
814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Byzantine-Tolerant Causal Ordering for
Unicasts, Multicasts, and Broadcasts

Anshuman Misra and Ajay D. Kshemkalyani , Senior Member, IEEE

Abstract—Byzantine fault-tolerant causal ordering of messages
is useful to many applications. Causal ordering requires a property
that we term strong safety, and liveness. In this paper, we use
execution histories to prove that it is impossible to solve causal
ordering – strong safety and liveness – in a deterministic manner
for unicasts, multicasts, and broadcasts in an asynchronous system
with one or more Byzantine processes. We also define a weaker
version of strong safety termed weak safety. We prove that it is
impossible to solve causal ordering – weak safety and liveness –
in a deterministic manner for unicasts and multicasts, in an asyn-
chronous system with one or more Byzantine processes. In view
of these impossibility results, we propose the Sender-Inhibition
algorithm and the Channel Sync algorithm to provide causal
ordering – weak safety and liveness – of unicasts under the Byzan-
tine failure model in synchronous systems, which have a known
upper bound on message latency. The algorithms operate under the
synchronous system model, but are inherently asynchronous and
offer a high degree of concurrency as lock-step communication is
not assumed. The two algorithms provide different trade-offs. We
also indicate how the algorithms can be extended to multicasts.

Index Terms—Byzantine fault-tolerance, causal order, multicast,
broadcast, asynchronous system.

I. INTRODUCTION

CAUSALITY provides important application-level seman-
tics to distributed programs. Causality is defined by the

happens before [1] relation on the set of events, and by extension,
on the set of messages. If messagem1 causally precedesm2 and
both are sent to pi, then m2 cannot be delivered before m1 at
pi to enforce causal order [2]. This property is the strong safety
property of causal ordering. An additional property is liveness
which requires that a message from a correct process to another
correct process is eventually delivered. Causal ordering ensures
that causally related updates to data occur in a valid manner
respecting that causal relation. Applications of causal ordering
include distributed data stores, fair resource allocation, and
collaborative applications such as multiplayer online gaming,
social networks, event notification systems, group editing of
documents, and distributed virtual environments.

It is important to solve causal ordering under the Byzantine
failure model because it mirrors the real world. Byzantine-
tolerant causal ordering of broadcasts was studied in [3].

Manuscript received 22 September 2023; revised 1 January 2024; accepted 17
February 2024. Date of publication 21 February 2024; date of current version 21
March 2024. Recommended for acceptance by J. Xu. (Corresponding author:
Ajay D. Kshemkalyani.)

The authors are with the Department of Computer Science, University
of Illinois Chicago, Chicago, IL 60607 USA (e-mail: amisra7@uic.edu;
ajay@uic.edu).

Digital Object Identifier 10.1109/TPDS.2024.3368280

Byzantine-tolerant causal ordering for unicasts or multicasts has
not been considered besides the recent analysis in [4], [5], [6].

Contributions:
1) We prove using execution histories that causal

ordering – strong safety and liveness – of unicasts,
multicasts, and broadcasts using a deterministic algorithm
in an asynchronous system with even one Byzantine
process is impossible. We provide a weakening of strong
safety that we term weak safety. Weak safety requires
that if m1 causally precedes m2 and there is a causal
path from the send event of m1 to the send event of m2

passing through only correct processes in the execution,
thenm2 should not be delivered beforem1 at all common
destinations of m1 and m2. We prove that it is impossible
to provide causal ordering – weak safety and liveness – of
unicasts and multicasts using a deterministic algorithm in
an asynchronous system with even one Byzantine process.
All the above results are disallowing cryptography.
We then prove that even with cryptography, it is impossible
to provide strong safety and liveness in a determinis-
tic manner for unicasts, multicasts, and broadcasts in a
Byzantine failure prone system. However, we can provide
weak safety and liveness in a deterministic manner with
the help of cryptography.

2) The above results are tabulated in Table I. A main contri-
bution in the results’ proofs is to show a reduction from the
consensus problem to the causal ordering problem, thus
establishing the impossibility of solving causal ordering.
In Section VII, we prove that causal ordering does not
reduce to consensus, i.e., causal ordering cannot be solved
even if consensus were solvable and hence causal ordering
is harder than consensus.

3) In view of the above impossibility results for asynchronous
systems, we show that a deterministic cryptography-free
solution for weak safety and liveness for unicasts can
be designed in a synchronous system. The strengthening
is in the form of a known upper bound δ on message
latency, and also a known upper bound ψ on the rela-
tive speeds of processors. Specifically, we propose two
algorithms.
a) We propose the Sender-Inhibition algorithm for weak

safety and liveness of unicasts. The algorithm is simple
to understand and implement. However send events at
a process are blocking with respect to each other. This
means that a process can initiate a message send only
after the previous message it sent has been received at

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3987-7945
https://orcid.org/0000-0003-2451-7306
mailto:amisra7@uic.edu
mailto:ajay@uic.edu

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 815

TABLE I
SOLVABILITY OF CAUSAL ORDERING USING DETERMINISTIC ALGORITHMS IN ASYNCHRONOUS SYSTEMS UNDER DIFFERENT COMMUNICATION MODES

TABLE II
TABLE OF MAIN ACRONYMS AND NOTATIONS

the destination. The algorithm eliminates the O(n2)
message space and time overhead of [2], [7], [8],
[9], [10], where n is the number of processes in the
system, and uses one control message of sizeO(1) per
application message sent.

b) We propose the Channel Sync algorithm for Byzan-
tine-tolerant causal ordering of unicasts in a syn-
chronous system. This algorithm uses 2(n− 2) control
messages of size O(1) each, per application message.
This algorithm allows complete concurrency in the
execution. The implementation uses n queues per pro-
cess. We prove the correctness of the algorithm and
bound the time a message can spend in a queue, despite
the presence of Byzantine processes in the system.

We also indicate how the Sender-Inhibition algorithm and the
Channel Sync algorithm can be extended for multicasts.

Table II tabulates the main acronyms and notations used.
The Sender-Inhibition algorithm is based on [5], and the

Channel Sync algorithm is based on [6]. Some portions of the
solvability results are based on [6]. This paper has been greatly
expanded, it has fully reworked proofs for the solvability results
without cryptography, and the solvability results, theorems, and
proofs using cryptography are entirely new. The result that causal
ordering does not reduce to consensus is also entirely new.

Roadmap: Section II reviews related work. Section III gives
the system model. Section IV gives the main results about the
solvability of Byzantine causal unicast, multicast, and broad-
cast in a deterministic manner in an asynchronous system. We

816 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

consider both cases – without cryptography and with cryptog-
raphy. For a synchronous system where there is a known upper
bound on the message latency, Sections V and VI present the
Sender-Inhibition algorithm and the Channel Sync algorithm
for solving Byzantine causal unicast – weak safety and liveness
– in a deterministic cryptography-free manner. The correctness
proofs are also given. Section VII gives a discussion and Sec-
tion VIII concludes.

II. RELATED WORK

Algorithms for causal ordering of unicast messages in an
asynchronous setting under a fault-free model have been pro-
posed, e.g., in [9], [11]. Algorithms for causal ordering of point-
to-point messages in real-time applications have been proposed
in [12], [13]. Algorithms for causal multicasts in a failure-free
setting are given in [7], [8]. The above algorithms append control
information to application messages. The algorithm in [14]
for the same setting does broadcast via flooding on a overlay
topology and no control information is used.

There has been some work on causal broadcasts under various
failure models. Causal ordering of broadcast messages under
crash failures in asynchronous systems was introduced in [2].
This algorithm required each message to carry the entire set of
messages in its causal past as control information. The algo-
rithm presented in [15] implements crash fault-tolerant causal
broadcast in asynchronous systems with a focus on optimizing
the amount of control information piggybacked on each mes-
sage. An algorithm for causally ordering broadcast messages –
providing only weak safety and liveness – in an asynchronous
system with Byzantine failures is proposed in [3]. The feasibility
of solving Byzantine causal order for unicasts, multicasts, and
broadcasts was analyzed in [4]. Previously, a probabilistic algo-
rithm based on atomic (total order) broadcast and cryptography
for secure causal atomic broadcast (liveness and strong safety)
in an asynchronous system was proposed [16]. This logic used
acknowledgements and effectively processed the atomic broad-
casts serially. More recently for the client-server configuration,
two protocols for crash failures and a third for Byzantine failure
of clients based on cryptography were proposed for secure causal
atomic broadcast [17]. The third made assumptions on latency
of messages, and hence works only in a synchronous system.

Recently there has been some work on the related problem
of implementing Byzantine-tolerant causal consistency in dis-
tributed shared memory and replicated databases [18], [19], [20];
these approaches relied on broadcast communication. In [18],
Byzantine Reliable Broadcast (BRB) [21] is used to remove
misinformation induced by the combination of asynchrony and
Byzantine behaviour. In [19], PBFT (total order broadcast) [22]
is used to achieve consensus among non-Byzantine servers
regarding the order of client requests. In [20], Byzantine causal
broadcast has been used to implement Byzantine eventual con-
sistency.

To the best of our knowledge, no paper has considered,
analyzed, or attempted to solve causal ordering of unicasts and
multicasts in a deterministic manner in an asynchronous system
with Byzantine failures, besides our analysis of solvability [4].

III. SYSTEM MODEL

This paper deals with a distributed system having Byzantine
processes which are processes that can misbehave [23], [24]. A
correct process behaves exactly as specified by the algorithm
whereas a Byzantine process may exhibit arbitrary behaviour
including crashing at any point during the execution. A Byzan-
tine process cannot impersonate another process or spawn new
processes.

The distributed system is modelled as an undirected graph
G = (P,C). Here P is the set of processes communicating
asynchronously in the distributed system. Let n be |P |. C is the
set of FIFO (logical) communication links over which processes
communicate by message passing. The communication links are
reliable implying messages cannot get lost or be duplicated, and
communication is authenticated. G is a complete graph.

While stating and proving our solvability results, the system is
assumed to be asynchronous, i.e., there is no fixed upper bound
δ on the message latency, nor any fixed upper bound ψ on the
relative speeds of processors [25]. In contrast, a synchronous
system has been defined as one in which both δ and ψ exist and
are known [25]. As solving causal ordering is impossible in most
circumstances (summarized in Table I), we give two determin-
istic cryptography-free algorithms for weak safety and liveness
for a system where δ is known and used by the algorithms;
the algorithms rely on timeouts which can use knowledge of ψ
for accuracy. Thus, it can be said that the algorithms assume a
synchronous system.

Let exi , where x ≥ 1, denote the x-th event executed by
process pi. An event may be an internal event, a message send
event, or a message receive event. Let the state of pi after exi
be denoted sxi , where x ≥ 1, and let s0i be the initial state. The
execution at pi is the sequence of alternating events and resulting
states, as 〈s0i , e1i , s1i , e2i , s2i . . .〉. The execution history at pi is the
finite execution at pi up to the current or most recent or specified
local state. The happens before [1] relation, denoted →, is an
irreflexive, asymmetric, and transitive partial order defined over
events in a distributed execution that is used to define causality.

Definition 1: The happens before relation on events consists
of the following rules:

1) Program Order: For the sequence of events 〈e1i , e2i , . . .〉
executed by process pi, ∀ j, k such that j < k we have
eji → eki .

2) Message Order: If event exi is a message send event
executed at processpi and eyj is the corresponding message
receive event at process pj , then exi → eyj .

3) Transitive Order: If e→ e′ ∧ e′ → e′′ then e→ e′′.
Next, we define the partial order happens before relation→

on the set of all application-level messages R.
Definition 2: The happens before relation→ on messages in

R consists of the following rules:
1) If pi sent or delivered messagem before sending message

m′, then m→ m′.
2) If m→ m′ and m′ → m′′, then m→ m′′.
Definition 3: The causal past of message m is denoted as

CP (m) and defined as the set of messages in R that causally
precede message m under→.

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 817

We require an extension of the happens before relation on mes-
sages to accommodate the possibility of Byzantine behaviour.
We present a partial order on messages called Byzantine happens

before, denoted as
B−→, defined on S, the set of all application-

level messages that are both sent by and delivered at correct
processes in P .

Definition 4: The Byzantine happens before relation
B−→ on

messages in S consists of the following rules:
1) Ifpi is a correct process andpi sent or delivered messagem

(to/from another correct process) before sending message

m′ to a correct process, then m
B−→ m′.

2) If m
B−→ m′ and m′ B−→ m′′, then m

B−→ m′′.
The Byzantine causal past of a message is defined as follows:
Definition 5: The Byzantine causal past of message m, de-

noted as BCP (m), is defined as the set of messages in S that

causally precede message m under
B−→.

We consider three possible modes of communication: multi-
cast, unicast, and broadcast. Though well-understood, we define
these next in the context of Byzantine fault-tolerance. In a
multicast, a message is sent to a subset of processes forming
a process group G. Different multicast send events can send
to different process groups. In unicast, the process group con-
sists of a single destination process. In broadcast, G is the set
of all processes. In a multicast/unicast/broadcast, a message
m is sent at a send event using send(m,G), send(m, {pi}),
send(m,P), respectively, and is delivered at a receive event via
deliver(m).

Definition 6: Byzantine Reliable Multicast (BRM) to group
G satisfies the following properties:

1) (Validity:) If a correct process pi delivers messagem from
sender(m) sent to group G, then sender(m) must have
executed send(m,G) and pi ∈ G.

2) (Self-delivery:) If a correct process executes send(m,G),
then it eventually delivers m.

3) (Agreement:) If a correct process delivers a message m
from a possibly faulty process, then all correct processes
in G will eventually deliver m.

4) (Integrity:) For any message m, a correct process pi de-
livers m at most once.

5) (No Information Leakage:) No process outside the group
G sees the content of m.

Definition 7: Byzantine Reliable Unicast (BRU) topi satisfies
the following properties:

1) (Validity:) If a correct process pi delivers message m
from sender(m), then sender(m) must have executed
send(m, {pi}).

2) (Delivery:) If a correct process executes send(m, {pi})
and pi is a correct process, then pi eventually executes
deliver(m).

3) (Integrity:) For any message m, a correct process pi de-
livers m at most once.

4) (No Information Leakage:) No process besides the sender
and receiver of m sees the content of m.

Definition 8: Byzantine-tolerant Reliable Broadcast (BRB)
provides the following guarantees [21], [26]:

1) (Validity:) If a correct process delivers a message m
from sender(m), then sender(m) must have executed
send(m,P).

2) (Self-delivery:) If a correct process executes send(m,P),
then it eventually delivers m.

3) (Agreement:) If a correct process delivers a message m
from a possibly faulty process, then all correct processes
eventually deliver m.

4) (Integrity:) For any messagem, a correct process delivers
m at most once.

It can be seen from the above three definitions that BRU
and BRB are special cases of BRM. As a unicast has a single
destination, the Agreement property of BRM goes away in BRU.
As the destination set of a broadcast is the set of all processes, the
No Information Leakage property of BRM goes away in BRB.

As Byzantine causal multicast/unicast/broadcast is an appli-
cation layer property, it runs on top of the Byzantine Reli-
able Multicast (BRM)/ Unicast (BRU) /Broadcast (BRB) com-
munication layer below. Byzantine Causal Multicast (BCM)/
Unicast (BCU)/ Broadcast (BCB) is invoked as send(m,G)/
send(m, {pi})/ send(m,P) which in turn invokes send(m′, G)/
send(m′, {pi})/ send(m′, P) to the BRM/ BRU/ BRB layer
below. Here, m′ is m plus some control information appended
by the BCM/ BCU/ BCB layer. A deliver(m′) from the BRM/
BRU/ BRB layer below is given to the BCM/ BCU/ BCB layer
which delivers the message m to the application via deliver(m)
after the processing in that layer.

The correctness of Byzantine causal order unicast/multicast/

broadcast is specified on (R,→) and (S,
B−→). BCM/ BCU/

BCB needs to satisfy properties that are the counterparts of the
properties in Definitions 6, 7, 8, respectively. In addition to these
properties safety and liveness need to be satisfied as follows.

Definition 9: A causal ordering algorithm for unicast/multi-
cast/broadcast messages must ensure the following:

1) Strong Safety: ∀m′ ∈ CP (m) such thatm′ andm are sent
to the same (correct) process, no correct process delivers
m before m′.

2) Liveness: Each message sent by a correct process to an-
other correct process will be eventually delivered.

Definition 10: A causal ordering algorithm for unicast/multi-
cast/broadcast messages must ensure the following:

1) Weak Safety:∀m′ ∈ BCP (m) such thatm′ andm are sent
to the same (correct) process, no correct process delivers
m before m′.

2) Liveness: Each message sent by a correct process to an-
other correct process will be eventually delivered.

The goal is to satisfy both properties in the above definitions.
A trivial but unacceptable solution to satisfy strong safety, but
no liveness, is to never deliver a message. Likewise, a trivial but
unacceptable solution to satisfy liveness, but no strong safety, is
to simply deliver any message that is received. Ruling out such
trivial but unacceptable solutions, in the sequel when we say
that neither safety nor liveness can be guaranteed, or say that
one of the two properties but not the other can be guaranteed,
we mean using a non-trivial algorithm that attempts to satisfy
both properties.

818 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

While we have given the formal definitions of BRM, BRU,
BRB, and BCM, BCU, BCB in terms of the same send and de-
liver primitives, in the sequel the context will be well-identified.
Further, in our solvability results for BCM/ BCU/ BCB, we
consider only the strong safety or weak safety, and liveness
properties. The Validity, Self-delivery, Agreement, Integrity, No
Information Leakage properties at the application layer follow
straightforwardly from these properties at the communication
layer below and are orthogonal to our study.

When m
B−→ m′, then all processes that sent messages along

the causal chain from m to m′ are correct processes. This
definition is different from m→M m′ [3], where M was de-
fined as the set of all application-level messages delivered at
correct processes, andMCP (m′) could be defined as the set of
messages inM that causally precedem′. Whenm→M m′, then
all processes, except the first, that sent messages along the causal

chain from m to m′ are correct processes. Our definition of
B−→

(Definition 4) allows for the purest notion of safety – weak safety
(Definition 10) – that can be guaranteed to hold under unicasts
and multicasts. The equivalent safety definition, that could be
defined on MCP instead of BCP, would not be guaranteed under
unicasts and multicasts, but is satisfied under broadcasts [3]. Our

definition of
B−→ and→M [3] both make the assumption that from

the second to the last process that send messages along the causal
chain from m to m′, are correct processes.

IV. SOLVABILITY RESULTS

A. Strong Safety and Liveness without Cryptography

An algorithm to solve causal ordering collects the execution
history of each process in the system and derives causal relations
from it. Let Ei denote the (actual) execution history at pi and
let E =

⋃
i{Ei}. For any causal ordering algorithm, let Fi

be the execution history at pi as collected by the algorithm
and let F =

⋃
i{Fi}. F thus denotes the execution history as

collected by the algorithm. Let M(E) and M(F) denote the
messages sent and/or received inE and sent and/or received inF ,
respectively. pr is a correct process which receivesm2 ∈M(E).
m1 ∈M(E) ∪M(F) is a message sent to pr; becausem1 need
not have reached pr yet, it may belong to M(F) \M(E). Let
m1 → m2|E and m1 → m2|F be the evaluation (1 or 0) of
m1 → m2 using E and F , respectively.

When correct process pr receives m2, it needs to correctly
determine whether to deliverm2 before a messagem1 or to wait
for m1 before delivery of m2. To formulate this, we rephrase
the causal ordering problem (Definition 9) as CO(E,F,m2) as
follows.

Definition 11: The causal ordering problem CO(E,F,m2)
for a message m2 received by a correct process pr is to devise
an algorithm to collect the execution history E as F at pr such
that CO_Deliv(m2) = 1, where

CO_Deliv(m2) =

{
1 if ∀m1,m1 → m2|E = m1 → m2|F
0 otherwise

CO_Deliv(m2) returns 1 iff ∀m1,m1 → m2|E = m1 →
m2|F . When 1 is returned, the algorithm output matches the

actual truth and solves CO correctly. Thus, returning 1 indicates
that the problem has been solved correctly by the algorithm using
F . 0 is returned if either

1) ∃m1 such that m1 → m2|E = 1 and m1 → m2|F = 0,
denoting a strong safety violation because pr will not wait
for m1 before delivery of m2, or

2) ∃m1 such that m1 → m2|E = 0 and m1 → m2|F = 1,
denoting a liveness violation because pr may continue
waiting indefinitely for a fakem1 to arrive before deliver-
ing the arrived m2.

To determine whether CO is solved correctly, we have to eval-
uate∀m1,m1 → m2|E = m1 → m2|F even ifm1 ∈ (M(E) ∪
M(F)) \M(E) because such an m1 is recorded by the algo-
rithm as part of F . The key observation we make is that in
CO, a single Byzantine process pb can cause F (as recorded
by the algorithm) to be different from E. This is not just a
mismatch between Eb and Fb at pb but also at other processes,
and also a mismatch between other Ea and Fa at processes
pc, by contaminating Fb and/or Fa via direct and transitive
message passing (across different messages) originated at or
passing through pb.

Our results relate causal ordering to the Consensus problem
[23], [24], defined as follows.

Definition 12: In the Consensus problem, each process has
an initial value and all correct processes must agree on a single
value. The solution needs to satisfy the following three condi-
tions.

1) Agreement: All non-faulty processes must agree on the
same single value.

2) Validity: If all non-faulty processes have the same initial
value, then the agreed-on value by all the non-faulty
processes must be that same value.

3) Termination: Each non-faulty process must eventually
decide on a value.

Theorem 1: It is impossible to solve causal ordering (Def-
inition 9) as specified by CO(E,F,m2) of unicast messages
in an asynchronous message passing system with one or more
Byzantine processes as neither strong safety nor liveness is
guaranteed.

Proof: We prove the impossibility of solving the CO problem
by showing:

1) a reduction (denoted �) from Black_Box to CO, where
Black_Box is defined below,

2) a reduction from the Consensus problem (which by the
FLP result [27] is unsolvable in the presence of a single
Byzantine process) to the Black_Box problem.

Specifically, we show how Consensus can be solved by solv-
ing Black_Box, and how Black_Box can be solved by solving
CO. If CO were solvable, Black_Box would be solvable, and
then Consensus would also be solvable. That contradicts the
unsolvability of Consensus. Hence, there cannot exist any algo-
rithm to solve CO.

Black_Box(V ,E, F,m2) takes as input a vector V of initial
boolean values, one per process, E, F , and message m2 sent to
a correct (non-Byzantine) process pr and m2 is received by pr.
Black_Box acts as follows. The correct process pr broadcasts

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 819

the value w where:

w =

⎧⎪⎪⎨
⎪⎪⎩

0 if each correct pi hasV [i] = 0
1 if each correct pi hasV [i] = 1∧

m1
(m1 → m2|E =

m1 → m2|F) otherwise

Black_Box is solvable if CO at pr is solvable correctly because
solving CO requires using the execution histories of potentially
Byzantine processes as recorded by the algorithm in F besides
identifying the Byzantine processes. In order for any algorithm
to correctly solve CO, it must ensure that F matchesE. For this,
the following must hold.
� A Byzantine process may attempt to insert a fake entry in
Fx about sending a message from px to py and contaminate
the reporting of histories in F , leading to a liveness viola-
tion andM(F) \M(E)
= ∅. Therefore, either contamina-
tion ofF has to be prevented or malicious entries have to be
filtered out from F in bounded time. But due to unicasting,
a message from a potentially Byzantine px to py in Fx,
cannot be verified in bounded time by other processes while
collecting the reported execution history as the message
itself cannot be broadcast or communicated to any process
other than py to keep it private. Therefore, identification of
Byzantine processes, their actual execution histories, and
causal chains from and through them is required.

� Let there be a message m sent by px in Ex. During the
collection ofEx for reportingFx, Byzantine processes may
delete information about m from Fx, leading to a strong
safety violation andM(E) \M(F)
= ∅. Therefore, either
deletion of information from E in F has to be prevented,
or such deletions from E when presented with F have to
be recognized in bounded time. This requires identification
of the Byzantine processes, their actual execution histories,
and causal chains from and through them.

If there were an algorithm to make F match E, it requires
identifying whether each of the processes that input their execu-
tion histories is correct or Byzantine, and tracing and dealing
with/resolving the impact of contamination via message pass-
ing by the Byzantine processes from/through those Byzantine
sources on the execution histories of processes at other pro-
cesses. Thus, Black_Box � CO.

When Consensus(V) is to be solved, it invokes the black box
for Black_Box(V ,E, F,m2). Each correct process outputs as its
consensus value the value that it receives from pr and terminates.
Agreement, Validity, and Termination clauses of Consensus can
be seen to be satisfied. So Consensus � Black_Box.

If CO is (correctly) solvable, it returns 1 for ∀m1,m1 →
m2|E = m1 → m2|F , (and implicitly for allm2). We now have

Consensus � Black_Box � CO

This implies that if the CO problem is solvable, then Con-
sensus is also solvable. That contradicts the FLP impossibil-
ity result for a Byzantine process system, hence CO is not
solvable. �

Remark: Observe that under the crash-failure model, even
though Consensus � Black_Box, we have that Black_Box
�
CO. This latter relation
� is because solving CO does not require

identifying the crashed processes; their (correct) execution histo-
ries can be faithfully transmitted to other processes (transitively)
via the execution messages sent in the execution history itself
as it grows and be present at the other (correct) processes’
execution histories and in in-transit messages. As m1 and m2

must have been sent, the execution histories of their senders can
transitively propagate to other non-crashed processes. In other
words, the execution history of any prefix can be represented by
that execution. Therefore, M(E) =M(F). Hence, it suffices
to consider the execution histories Ei of non-crashed processes
(that include pr) to determine m1 → m2 without having to
identify the crashed processes.

We now consider the broadcast communication mode. The
proof analyzing the CO problem uses Byzantine Reliable Broad-
cast (BRB) [21], [26] as a layer beneath the broadcast invocation.
Without loss of generality, this proof considers the strongest
form of broadcast that gives the highest resilience to Byzantine
behavior, namely BRB (Definition 8).

Theorem 2: It is impossible to solve causal ordering (Defi-
nition 9) as specified by CO(E,F,m2) of broadcast messages
in an asynchronous message passing system with one or more
Byzantine processes as only liveness but not strong safety is
guaranteed.

Proof: We outline the logic that CO (Definition 9) cannot
be solved for Byzantine causal broadcast. For Byzantine causal
broadcast, F cannot be made to match E.
� A process sends a broadcast via BRB. By running the causal

ordering layer above the Byzantine Reliable Broadcast
(BRB) [21], [26] layer, liveness violation can be prevented
by ensuring M(F) \M(E) = ∅. If a Byzantine process
pb attempts to insert a fake entry about broadcast of m
by px in Fx (x = b or x
= b) at a correct process py , py
can verify whether or not this insertion is valid as based
on the Agreement property of BRB, m must be delivered
by the BRB layer at all correct processes including py .
Therefore, no message from a correct process to another
correct process will wait indefinitely for causal delivery.

� However, a Byzantine process px can delete from Fx that
it discloses to the rest of the system, information about a
broadcast of m1 by pk that it has received, where pk may
be a correct process, despite running the causal ordering
layer above the BRB layer. A message m2 then broadcast,
where m1 → m2 and the message chain passes through
a message broadcast by px (after receiving m1), can be
delivered by a correct process pr before m1 is, if pr is not
to wait indefinitely. This is because pr does not learn of
m1 → m2 and m1 could be any message. Thus, M(E) \
M(F)
= ∅ and strong safety violations may occur.

Thus, to solve CO, it is necessary to identify Byzantine pro-
cesses, their actual execution histories, and causal chains from
and through them. Then Black_Box� CO and, as Consensus�
Black_Box, hence Consensus � CO. �

In a multicast, a message is sent to a subset of processes and
different send events can send to different multicast groups. We
have the following result.

Theorem 3: It is impossible to solve causal ordering (Defi-
nition 9) as specified by CO(E,F,m2) of multicast messages
in an asynchronous message passing system with one or more

820 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Byzantine processes as neither liveness nor strong safety is
guaranteed.

Proof: Unicast mode of communication is a special case of
multicast mode of communication. As the problem is impossible
to solve for unicasts (Theorem 1), it is impossible to solve for
multicasts. �

B. Weak Safety and Liveness without Cryptography

We now show a similar result to Theorem 1 with strong safety
(Definition 9) defined in terms of the → relation replaced by

weak safety (Definition 10) defined in terms of the
B−→ relation

in the correctness criteria for causal ordering.
Similar to Definition 11, we rephrase the causal ordering

problem (Definition 10) as CO_B(E,F,m2) as follows.
Definition 13: The causal ordering problem CO_B(E,F,

m2) for a message m2 received by a correct process pr is to
devise an algorithm to collect the execution history E as F at
pr such that CO_B_Deliv(m2) = 1, where

CO_B_Deliv(m2) =

⎧⎨
⎩
1 if ∀m1,

m1
B−→ m2|E = m1

B−→ m2|F
0 otherwise

Observe, m1
B−→ m2 is equivalent to: (m1 → m2∧ there is a

causal path from send event of m1 to send event of m2 going

through correct processes in the execution). We define m1
B−→

m2|F as (m1 → m2|F ∧ there is a causal path from send event
of m1 to send event of m2 going through correct processes in

the execution). (Likewise for m1
B−→ m2|E .) The algorithm to

solve CO_B does not have to determine whether the path through
correct processes exists.

Theorem 4: It is impossible to solve causal ordering (Defini-
tion 10) as specified by CO_B(E,F,m2) of unicast messages
in an asynchronous message passing system with one or more
Byzantine processes as liveness cannot be guaranteed even
though weak safety can be guaranteed.

Proof: Note that m2 is necessarily sent by a correct process

when m1
B−→ m2 holds. The proof of Theorem 1 carries iden-

tically, subject to the following changes. In the specification of

Black_Box, the definition
∧

m1
(m1

B−→ m2|E =m1
B−→ m2|F)

instead of
∧

m1
(m1 → m2|E =m1 → m2|F) is used.

That Consensus � Black_Box still holds is self-evident.
Black_Box� CO_B still holds because solving CO_B correctly
still requires using the execution histories of Byzantine processes
as recorded by the algorithm inF besides identifying the Byzan-
tine processes, similar to the proof for Theorem 1. In order for
any algorithm to correctly solve CO_B, it must ensure that F
matches E. For this, the following must hold.
� Due to unicasting, a message m from a potentially Byzan-

tine px to py in Fx, cannot be verified in bounded time
by other processes while collecting the reported execution
history as the message itself cannot be broadcast or com-
municated to any process other than py to keep it private.
Thus, a fake entry may be inserted inFx by a Byzantine pro-
cess, even if there exists some causal path through correct

processes from send event ofm1 to send event ofm2, lead-
ing to a liveness violation andM(F) \M(E)
= ∅. (Note,
liveness ofm2 is not with respect to am1 sent by a correct
process but all m1.) Therefore, either contamination of F
has to be prevented or malicious entries have to be filtered
out from F in bounded time. This requires identifying
Byzantine processes, their actual execution histories, and
causal chains from and through them.

� Let there be a messagem1 sent by correct process px inEx.
During the collection of Ex for reporting Fx, if there are
no Byzantine processes along some causal path from send
event ofm1 at px to send event ofm2 at pk, (hence pk must
be a correct process), it is possible to ensure that no Byzan-
tine processes can cause deletion of information about m1

from Fx, thus (M(E))c \M(F) = ∅, where (M(E))c is
the messages of M(E) sent by correct processes. Thus,
weak safety violation of m2 (with respect to m1 sent by
correct processes) can be prevented.

If there were an algorithm to make F match E, it still
requires identifying whether each of the processes that input
their execution histories is correct or Byzantine, and tracing and
dealing with/resolving the impact of contamination via message
passing by the Byzantine processes from/through those Byzan-
tine sources on the execution histories of processes at other
processes. Hence Black_Box � CO_B. The theorem follows.�

Theorem 5: It is possible to solve causal ordering (Defini-
tion 10) as specified by CO_B(E,F,m2) of broadcast messages
in an asynchronous message passing system with one or more
Byzantine processes as both liveness and weak safety can be
guaranteed.

Proof: We outline the logic that CO_B (Definition 10) can
be solved for Byzantine causal broadcast. For Byzantine causal
broadcast, F can be made to match E. A broadcast is sent via
BRB as in the proof of Theorem 2.
� M(F) \M(E) = ∅, hence liveness violations cannot oc-

cur. Same reasoning as in first bullet in Theorem 2.
� If there is a path through correct processes along m1

B−→
m2, processes along that path can faithfully propagate in-
formation about the causal chain of messages through those
correct processes to other processes. When m2 arrives at
pr it will wait for m1 which must arrive at pr because of
the Agreement property of the BRB layer over which the
causal ordering layer is run. Thus (M(E))c \M(F) = ∅
and weak safety violations cannot occur. (This holds even
if broadcaster of m1 is Byzantine.)

Thus to solve CO_B for broadcasts under Definition 10, it
is not necessary to identify whether each process is Byzantine,
hence Black_Box
� CO_B and hence Consensus
� CO_B. �

Theorem 6: It is impossible to solve causal ordering (Defini-
tion 10) as specified by CO_B(E,F,m2) of multicast messages
in an asynchronous message passing system with one or more
Byzantine processes as liveness cannot be guaranteed even
though weak safety is guaranteed.

Proof: Unicast mode of communication is a special case of
multicast mode of communication. As the problem is impossible
to solve for unicasts (Theorem 4), it is impossible to solve for
multicasts. �

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 821

C. Results for Cryptography

1) Strong Safety and Liveness Using Cryptography: In order
for a correct process to be able to verify a message has indeed
been sent, messages need to be sent via broadcast. But to
maintain confidentiality, the message needs to be encrypted.
When pj has to multicast a message m to group G, it creates
the ciphertext Cm by encrypting m with the group key KG and
does a Byzantine Reliable Broadcast (BRB) of (Cm, G) so that
other processes can verify that the message was indeed sent.
It is thus assumed that each multicast group shares a unique
symmetric key for encryption and decryption of messages sent
to that group. When a correct process pc receives (Cm, G) and
pc ∈ G, and decrypts and delivers m, it includes (Cm, G) as
control information on the next message m′ to G′ it sends (via
BRB) to convey m→ m′ to others. Other processes pd can
verify whetherm→ m′ as follows. When pd receives (C ′m, G

′)
with {(Cm1

, G1), (Cm2
, G2), . . . (Cmk

, Gk)} as control infor-
mation, for each x, x ∈ [1, k], pd waits to receive (Cmx

, Gx)
directly from the sender via BRB and “deliver” it before “de-
livering (C ′m, G

′)”, in order to verify Cmx
sent to Gx. Here,

“deliver” is in a logical sense; actual delivery happens after
decryption only if pd ∈ Gx and pd ∈ G′, respectively. It follows
that m′ will not be delivered unless the causally preceding mx

is also delivered (and transitively so for messages in the control
information of (Cmx

, Gx)) and messages sent previously by
the sender of m′ have been delivered. Only when (Cmx

, Gx)
(∀x) arrive directly and are delivered is mx → m′ true. (At
this stage the deliver events of m1 . . .mk and the send event
of m′ can be added to Fc locally at pd.) With this protocol, if a
Byzantine process inserts a fake entry (Cmx

, Gx) in the control
information on (Cm′ , G

′), its message will never be delivered at
other correct processes – this is a strong disincentive to insert
fake information.

Theorem 7: It is impossible to solve causal ordering (Defini-
tion 9) as specified by CO(E,F,m2) of multicast messages in an
asynchronous message passing system with one or more Byzan-
tine processes even with the use of cryptography as strong safety
cannot be guaranteed even though liveness can be guaranteed.

Proof: We outline the logic that CO (Definition 9) cannot be
solved for the multicast mode of communication by showing
that F cannot be made to match E.
� By running the causal ordering layer above the Byzantine

Reliable Broadcast (BRB) [21], [26] layer, liveness viola-
tion can be prevented by ensuring M(F) \M(E) = ∅. If
a Byzantine process pb attempts to insert a fake entry about
sending of (Cm, G) by px to pb ∈ G that pb has decrypted
and delivered, in Fx at a correct process py via control
information on message (Cm′ , G

′), py can verify whether
or not this insertion is valid as based on the Agreement
property of BRB, (Cm, G) must be delivered by the BRB
layer at all correct processes including py and pb must be
a destination within G. If the message from pb to py does
not pass this verification, that message is not considered
delivered. If pb were a correct process, (Cm, G) is guaran-
teed to arrive at py . Therefore, no message from a correct
process to another correct process will wait indefinitely for
causal delivery.

� However, a Byzantine process px can delete from Fx that
it discloses to the rest of the system, information about
a message m1, i.e., (Cm1

, Gm1
), sent by pk that it has

received, decrypted and delivered, where pk may be a
correct process, despite running the causal ordering layer
above the BRB layer. A messagem2 then multicast, where
m1 → m2 and the message chain passes through a message
multicast by px subsequent to the local delivery ofm1, can
be delivered by a correct process pr before m1 is, if pr
is not to wait indefinitely. Thus, M(E) \M(F)
= ∅ and
strong safety violations may occur.

Thus, to solve CO, it is necessary to identify Byzantine pro-
cesses, their actual execution histories, and causal chains from
and through them. Then Black_Box� CO and, as Consensus�
Black_Box, hence Consensus � CO. �

Theorem 8: It is impossible to solve causal ordering (Defini-
tion 9) as specified by CO(E,F,m2) of unicast messages in an
asynchronous message passing system with one or more Byzan-
tine processes even with the use of cryptography as strong safety
cannot be guaranteed even though liveness can be guaranteed.

Proof: The proof of Theorem 7 applies almost identically to
unicasts with the observation that each multicast group is of size
two – the sender and the receiver. �

Theorem 9: It is impossible to solve causal ordering (Defi-
nition 9) as specified by CO(E,F,m2) of broadcast messages
in an asynchronous message passing system with one or more
Byzantine processes even with the use of cryptography as strong
safety cannot be guaranteed even though liveness can be guar-
anteed.

Proof: The proof of Theorem 2 which is for broadcast-based
communication without allowing cryptography also applies with
the following observations.
� Liveness can be guaranteed even without cryptography.
� Strong safety cannot be guaranteed because the proof

applies even if cryptography is used, i.e., the supression
of information of E in F as described in the second
bullet of Theorem 7 can occur even with the use of
cryptography. �

2) Weak Safety and Liveness Using Cryptography
Theorem 10: It is possible to solve causal ordering (Defini-

tion 10) as specified by CO_B(E,F,m2) of multicast messages
in an asynchronous message passing system with one or more
Byzantine processes with the use of cryptography as weak safety
and liveness can be guaranteed.

Proof: Liveness can be guaranteed as shown in the proof of
Theorem 7. Weak safety can be guaranteed as shown in the proof
of Theorem 4 (for unicasts) – the guarantee of weak safety holds
even for multicasts. �

As unicasts and broadcasts are special cases of multicast, we
have the following two results.

Corollary 1: It is possible to solve causal ordering (Defini-
tion 10) as specified by CO_B(E,F,m2) of unicast messages
in an asynchronous message passing system with one or more
Byzantine processes with the use of cryptography as weak safety
and liveness can be guaranteed.

Corollary 2: It is possible to solve causal ordering (Defini-
tion 10) as specified by CO_B(E,F,m2) of broadcast messages
in an asynchronous message passing system with one or more

822 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Byzantine processes with the use of cryptography as weak safety
and liveness can be guaranteed.

D. Analysis of Strong Safety Violation

Our results show that it is impossible to satisfy strong safety
in a deterministic manner for unicasts, multicasts or broadcasts,
whether without or even with the use of cryptography. This is
because if m1 → m2 and there is no causal path from the send
event of m1 to the send event of m2 going through only correct
processes, and where both messages are sent to the same correct
process pr, then a Byzantine process pb along any causal path
from send ofm1 to send ofm2 first receives/delivers a message
from its predecessor along the causal path and then sends a
message to its successor along the causal path. Both events are
local to the Byzantine process. pb can choose to supress the
receive event from what it discloses to the rest of the system, or
swap the order of the receive event and the send event in what it
discloses to the rest of the system. Both options have the effect
of breaking the causality chain in what is disclosed to the rest
of the system and projecting m1
→ m2 even though in reality
m1 → m2. Thus the rest of the system can see m1
→ m2 and
pr is not obligated to deliverm1 beforem2, leading to a possible
strong causality violation. No deterministic protocol even using
cryptography can exist to counter pb’s action in an asynchronous
system.

Examples of strong safety violations in real-world applica-
tions are as follows.

1) Social media posts: Correct processes may see post_b by
a Byzantine process, whose contents depend on post_a,
before they see post_a.

2) Multiplayer gaming: A Byzantine process can cause
strong safety violations to gain an advantage over correct
processes in winning the game.

V. SENDER-INHIBITION ALGORITHM

As a result of Theorems 1 and 4, we know that it is impossible
to maintain both (strong as well as weak) safety and liveness
while trying to causally order messages in an asynchronous
system with Byzantine faults. Here, we develop a solution for
causal order of unicasts based on timeouts under a synchronous
system model. Under the assumption of a network guarantee of
an upper bound δ on message latency, we prevent the Byzantine
processes from making non-faulty processes wait indefinitely
resulting in a liveness attack. This prevents a correct process
from being unable to send messages because it is waiting for an
acknowledgment from a Byzantine process. This solution can
maintain both weak safety and liveness.

The solution is as follows. Each process maintains a FIFO
queue, Q and pushes messages as they arrive into Q. Whenever
the application is ready to process a message, the algorithm pops
a message from Q and delivers it to the application. After push-
ing messagem intoQ, each process sends an acknowledgement
message to the sending process. Whenever process pi sends a
message to process pj , it waits for an acknowledgement to arrive
from pj before sending another message. While waiting for
pj’s acknowledgement to arrive, pi can continue to receive and

Algorithm 1: Sender-Inhibition Algorithm.

deliver messages. If pi does not receive pj’s acknowledgement
within time 2 ∗ δ (timeout period), it is certain that pj is faulty

and pi can execute its next send event without violating
B−→.

Algorithm 1 consists of three when blocks. The when blocks
execute asynchronously with respect to each other. This means
that either the algorithm switches between the blocks in a fair
manner or executes instances of the blocks concurrently via
multithreading. In case a block has not completed executing
and the process switches to another block, its context is saved
and reloaded the next time it is scheduled for execution. If
multithreading is used, each instance of a when block spawns a
unique thread. This maximizes the concurrency of the execution.
Algorithm 1 ensures that while only one send event at a process
can execute at a given point in time, multiple deliver and multiple
receive events can occur concurrently with a single send event.

Theorem 11: Under a network guarantee of delivering mes-
sages within δ time, Algorithm 1 ensures liveness while main-
taining weak safety.

Proof: The send event in Algorithm 1 is implemented by the
when block in Lines 8–14. A send event is initiated only after
the previous send has released the lock, which happens when
the sender pi (a) has received an ack from the receiver pj , or (b)
times out.

1) In case (a), the sender learns that pj has queued its message
m in the delivery queue, and the sender can safely send

other messages. Any message m′ such that m
B−→ m′ and

m′ is sent to pj will necessarily be queued after m in
pj’s delivery queue. Due to FIFO withdrawal from the
delivery queue, m is delivered before m′ at pj and safety
is guaranteed. As pi receives the ack before the timeout,
progress occurs at pi. There is no blocking condition for
m at pj and hence progress occurs at pj .

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 823

2) In case (b) where a timeout occurs, the lock is released at pi
and there is progress at pi. It is left up to the application to
decide how to proceed at pi. This prevents a Byzantine
process from executing a liveness attack by making a
correct process wait indefinitely for the ack. It can be
assumed that pj is a Byzantine process and so safety of

delivery at pj does not matter under the
B−→ relation.

Therefore, Algorithm 1 ensures liveness while maintaining
weak safety. �

Complexity: In the Sender-Inhibition algorithm, the sender
waits for at most 2 ∗ δ time for the ack to arrive from the receiver
before sending its next message. The timeout period is fixed at
2 ∗ δ because this is the maximum time an ack can take to arrive
from the point of sending the application message.

The algorithm is simple to understand and implement. How-
ever, send events at a process are blocking with respect to each
other. The algorithm eliminates the O(n2) message space and
time overhead of [2], [7], [8], [9], [10] and uses one control
message of size O(1) per application message sent.

An extension of the Sender-Inhibition algorithm to provide
weak safety and liveness for multicasts is given in [5].

VI. CHANNEL SYNC ALGORITHM

As a result of Theorems 1, 4 we know that it is impossible to
maintain both (strong and weak) safety and liveness while trying
to causally order unicast messages in an asynchronous system
with Byzantine faults. In Section V, we presented an algorithm
for weak safety and liveness in the synchronous system model. In
this section, we present another solution satisfying weak safety
and liveness based on timeouts in the synchronous system model.
Under the assumption of a network guarantee of an upper bound
δ on message latency, we prevent the Byzantine nodes from
making non-faulty nodes wait indefinitely resulting in a liveness
attack.

Algorithm 2 presents a solution that assumes that the under-
lying network guarantees that all messages are delivered within
δ time. As long as this assumption holds, Algorithm 2 can
guarantee both weak safety and liveness. Each process maintains
FIFO queues for each other process where it stores incoming
messages from the concerned process. Application messages
are delivered immediately after getting popped from the queue.
However, control messages are not processed immediately; the
algorithm checks to make sure that it is safe to deliver the next
message in the queue before completing processing. Whenever a
process sends a message it informs every other process about the
send event via a control message. Whenever a process delivers
a message, it also informs every other process via a control
message. Whenever process pi receives a control or application
message from process pj , it pushes it intoQj . All control messa-
ges have timers associated with them to time them out in case of
Byzantine behaviour of the sender and/or receiver. When pi pops
a receive control message from any queue Qx it waits for either
the corresponding send control message to reach the head of its
queue (be dequeued), or the receive control message gets timed
out in case the send control message does not arrive. This ensures
that causality is not violated at pi, while ensuring progress. We

also need to ensure that in case of non-Byzantine behaviour
on part of both the sender and receiver, both the send control
message and receive control message do not time out before the
other one arrives. In order to achieve this, the timer for receive
control messages has to be set to at least δ as shown in Lemma 1
while the timer for send control messages can be varied (see
discussion below). The timer for send control messages can be
reduced (it can be set to 0 without compromising weak safety)
to implement different behaviours in the system, but the timer
for receive control message has to be at least δ, and increasing it
will only result in sub-optimal behaviour. Therefore, the timer
for receive control messages should always be δ.

Lemma 1: Under the assumption of a network guarantee of
delivering messages within a finite time period δ, no receive
control message with a timer greater than or equal to δ can
get processed before the matching send control message at any
process when both the sender and receiver processes are correct,
during the execution of Algorithm 2.

Proof: Without any loss of generality, we take δr = δ and
δs = 0. Here δr and δs are timer wait times for receive con-
trol and send control messages, respectively. Whenever, a send
control message arrives in Algorithm 2, it stops the timer of
the matching receive control message (if already present) to
make sure that the receive control message waits for the send
control message to get processed. If the send control message
gets popped from the queue and the receive control message
has not arrived, it simply gets processed. Now whenever the
receive control message arrives, it waits for the timeout period
and gets timed out without impacting weak safety because the
send control message has already been processed.

In order to ensure that a receive control message waits for
a send control message to get processed, we need to ensure
that the send control message arrives before the receive control
message times out. The maximum amount of time the send
control message can take to arrive at any process pi is δ and the
minimum amount of time the matching receive control message
can take to arrive at pi is 0. This means that in the worst-case
scenario, the send control message will arrive in time δ after
the arrival of the receive control message. Therefore, since the
send control message arrives before the receive control message
times out, the receive control message will have to wait for
the matching send control message to get processed. (Note:
the sender and receiver are non-Byzantine. If either of them
is Byzantine, the receive control message, if present, may still
time out at correct process pi but, as we will show in Corollary 3
and Theorem 13, correctness of causal ordering is not impacted

under
B−→.) �

From Lemma 1, the timer for send control messages can be
set as low as 0 without impacting weak safety. The timer for
send control messages can be tweaked based on the desired
system performance. For instance, setting δs = 0would result in
reduced latency for all send control messages at the expense of
some receive control messages waiting out their entire waiting
period of δ in the queue. If δs > 0 a send control message waits
after being popped until timeout. If in this interval any receive
control message arrives, the receive control message gets deleted

824 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Algorithm 2: Channel Sync Algorithm.

(Lines 12–14 and 26–27) and does not have to wait after being
popped and until its timeout. So although the wait of a send
control message increases, that of a receive control message
decreases. It would be interesting to simulate the effect on overall
system latency by varying δs from 0 upwards while keeping δr
fixed at δ as per Lemma 1.

If δs = 0 (effectively, no timer for send control messages),
then in Algorithm 2, stopping the send control message timer

(Lines 11 and 14) and testing if it was stopped (Lines 24
and 26) can be replaced by setting and testing a boolean
flag_timer_stopped.

A send event and a receive event are referred to as s and r,
respectively. The control messages we use for send and receive
events are denoted cms and cmr, respectively.

Theorem 12: Under the assumption of a network guarantee
of delivering messages within a finite time period δ, queued
messages in Algorithm 2 will be dequeued in at most δr +
max(δr, δs) time.

Proof: As a simplifying assumption, the time taken to pop
a message from a queue is considered to be 0. The time each
message spends in the queue is only because of latency induced
by control messages. Let m be an application message inserted
inQi0 at process pj at time 0 (as a reference instant). The waiting
time in the queue can be analyzed as follows.

1) There may be no control messages in front of m in Qi0 .
Since the latency induced by application messages that
may be in front ofm is 0,m will be popped and delivered
immediately. The waiting time in the queue for m is 0.

2) There may be one or more send control messages before
m in Qi0 . Each of the control messages will take at most
δs time to get processed. Since the timers for all of those
control messages are ticking concurrently, m will have to
wait for at most δs time.

3) There may be one receive control message cmri0 in front
of m in Qi0 . cmri0 is for application message m1 sent
from i1 (before time 0) to i0 (received before time 0). Note,
if there are multiple receive control messages ahead, the
analysis can be independently made for each of them.
a) cmsi1 does not arrive in δr. cmri0 times out at δr. So

total delay is δr.
b) Otherwise cmsi1 is inserted in Qi1 in time δr from

time 0.
i) It may be blocked by cms′i1 . This times out in δs

time. Total delay is therefore δr + δs.
ii) It may be blocked by cmri1 for application mes-

sage m2 from i2 sent before time 0 to i1 received
before time 0, ahead in Qi1 . Therefore cmri1 ar-
rived within time δr from time 0. It waits for cmsi2 .

4) Reasoning for the delay introduced by wait for cmsi2 ,
corresponding to application message m2, in Qi2 is as
follows.
a) cmsi2 does not arrive in δr. cmri1 times out in δr after

its arrival which was latest at δr from time 0. Total
delay is therefore δr + δr.

b) Otherwise cmsi2 arrived within δr from time 0 be-
cause m2 was sent before time 0 due to transitive
chain m2 → m1 and m1 was received before time 0.
Therefore cmsi2 is inserted in Qi2 in δr from time 0.
i) It may be blocked by cms′i2 . This times out in δs

time. Total delay is therefore δr + δs.
ii) It may be blocked by cmri2 for application mes-

sage m3 from i3 sent before time 0 to i2 received
before time 0, ahead in Qi2 . Therefore cmri2
arrived within time δr from time 0. It waits for
cmsi3 .

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 825

5) The reasoning for the delay introduced by wait for cmsi3
inQi3 is identical to the reasoning for the wait introduced
by cmsi2 in the previous item. In particular, cmsi3 was
inserted in Qi3 within δr from time 0.

We generalize the above analysis as follows. Define← as the
“waits for” or “succeeds in time” relation on control messages in
the queues at pj . Then, there exists a chain of control messages

cmri0 ←cmsi1 ←cmri1 ← cmsi2 ← cmri2 ← . . .← cmsik

each of which must have arrived in the correspondingQiα within
time δr from time 0 (see (∗) below). This chain corresponds to
the following chain of application messages:

mk → mk−1 → . . .m2 → m1

We prove that “(∗) cmria−1 is inserted inQia−1 within time δr
from time 0, cmsia was inserted inQia within time δr from time
0.” We use induction. The base case, being for a = 2, was shown
above. Assume the induction hypothesis is true for x, x ≥ 2. We
show the result (∗) for x+ 1. As cmrix arrives in Qix before
cmsix , from the induction hypothesis for x, cmrix is inserted
in Qix within δr from time 0. It waits for cmsix+1

. cmsix+1

arrived within δr from time 0, because mx+1 was sent before
time 0 due to transitive chain mx+1 → mx → . . .m1 and m1

was received before time 0 (because cmri0 was received in Qi0

before time 0). Therefore cmsix+1
is inserted in Qix+1

within
δr from time 0. (end of proof of (∗))

We also claim k is finite and bounded because the corre-
sponding control messages existed in the queues at pj at time
0 or later and were therefore added to the queues at the earliest
at −max(δr, δs); this implies the corresponding application
messages were therefore sent after −δ −max(δr, δs).

The chain of control messages terminates at cmsik , for
k > 0. The queues contribute delays as analyzed by the fol-
lowing cases.

1) There is no receive control message ahead of cmsik in
Qik . Total delay this queue contributes is δr + δs.

2) Total overall delay contributed by queues Qiz , z = [1,
k − 1] combined is considered next. Send control mes-
sages ahead of and including cmsiz on timing out con-
tribute up to δs combined delay. Receive control messages
ahead of cmsiz on timing out contribute up to δr combined
delay. The combined contribution of such send and receive
control messages is up to max(δr, δs). Plus the up to
δr delay contributed by cmsiz to get enqueued in Qiz

as seen above in (∗) gives a combined delay bound of
δr +max(δr, δs). This is also the combined delay con-
tributed by queues Qi1 through Qik−1 .

3) Send (or receive) control messages ahead of m in Qi0

contribute a delay of max(δs, δr).
Total overall delay contributed by all queues Qi0 to Qik

is thus max(δr + δs, δr +max(δr, δs),max(δr, δs)) = δr +
max(δr, δs).

If k = 0, there is no receive control message ahead of m in
Qi0 , and as shown at the start of the proof, total delay is bounded
by δs.

Combining k = 0 and k > 0 cases, the total overall
delay of m is bounded by max(δs, δr +max(δr, δs)) =
δr +max(δr, δs). �

Since the amount of time each message spends in the message
queue is bounded by a finite quantity, every application message
will eventually be delivered. Therefore liveness is maintained by
Algorithm 2.

Corollary 3: Algorithm 2 guarantees liveness.
Theorem 13: Under the assumption of a network guarantee

of delivering messages within a finite time period δ, Algorithm 2
can guarantee weak safety by setting timers for control messages
as a function of δ.

Proof: In order to ensure weak safety, prior to delivering
any message m′ at process pj , we need to ensure that if ∃m ∈
BCP (m′) such that m is sent to pj , then m is delivered before
m′ at pj .

Algorithm 2 ensures weak safety at any process as follows:
� Program Order: Since we assume FIFO channels, mes-

sages from pi to pj get enqueued in Qi in program order
and get delivered in program order.

� Transitive Order: Letm be sent by pi to pj at send event sxi .
Consider a causal chain of b messages starting at syi from
i = i0 and ending at j = ib through correct processes and
having these events:

〈syi = si0 → ri1 → si1 → ri2 →→ rib−1 →
sib−1 → rib〉

Let sxi
B−→ syi and m′ = 〈sib−1 → rib〉 be the last message

of the causal chain. This implies that m ∈ BCP (m′) by
transitivity. The control messages for all the events in the
causal chain above will reach pj .
We make the following observations at pj .
1) In Qi0 , cmsi0 (control message for si0) waits for m

(sent at sxi0) to get delivered.
2) From Lemma 1, inQiα (1 ≤ α ≤ (b− 1)), cmriα waits

for cmsiα−1 in Qiα−1 to be processed.
3) InQiα (1 ≤ α ≤ (b− 2)), cmsiα waits for cmriα to be

processed.
4) In Qib−1 , m′ (sent at sib−1) waits for cmrib−1 to be

processed.
Hence, message m′ waits for message m to get delivered.
Algorithm 2 therefore ensures weak safety: “that ∀m ∈

BCP (m′) sent to the same pj , m gets delivered before m′ at
pj ,” under a network guarantee of delivering messages within a
fixed time. �

Complexity for Unicasts: The Channel Sync algorithm uses
2(n− 2) control messages of size O(1) each per application
message and does not inhibit concurrency (beyond what is nec-
essary to enforce causal order). Any delay up to the maximum in
Theorem 12 is essential for causal order in the face of Byzantine
processes. The algorithm has a very high degree of concurrency
but each process has to manage n queues and a timer per control
message.

Note that in contrast to the Channel Sync algorithm, the
algorithm in [3] for causal ordering of broadcasts under weak
safety requiresO(n) broadcasts (control message broadcasts) of

826 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

sizeO(n) each per application message broadcast. It also has an
added latency equivalent to 3δ due to the underlying Bracha’s
BRB protocol [21].

An extension of the Channel Sync algorithm to provide weak
safety and liveness for multicasts is given in [6].

VII. DISCUSSION

A main contribution in the result proofs was to show a
reduction from the Consensus problem to the CO problem,
thus establishing the impossibility of solving CO in an asyn-
chronous system with a Byzantine process. We now show that
CO does not reduce to Consensus, i.e., CO cannot be solved
even if Consensus were solvable and hence CO is harder than
Consensus.

Theorem 14: In an asynchronous message passing system
with Byzantine processes, CO
� Consensus.

Proof: To solve Consensus, assume an oracle that identifies
each process as being Byzantine or crash-prone or as being
correct. The oracle is accessible to each process. The correct
processes thus know the identity of all other correct processes.
They execute a simple broadcast of their initial value and wait for
the corresponding broadcasts from all other correct processes.
Thus knowing the initial values of all correct processes, a correct
process simply runs a local algorithm to decide on the consensus
value – agree on a default value if initial values include both
0s and 1s, otherwise agree on the single value that is the initial
value of all correct processes. It is straightforward to observe that
Agreement, Validity, and Termination of the Consensus problem
are satisfied.

However, knowing the identities of the Byzantine/faulty/
crashed processes does not help to solveCO. To see this consider
the following scenario. pi and pj sent m1 and m2 to pd and
send(m1)→ send(m2). The causal path from send(m1) to
send(m2) goes through a Byzantine process pb which received
mr and then sent ms along this causal path. If pb chooses not
to disclose to the system that receive(mr)→ send(ms) then
no other process will be able to detect send(m1)→ send(m2)
and thus CO can get violated at pd. Observe that when pd
receives m2 before m1, it has no way to distinguish between
(a) m1 → m2, (b) m1 was never sent at all, and (c) m2 → m1.
If not to wait indefinitely and avoid a liveness violation in case
(b), pd will deliverm2, thus risking a safety violation if case (a)
were true. To avoid a safety violation in case (a), pd will wait
for m1 to arrive and be delivered before delivering m2, thus
risking a liveness violation if case (b) were true and risking a
safety violation if case (c) were true. This above reasoning is
true for multicasts, unicasts, and broadcasts. Knowing that pb is
Byzantine does not help in any way.

Thus to solve Consensus, it is sufficient to identify the
Byzantine/faulty processes. But to solve CO, it is necessary
to also identify execution histories at Byzantine processes and
causal paths passing through or originating from the Byzantine
processes. �

To solve CO, it is not sufficient that the non-faulty processes
construct a local ordered sequence of messages intended only
for them by using Consensus. The non-faulty processes need to

also determine whether the send events of any two such messages
were causally ordered with respect to each other and that cannot
be achieved by solving Consensus, as proved above. However,
note that Consensus is a harder problem than CO in the crash
failure setting.

Other problems that are impossible to solve in the presence
of one faulty process are related to the impossibility of solving
Consensus in a similar setting in [27] [28].

Deterministic, cryptography-free Byzantine causal broadcast
under weak safety + liveness is solvable in an asynchronous
system [3], [4] as per Theorem 5. Deterministic cryptography-
free Byzantine causal unicast or multicast under weak safety +
liveness are not (Theorems 4 and 6). One cannot use a Byzantine
fault-tolerant (BFT) causal broadcast protocol to implement
point-to-point or multicast abstraction by adding recipient-ID
and filtering on arrival only those messages intended for the local
node because the filtering mechanism at the local node can be
voided/compromised if the local node is Byzantine. Recall from
Definitions 6 and 7 that the No Information Leakage property
has to be satisfied. Here the BFT causal broadcast execution
which is at a lower layer on top of which the application runs
can be peeped into by the local Byzantine node and it can read
a message not intended for it. A pi to pj unicast must be kept
private to the two. This is possible in a deterministic manner with
the use of cryptographic primitives for weak safety + liveness
(Cor. 1, Th. 10), and is impossible in a deterministic manner for
strong safety + liveness even with using cryptographic primitives
(Theorems 8, 7).

We rule out full-information protocols (FIP) [29] for pro-
viding weak safety and liveness, where the entire transi-
tively collected message history is used as control informa-
tion because a FIP obviates the need for causal ordering. The
proof structure for the solvability results is similar to that
for the analysis of detection of the causality relation between
events [30].

Synchronization mechanism in the algorithms: In view of
the impossibility results, the algorithms we presented are in a
synchronous system model. Here, processes are not required to
execute in lock-step rounds. In a step of lock-step execution, a
process first sends messages and then receives messages sent by
others in that very step. After receiving a message in a step, it has
to wait for the start of the next step to send messages. (Lock-step
execution can be provided by synchronizers [31] in an asyn-
chronous system, and is useful when the application program
is synchronous, i.e., written assuming lock-step execution. It is
not possible to design synchronizers under Byzantine failures.)
Our algorithms are designed for asynchronous applications
that do not necessarily use lock-step in their code (see list
of applications listed in Section I, e.g., social networking). If
lock-step were emulated or simulated in a synchronous system,
an additional delay of at least the time needed to emulate a step,
which would be at least δ, would be incurred besides the message
latency and wait time for a send event before the start of the next
step, in addition to the other costs of emulation. In the Channel
Sync algorithm, 2δ is an upper bound on the delay when there
is Byzantine behavior whereas the total delay can be as low
as 0.

MISRA AND KSHEMKALYANI: BYZANTINE-TOLERANT CAUSAL ORDERING FOR UNICASTS, MULTICASTS, AND BROADCASTS 827

TABLE III
SOLVABILITY OF CAUSAL ORDERING USING DETERMINISTIC ALGORITHMS IN SYNCHRONOUS SYSTEMS UNDER DIFFERENT COMMUNICATION MODES

To ensure Byzantine-tolerant causal order, the Channel Sync
algorithm synchronizes on a per message basis (2(n− 2) control
messages of size O(1) each) and all concurrent messages are
synchronized independently but concurrently. This minimizes
the delay experienced by a message from the time of sending to
the time of Byzantine-tolerant causal delivery, while factoring
out the effects of Byzantine processes and allowing the applica-
tion program to be asynchronous (in the synchronous system)
without the restricting paradigm of rounds.

VIII. CONCLUSION

This paper analyzed the solvability of Byzantine-tolerant
causal order under strong and weak safety and under liveness
in a deterministic manner in asynchronous systems for unicasts,
broadcasts, and multicasts, without and with cryptography. The
results are summarized in Table I. In particular, the results
showed that it is impossible to implement Byzantine-tolerant
causal order – strong safety or weak safety, and liveness –
of unicasts and multicasts in a deterministic manner without
using cryptography in an asynchronous system. In view of these
negative results, the paper proposed the Sender-Inhibition algo-
rithm and the Channel Sync algorithm for providing weak safety
and liveness of Byzantine-tolerant causal order in synchronous
systems where there is a network guarantee of an upper bound
on message latency. The Sender-Inhibition algorithm uses one
control message per application message whereas the Channel
Sync algorithm uses 2(n− 2) control messages per applica-
tion message. In both algorithms, the control message size is
O(1). The Sender-Inhibition algorithm is easy to understand
and implement, but has reduced concurrency in the sense that a
process cannot have multiple sends outstanding. The Channel
Sync algorithm has a non-trivial cost of implementation but
provides a very high degree of concurrency. These algorithms
can be extended to implement causal multicast, as shown in [5]
and [6], respectively.

Table III summarizes the solvability of causal ordering using
a deterministic algorithm in synchronous systems and includes
some recent results.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[2] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Trans. Comput. Syst., vol. 5, no. 1, pp. 47–76, 1987.

[3] A. Auvolat, D. Frey, M. Raynal, and F. Taïani, “Byzantine-tolerant causal
broadcast,” Theor. Comput. Sci., vol. 885, pp. 55–68, 2021.

[4] A. Misra and A. D. Kshemkalyani, “Solvability of byzantine fault-tolerant
causal ordering problems,” in Proc. Int. Conf. Netw. Syst., Cham, Springer
International Publishing, 2022, pp. 87–103.

[5] A. Misra and A. D. Kshemkalyani, “Causal ordering in the presence of
byzantine processes,” in Proc. 28th IEEE Int. Conf. Parallel Distrib. Syst.,
Nanjing, China, 2022, pp. 130–138. [Online]. Available: https://doi.org/
10.1109/ICPADS56603.2022.00025

[6] A. Misra and A. D. Kshemkalyani, “Byzantine fault-tolerant causal or-
dering,” in Proc. 24th Int. Conf. Distrib. Comput. Netw., Kharagpur, India,
2023, pp. 100–109. [Online]. Available: https://doi.org/10.1145/3571306.
3571395

[7] A. D. Kshemkalyani and M. Singhal, “Necessary and sufficient conditions
on information for causal message ordering and their optimal implemen-
tation,” Distrib. Comput., vol. 11, no. 2, pp. 91–111, 1998. [Online].
Available: https://doi.org/10.1007/s004460050044

[8] R. Prakash, M. Raynal, and M. Singhal, “An adaptive causal ordering
algorithm suited to mobile computing environments,” J. Parallel Distrib.
Comput., vol. 41, no. 2, pp. 190–204, 1997. [Online]. Available: https:
//doi.org/10.1006/jpdc.1996.1300

[9] M. Raynal, A. Schiper, and S. Toueg, “The causal ordering abstraction
and a simple way to implement it,” Inf. Process. Lett., vol. 39, no. 6,
pp. 343–350, 1991.

[10] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm to implement causal
ordering,” in Proc. Int. Workshop Distrib. Algorithms, Springer, 1989,
pp. 219–232.

[11] F. Mattern and S. Fünfrocken, “A non-blocking lightweight implemen-
tation of causal order message delivery,” in Proc. Theory Pract. Distrib.
Syst., Int. Workshop, Springer, 1994, pp. 197–213. [Online]. Available:
https://doi.org/10.1007/3-540-60042-6_14

[12] R. Baldoni, A. Mostéfaoui, and M. Raynal, “Causal delivery of messages
with real-time data in unreliable networks,” Real Time Syst., vol. 10,
no. 3, pp. 245–262, 1996. [Online]. Available: https://doi.org/10.1007/
BF00383387

[13] F. Adelstein and M. Singhal, “Real-time causal message ordering in
multimedia systems,” in Proc. 15th Int. Conf. Distrib. Comput. Syst., 1995,
pp. 36–43.

[14] R. Friedman and S. Manor, “Causal ordering in deterministic overlay
networks,” Computer Science Department, Technion, Tech. Rep. CS-
2004–04, 2004.

[15] A. Mostefaoui, M. Perrin, M. Raynal, and J. Cao, “Crash-tolerant
causal broadcast in O (n) messages,” Inf. Process. Lett., vol. 151, 2019,
Art. no. 105837.

[16] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” IACR Cryptol. ePrint Arch., vol. 2001,
2001, Art. no. 6. [Online]. Available: http://eprint.iacr.org/2001/006

[17] S. Duan, M. K. Reiter, and H. Zhang, “Secure causal atomic broadcast,
revisited,” in Proc. 47th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2017, pp. 61–72.

[18] L. Tseng, Z. Wang, Y. Zhao, and H. Pan, “Distributed causal memory in
the presence of byzantine servers,” in Proc. IEEE 18th Int. Symp. Netw.
Comput. Appl., 2019, pp. 1–8.

[19] K. Huang, H. Wei, Y. Huang, H. Li, and A. Pan, “Byz-
gentlerain: An efficient byzantine-tolerant causal consistency protocol,”
2021, arXiv:2109.14189.

[20] M. Kleppmann and H. Howard, “Byzantine eventual consistency
and the fundamental limits of peer-to-peer databases,” 2020, arXiv:
2012.00472.

https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1007/s004460050044
https://doi.org/10.1006/jpdc.1996.1300
https://doi.org/10.1006/jpdc.1996.1300
https://doi.org/10.1007/3-540-60042-6_14
https://doi.org/10.1007/BF00383387
https://doi.org/10.1007/BF00383387
http://eprint.iacr.org/2001/006

828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

[21] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Comput.,
vol. 75, no. 2, pp. 130–143, 1987.

[22] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. 3rd USENIX Symp. Operating Syst. Des. Implementation, 1999,
pp. 173–186.

[23] M. C. Pease, R. E. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, 1980. [Online].
Available: http://doi.acm.org/10.1145/322186.322188

[24] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Prog. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.
[Online]. Available: http://doi.acm.org/10.1145/357172.357176

[25] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the presence
of partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, 1988. [Online].
Available: http://doi.acm.org/10.1145/42282.42283

[26] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast proto-
cols,” J. ACM, vol. 32, no. 4, pp. 824–840, Oct. 1985.

[27] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382,
1985.

[28] S. Moran and Y. Wolfstahl, “Extended impossibility results for asyn-
chronous complete networks,” Inf. Process. Lett., vol. 26, no. 3, pp. 145–
151, 1987. [Online]. Available: https://doi.org/10.1016/0020-0190(87)
90052-4

[29] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About
Knowledge. Cambridge, MA, USA: MIT Press, 1995. [Online]. Available:
https://doi.org/10.7551/mitpress/5803.001.0001

[30] A. Misra and A. D. Kshemkalyani, “Detecting causality in the presence
of byzantine processes: There is no holy grail,” in Proc. 21st IEEE Int.
Symp. Netw. Comput. Appl., 2022, pp. 73–80. [Online]. Available: https:
//doi.org/10.1109/NCA57778.2022.10013644

[31] B. Awerbuch, “Complexity of network synchronization,” J. ACM, vol. 32,
no. 4, pp. 804–823, 1985.

[32] A. Misra and A. D. Kshemkalyani, “Solvabiity of byzantine fault-tolerant
causal ordering: Synchronous systems case,” in Proc. 39th ACM Symp.
Appl. Comput., 2024.

[33] A. Misra and A. D. Kshemkalyani, “Byzantine fault-tolerant causal order
satisfying strong safety,” in Proc. 25th Int. Symp. Stabilization, Saf., Secur.
Distrib. Syst., 2023, pp. 111–125. [Online]. Available: https://doi.org/10.
1007/978-3-031-44274-2_10

Anshuman Misra received the BS degree in com-
puter science from the Vellore Institute of Technol-
ogy. He is currently working toward the PhD degree
with the Department of Computer Science, University
of Illinois at Chicago. His research interests are in
distributed systems, fault-tolerance, and blockchain.

Ajay D. Kshemkalyani (Senior Member, IEEE) re-
ceived the BTech degree in computer science and
engineering from the Indian Institute of Technology,
Bombay, in 1987, and the MS and PhD degrees in
computer and information science from the Ohio
State University, in 1988 and 1991, respectively. He
spent six years with IBM Research Triangle Park
working on various aspects of computer networks,
before joining academia. He is currently a professor
with the Department of Computer Science, University
of Illinois at Chicago. His research interests are in

distributed computing, distributed algorithms, computer networks, and con-
current systems, and he has published more than 100 articles in top-quality
journals and conferences in these areas. In 1999, he received the National
Science Foundation Career Award. He has served in various positions (such
as general chair, program co-chair, steering committee member, or program
committee member) for international conferences such as IEEE ICDCS, IEEE
SRDS, ACM PODC, and ICDCN. He has served on the editorial board of the
Elsevier journal, Computer Networks and the IEEE Transactions on Parallel and
Distributed Systems. He has co-authored a book entitled Distributed Computing:
Principles, Algorithms, and Systems (Cambridge University Press, 2008). He is
a distinguished scientist of the ACM.

http://doi.acm.org/10.1145/322186.322188
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/42282.42283
https://doi.org/10.1016/0020-0190(87)90052-4
https://doi.org/10.1016/0020-0190(87)90052-4
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1007/978-3-031-44274-2_10
https://doi.org/10.1007/978-3-031-44274-2_10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

