10] A.D. Kshemkalyani, A.R. Molla, G. Sharma, Dispersion of mobile robots in the global communication model, in: 21st International Conference on Distributed 
Computing and Networking (ICDCN), ACM, 2020, pp. 12:1--12:10.

[11] C. Ambühl, L. Gasieniec, A. Pelc, T. Radzik, X. Zhang, Tree exploration with logarithmic memory, ACM Trans. Algorithms 7 (2) (2011) 17:1--17:21.

[12] P. Fraigniaud, L. Gasieniec, D.R. Kowalski, A. Pelc, Collective tree exploration, Networks 48 (3) (2006) 166--177.

[13] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, D. Peleg, Graph exploration by a finite automaton, Theor. Comput. Sci. 345 (2--3) (2005) 331--344.

[14] O. Reingold, Undirected connectivity in log-space, J. ACM 55 (4) (2008) 17:1--17:24.

[15] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration by a finite automaton, ACM Trans. Algorithms 4 (4) (2008) 42:1--42:18.

[16] B. Gorain, A. Pelc, Deterministic graph exploration with advice, in: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), 
in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, 2017, pp. 132:1--132:14.

[17] D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, P. Uznanski, Fast collaborative graph exploration, Inf. Comput. 243 (2015) 37--49.

[18] V. Yanovski, I.A. Wagner, A.M. Bruckstein, A distributed ant algorithm for efficiently patrolling a network, Algorithmica 37 (3) (2003) 165--186.

[19] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, Euler tour lock-in problem in the rotor-router model, in: Distributed Computing, 23rd 
International Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings, 2009, pp. 423--435.

[20] A. Menc, D. Pajak, P. Uznanski, Time and space optimality of rotor-router graph exploration, Inf. Process. Lett. 127 (2017) 17--20.

[21] S. Bhagat, S.G. Chaudhuri, K. Mukhopadhyaya, Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement, J. Discret. Algorithms 
36 (2016) 50--62.

[22] D. Pattanayak, K. Mondal, H. Ramesh, P.S. Mandal, Gathering of mobile robots with weak multiplicity detection in presence of crash-faults, J. Parallel Distrib. 
Comput. 123 (2019) 145--155.

[23] Y. Elor, A.M. Bruckstein, Uniform multi-agent deployment on a ring, Theor. Comput. Sci. 412 (8--10) (2011) 783--795.

[24] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, T. Masuzawa, Uniform deployment of mobile agents in asynchronous rings, in: Proceedings of the 2016 ACM 
Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, 2016, pp. 415--424.

[25] M. Shibata, T. Mega, F. Ooshita, H. Kakugawa, T. Masuzawa, Uniform deployment of mobile agents in asynchronous rings, J. Parallel Distrib. Comput. 119 
(2018) 92--106.

[26] L. Barrière, P. Flocchini, E.M. Barrameda, N. Santoro, Uniform scattering of autonomous mobile robots in a grid, Int. J. Found. Comput. Sci. 22 (3) (2011) 
679--697.

[27] P. Poudel, G. Sharma, Time-optimal uniform scattering in a grid, in: Proceedings of the 20th International Conference on Distributed Computing and Networking, 
ICDCN 2019, Bangalore, India, January 04-07, 2019, 2019, pp. 228--237.

[28] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, J. Parallel Distrib. Comput. 7 (2) (1989) 279--301.

[29] S. Muthukrishnan, B. Ghosh, M.H. Schultz, First- and second-order diffusive methods for rapid, coarse, distributed load balancing, Theory Comput. Syst. 31 (4) 
(1998) 331--354.

[30] R. Subramanian, I.D. Scherson, An analysis of diffusive load-balancing, in: SPAA, 1994, pp. 220--225.

[31] C. Xu, F.C.M. Lau, Analysis of the generalized dimension exchange method for dynamic load balancing, J. Parallel Distrib. Comput. 16 (4) (1992) 385--393.

http://refhub.elsevier.com/S0304-3975(25)00210-5/bib378D77E98FB51A86597BD8055C2FF56Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib378D77E98FB51A86597BD8055C2FF56Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib378D77E98FB51A86597BD8055C2FF56Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib9184BBD632FBB3223C25CAD571BDB80Es1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib9184BBD632FBB3223C25CAD571BDB80Es1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibA8652E71B11BDFF9D5420B08D5F60A65s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibA8652E71B11BDFF9D5420B08D5F60A65s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib519C2AF014B04B3369E6C456FC79F079s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib519C2AF014B04B3369E6C456FC79F079s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibE7CE6A7460633F36D9966430F8FC9BCEs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibE7CE6A7460633F36D9966430F8FC9BCEs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibC686F7044CD92F755DA0A914857483FEs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibC686F7044CD92F755DA0A914857483FEs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib1776700BDE87381B7AE398E150446971s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib8AC263F55D6D607506770F5DD6F00ACEs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib514BE7F0CDDA035D890E40201965BB07s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib514BE7F0CDDA035D890E40201965BB07s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibD2C369F8E3B2A1E8477246ECC79B973Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibD2C369F8E3B2A1E8477246ECC79B973Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib0E97F6EAE22B893B710158ED11310FD3s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib5A77858238544DD8D054E8C59D5D578As1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib922595B6EE4481102F94982E156BA937s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib95B459FBD01A975F95665F6744F859B1s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib127F76EA456CC14C793D460314902073s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib19AD0644DAC87B413FA3297F9E1F2FC4s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib19AD0644DAC87B413FA3297F9E1F2FC4s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib59A33738EE2D25581BD9F6036FA7A30As1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib0EA42CF424660F2E006DC6937A15518Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib5F31BFEA18BC3A01F8FA8B5B7E1B914As1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib5F31BFEA18BC3A01F8FA8B5B7E1B914As1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib1D2BB5DFADFBE574440663215513B94Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib98B12B4369B4245F41F14E1B197B883Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib98B12B4369B4245F41F14E1B197B883Cs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib25E5C4894E05188C995287592E913C04s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib25E5C4894E05188C995287592E913C04s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib8CA67F1A8145C4ECE8B0767B8E940FA7s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib442728260BE51E443F81C93827829479s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib442728260BE51E443F81C93827829479s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib259BE12AEEDC2FB99372AFC3B081D9DFs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib259BE12AEEDC2FB99372AFC3B081D9DFs1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib6F2063470639B3B352BC7318F781BA09s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib6F2063470639B3B352BC7318F781BA09s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib07C38BC8B2B3C81D528C11135EC10F41s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib07C38BC8B2B3C81D528C11135EC10F41s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib38B88A36B7FC435521871F686696EB44s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib429021DD70788D67CB62AA13A8255DC3s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib429021DD70788D67CB62AA13A8255DC3s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bibF65EF928943DF1347B089CAE78A34708s1
http://refhub.elsevier.com/S0304-3975(25)00210-5/bib9E61FD56B68E15AA0956252502564D3Ds1

	Dispersion of mobile robots on graphs in the asynchronous model
	1 Introduction
	1.1 Background and motivation
	1.2 Our results

	2 Related work
	3 System model
	4 Bounds and a general analysis
	5 Dispersion using helping in the asynchronous model
	6 Independent dispersion in the asynchronous model
	7 Depth-bounded independent dispersion in the asynchronous model
	8 Prioritized tree-switching based dispersion in the asynchronous model
	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


