JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 22, 44-59 (1994)

On Characterization and Correctness of Distributed
Deadlock Detection

AJAY D. KSHEMKALYANI*T AND MUKESH SINGHALZ

*IBM Corporation, P.O. Box 12195, Research Triangle Park, North Carolina 27709; and $Department of Computer and Information Science,
The Ohio State University, 2036 Neil Avenue, Columbus, Ohio 43210

Distributed deadlock detection requires identifying the presence
of certain properties in the global state of distributed systems.
Distributed deadlock detection is complicated due to the lack of
both global memory and a common physical clock, and due to
unpredictable message delays. We characterize the formation and
detection of distributed deadlocks in terms of the contents of local
memory of distributed nodes/sites. We describe how the interac-
tion between deadlock detection and deadlock resolution can lead
to the detection of false deadlocks that are impossible to avoid due
to inherent system limitations. We define shadow, phantom, and
pseudo deadlocks in the proposed framework. We give examples
of existing incorrect deadlock detection algorithms to illustrate
how they violate the developed requirements for distributed dead-
lock detection. The characterization provides an insight into the
properties of distributed deadlocks, expresses inherent limitations
of distributed deadlock detection, and yields new correctness cri-
teria for distributed deadlock detection algorithms. © 1994 Academic

Press, Inc.

1. INTRODUCTION

The problem of deadlocks in an important, fundamen-
tal problem in the design of concurrent systems. Though
the problem of deadlocks is well understood in shared-
memory systems [8, 9], it remains a notoriously difficult
problem in distributed systems [31]. Over the last decade,
considerable attention has been focused on the design of
algorithms for deadlock detection in distributed systems
[31]. However, properties of distributed deadlocks are
not yet well understood, and a fundamental question
about the definition of a distributed deadlock still remains
unanswered. This is why many of the proposed algo-
rithms [7, 14, 33] have been shown to be incorrect—they
either do not detect all existing deadlocks or detect false
deadlocks.

For example, the classical path-pushing algorithm [25]
is incorrect because it fails to take action when informa-
tion about deadlock becomes available [12]; the probe-
based algorithm of Sinha and Natarajan [33] is incorrect
because it incorrectly discards relevant probes (causing

t At the time this work was performed, this author was with the
Department of Computer and Information Science, The Ohio State Uni-
versity, 2036 Neil Avenue Mall, Columbus, OH 43210.

44

0743-7315/94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

undetected deadlocks) and retains outdated probes (caus-
ing detection of false deadlocks) [7]; the two-phase algo-
rithm of [14] does not distinguish between two wait-for
dependency edges between the same resource and pro-
cess caused by a transaction.

We identify the following as the main causes of the
astonishing failure of so many distributed deadlock de-
tection algorithms: first, there is no concept of global
time in distributed systems. The definition of distributed
deadlocks does not have any temporal specifications.
Many existing algorithms are wrong because they do not
consider the causality relation [21] among the events at
different sites, leading to the inclusion of inconsistent
states in their reasoning. This complicates not only devel-
oping correct algorithms but also proving their correct-
ness formally. Second, most of the algorithms are based
on ad hoc methods in the sense that they take the defini-
tion of deadlock from a centralized (shared memory) sys-
tem and try to extend it to distributed systems. Third,
stability of deadlocks is not a correct assumption because
detected deadlocks are promptly resolved. A site can in-
dependently resolve a deadlock and other sites may learn
about it after an arbitrary and random delay. This spe-
cially creates problems in the multiple request model of
deadlocks because some processes may be common to
many deadlock cycles. The deadlock resolution process
interacts with deadlock detection in a complex and un-
predictable manner [31].

We believe that a distributed deadlock should be de-
fined more rigorously in terms of a causal relationship
among events at processes/sites. The conventional defi-
nition of deadlocks, viz., ‘‘a cycle in a distributed trans-
action WFG (wait-for graph),” is not appropriate for dis-
tributed deadlock detection because in distributed
systems no site has current and consistent global state or
knowledge of the system. There is a possibility that a
global cycle of which different segments existed at non-
overlapping time intervals is reported.

In this paper, we give a characterization of distributed
deadlocks in terms of the contents of distributed memory
and construct a definition of distributed deadlock that
explicitly uses virtual/logical global time [10, 11, 23]. The
characterization is presented from the points of view of a
global and a non-global observer in terms of locally ac-



DISTRIBUTED DEADLOCK DETECTION 45

cessible variables and timestamps. A global observer has
an instantaneous view of the system state with access to
shared memory and a common clock. A local observer
has to deal with a distributed memory and does not have
an instantaneous view of the system state. The character-
ization provides an understanding of the detection and
resolution of distributed deadlocks, and provides new
criteria for the correctness of distributed deadlock detec-
tion algorithms. This is the first characterization of dis-
tributed deadlocks [18] using causality and global virtual
time.

The following request models have been proposed in
the literature [2, 4, 16}: single-request, AND request, OR
request, and generalized request models. The character-
ization and definition of distributed deadlocks presented
in this paper is applicable to the single-request and AND
request models, though much of the discussion of the
building blocks of deadlock is applicable to other request
models, too. In the AND request model, a process issues
multiple requests and remains blocked until it receives a
reply to each of its outstanding requests. The single-re-
quest model is a special case of the AND model in which
a process can have a single outstanding request at a time.

The work presented in this paper has appeared in [18,
19]. Deadlock detection for real-time distributed systems
is studied in {30]. A theory of deadlocks that is based on
an axiomatization of the process-resource model and that
allows only the single-request model is given in [34].

The rest of the paper is organized as follows: in Section
2, we introduce definitions and preliminary concepts. In
Section 3, we give a characterization of distributed dead-
locks for a global and a nonglobal observer. Section 4
examines the interaction between distributed deadlock
formation, detection, and resolution. In Section 5, we
define various types of false deadlocks. Section 6 exam-
ines the problem of deadlocks in a restricted model. In
Section 7, we present correctness criteria for detection of
distributed deadlocks. Section 8 contains a summary and
concluding remarks.

2. PRELIMINARIES

2.1. System Model

The system is a network of N nodes with a logical
channel from every node to each other node. Each node
represents a site and it is assumed without loss of gener-
ality that each site in the system has one process running
on it. Hence, nodes are synonymous to processes. Mes-
sages are delivered reliably but not necessarily in the
order sent.

A node in the system can be a process or a resource
manager (which manages a single resource). Computa-
tion messages in the system include request messages
and reply messages. A process sends a request to another
process and gets blocked waiting for a reply (i.e., a re-
sponse to its request, which is a consumable resource). A

process sends a request to a resource manager and re-
mains blocked until a reply (i.e., permission to access the
resource) is received from the resource manager. The
processes follow the AND request model.

The above system model can model database resource
deadlocks. In a database system, a process can send re-
quests only to resource managers and not to other pro-
cesses. A resource manager sends a reply to a process
when it can grant the process an access to the requested
resource. A process should release the resource after us-
ing it. Because the model does not use a release message,
the return of the resource by the process to the resource
manager can be explicitly modeled as follows: the reply
from the resource manager to the process, granting the
process access to the resource, implicitly carries a re-
quest by the resource manager for the release of the re-
source by the process. When the process is ready to re-
lease the resource, it sends a reply to the resource
manager. The effect of this modeling is that the resource
manager behaves as an active system node that follows
the single-request model. An algorithm for detecting da-
tabase deadlocks in the AND request model, which is
based on the characterization presented in this paper, is
given in [19].

Events in the system are message send events, mes-
sage receive events, and internal events. A system run
associates each node i with a totally ordered set C; of
events. Let C = U C,; be the possibly infinite set of all
events. Some definitions from the literature are presented
next.

Causality [21]: For events in C, the causality (or hap-
pens before) relation < is defined as the smallest transi-
tive relation satisfying the following two conditions: (i) if
a, b € C;and a occurs before b, then a < b; (ii) if a is the
sending of a message and & is the receipt of the same
message, then a < b.

A run of a computation [5]: C = (UC)) is a run of a
computation if (C, <) is acyclic.

it is observed that all real computations are acyclic and
(C, <) is a strict partial order.

A partial run of a computation (5, 23]: Any C' = U C}
C C is a partial run of a computation if C' is left-closed!
under <.

For a set S of totally ordered elements, max(S) is de-
fined to be the maximum element of the set S.

A consistent cut of a computation [27]: A consistent
cut, CCut, in any computation is a set of (local states at
processes corresponding to) events Uwp{max(C|)} for
any partial run C’ of the computation.

2.2. Vector Timestamps

Due to the absence of a global clock, the existence of a
deadlock must be qualified by the local time at which
each member of the cycle deadlocks. The local time on a
node is given by a vector clock [10, 11, 23] which exactly

'Foranya,beC,beC' Na<b=>>ac(C'.



46 KSHEMKALYANI AND SINGHAL

captures the partial ordering among events in the compu-
tation and is the best approximation to the latest state in
the system.

The logical time is defined to be a vector of length N,
the number of nodes. The logical time at node i is J; and
the timestamp of a message msg is msg.T. (9,[j] and
msg. T[], respectively, denote the jth components of
these time vectors.) Events are assigned timestamps T;
which are the clock values J; when the events occur.
Henceforth, events will be referred to by their unique
timestamps; this gives a clean notation.? The logical time
at a node evolves as follows:

(a) When an internal event or a message send occurs
oni, J,[i] := J[i] + 1.
(b) When i receives a message msg, then Vj do,

if j =i, then J,[j] := T /] + 1,
else J,[Jj1 := max(F {1, msg.T[jD).

Thus, the jth component of the time vector at a node
reflects the highest value of the jth component of all
timestamped messages it has received. Note that J,[i]
reflects only the local activities at node i and 7;[j] re-
flects what node i knows about the local timestamp (i.e.,
activities) of node j. Thus, time vector J; reflects what
node i knows of the latest state (local time) of all other
nodes. abs(T;) refers to the absolute real-time at which
the event represented by 7; occurred.

An ordering relation ‘<’ between timestamps is de-
fined as follows: T, < T;iff (Vk), Tkl = TKINT, # T;. T;
< T, iff the event at 7, happened before [21] the event at
T, IfT; <« Tand T; « T;, then T;and T; are concurrent and
are denoted by T; co T;. Thus, the logical clock proposed
in [10, 23] defines the exact causal order as a partial order
which is weaker than the total order of Lamport’s clocks
[21].

Though vector timestamps appear to be large, there are
efficient schemes to reduce the size of vector timestamps
that are transmitted [24, 32]. Vector clocks are used in
the proposed characterization because they are capable
of capturing the partial ordering among distributed
events® which is necessary for observing distributed
deadlocks. Thus, vector timestamps allow us to give a
complete characterization of distributed deadlocks. A
distributed deadlock detection algorithm does not neces-
sarily have to use vector timestamps in its implementa-
tion. The only effect of not using vector timestamps will
be that false deadlocks may be detected because tempo-
ral ordering of events cannot be captured (see Section 5
for more details).

2 With this convention, reference to a vector timestamp does not
require access to the entire vector, unless the components are explicitly
referenced.

¥ Charron-Bost [6] has shown that the minimum length of the vector
timestamp to capture the partial ordering of events in a distributed
system is N, the number of nodes.

Node j

Node i

(47, (7}, ‘
abs(T;) —lime
Past( Tj) Future(T ,)
J
FIG. 1. Past and future cones of 7.

2.3. Past and Future Cones

An event T; could have been affected only by all events
T; that satisfy T; < T;. All such events 7, belong to the
past of 7;{22, 23]. This and the subsequent definitions are
illustrated in Fig. 1. Let Past(T;) be the set of all events
that happened causally before 7;. This is the set of all
events in the past of 7; in the computation. In Fig. I,
Past(T;) can be viewed as the past cone. Let Past,(T;) be
the set of those events of Pasz(T;) that are on node i.
Past(T;) is totally ordered by relation *‘<’’ and its maxi-
mal element is max(Pasti(T;)). max(Past,(T;)) is the lat-
est event on node / that has affected 7;. Let |T; =
Uwa{max(Past(T;))} in the computation. Note that | T;
consists of the latest event on each node that affects 7},
and is referred to as the surface of the past cone of T; [22,
23]. The system state along | 7; is a consistent cut [27]
because Past(T;) is left-closed. Let (| T;); denote the ele-
ment of | 7} that is on node i. It is obvious that ( | T;)[i]
= T;[i] for all i. Similar to the past is the future of T;
representing all the events 7; that are causally affected by
T;, giving rise to the definitions of Future(T;) and the
surface of the future cone 7;1 . (The notations | 7; and
T;1 are due to Charron-Bost [5].) In Fig. 1, events in the
unshaded region occur concurrently with T;.

2.4, Intervals on a Node

This section introduces terminology that is specific to
characterizing distributed deadlocks and proving the cor-
rectness of distributed deadlock detection algorithms.

A node can be either in a blocked or an unblocked
state. A node i blocks when it sends out a request and
remains blocked until its request is satisfied. This depen-
dency is denoted by adding a wait-for edge to the WFG.
All valid inward dependencies on i and outward depen-
dencies from i are stored in local set variables in(i) and
out(i), respectively. Let T_out; and T_in; be the time-
stamps when node / sends a request (establishes an out-
ward dependency) and receives a current request (estab-
lishes an inward dependency), respectively.



DISTRIBUTED DEADLOCK DETECTION 47

T out j

(a) An IO interval on node i (b) An OI interval on node i

FIG. 2. 10 and Ol intervals.

Define the interval for the latest outward dependency
and an inward dependency as the duration from the es-
tablishment of the earlier until the establishment of the
later one. An interval is completed when both dependen-
cies of the interval are established and the first depen-
dency is valid as far as the node can discern, at the time
the second dependency gets established. There are two
types of intervals, shown in Figs. 2a and 2b, depending
upon whether the inward dependency is established be-
fore the outward dependency or vice-versa. The former
interval is referred to as an 10 interval, the latter as an Of
interval.

The completion of an interval at a node signifies the
possible participation of the node in a distributed dead-
lock. (Note that a node can be involved in a deadlock
even before an OI interval completes successfully.) An
interval begins at node i whenever one of the following
two cases arises: (a) i is not blocked and receives a re-
quest from node j, or (b) i gets blocked on node k. For the
two cases (a) and (b) in which an interval starts, the inter-
val completes if (a) i blocks and the request from j is still
pending, and (b) { receives a request from j and its request
to k is still outstanding as far as it can discern, respec-
tively.

3. CHARACTERIZATION OF DISTRIBUTED DEADLOCKS

Intuitively, a deadlock comprises of a wrap-around se-
quence of nodes, each of which stays blocked indefinitely
on the next member of the sequence until a deadlock
resolution can be performed. However, this definition is
incomplete in a distributed system. This is because in a
distributed system, a deadlock must be defined in terms
of what a node can observe and infer about the global
system state, not in terms of what one can ascertain at
some instant in global time. A global deadlock must be
characterized in terms of the contents of distributed
memory and some causal relationship among time in-
stants of local observations. One must specify the exact
events in the system as seen by a local observer that lead
to a deadlock. Thus, one seeks the relationship among
these events (events of deadlock formation and observa-
tion by a local observer) for detecting a deadlock.

This section first examines the building blocks that lead
to a deadlock, as seen by a global observer. We give a
definition of deadlocks and justify it by reasoning about

the building blocks of deadlock as seen by the global
observer. This gives an insight into the formation of
deadlocks in a distributed system. Due to the nonexist-
ence of a global observer, attention needs to be focused
on characterizing distributed deadlock in terms of what
each node knows of the rest of the system. The building
blocks of deadlock are recast as what is observed by a
nonglobal observer. The definition of distributed dead-
lock is adapted and the changes are justified by explain-
ing the impossibility of an instantaneous view of the dis-
tributed system.

The definitions of the building blocks of a deadlock and
a deadlock have two parts: (I) the conditions that must be
satisfied by the blocking events; (II) the conditions that
must be satisfied when the system is observed. The above
two types of conditions are expressed in terms of time-
stamps and local variables at the involved nodes.

This section also examines the interaction between
deadlock detection and resolution. It turns out that a de-
tected deadlock is assured to exist at the time of detec-
tion only in a restricted model.

We next present two axioms which describe the block-
ing and unblocking of a node in a computation.

Axiom 1. A node blocks when it sends a request and
it does not send any computation messages until it gets
unblocked.

Therefore, no other node gets a computation message
from a blocked node (other than the request on which it
blocks) as long as it stays blocked. In the AND request
model, a process atomically sends requests with the same
timestamp and gets blocked.

Axiom 2. A blocked node can get unblocked if: (i) its
requests are satisfied during the normal course of pro-
cessing (called the ‘*normal mode™) or (ii) it spontane-
ously withdraws its requests or its requests are satisfied
due to resolution of a deadlock of which it is a part (called
the *“‘abnormal mode™").

When a deadlock exists, each involved node must be
blocked on its successor. Moreover, it must stay blocked
until a resolution is done.

3.1. A Global Observer’s View

A global observer has instantaneous access to the state
of all nodes and consequently, it (i) can order all events
on a scalar time scale, (ii) has access to global time, and
(iii) can use global time in reasoning. In a computation, at
any global time ¢, there could have existed a sequence
(T;,, T;,, ..., T;) of events on nodes i, € P = {i;, iy, ..., i}
that satisfy some combination of the following conditions
(henceforth, i; € {if, ia, ..., i}):

(C1) Each T; is the latest event T_out; at or before ¢,
when i; got blocked on its successor i. ;.

(C2) A node i; (except for j = 1) has received the re-
quest (on which i;_| got blocked) from i;_; before
T_out;.



48 KSHEMKALYANI AND SINGHAL

(C3) Each node i; (except for j = 1) has not replied to
the request on which node i;_, is waiting on it until
T_out;.

(C4) A node i; (except for j = 1) has not received any
message for which i;,_,’s component of the time-
stamp is greater than T_out;_[i—1], until T_out;.

(C5) Each node j; is blocked on ij,; at time r.

The notions of segments and paths which are the build-
ing blocks of deadlocks are introduced. Both signify a
sequence of nodes in which each node is blocked on its
successor in the sequence. The timestamps at which
nodes with successive events in the sequence block sat-
isfy a weaker relationship in a path than in a segment.

Segments

DEFINITION 1. A segment at global time ¢ is a se-
quence of events (T_out;, T_out,,, ..., T_out;) at nodes
i1, Ir, ..., iy, satisfying the following conditions:

() (C1), (C2), (C3), and (C4).

/* conditions on blocking events. */

(II) (C5).

/* conditions when the system is observed. */

Every event in a segment denotes a node blocked on its
successor in the segment at the event of observation®
(condition (C5)). Moreover, when node i; blocks (as per
(C1)), its predecessor’s request has been received (condi-
tion (C2)) and is pending because J; has not responded to
it (condition (C3)), nor is {; aware that the predecessor has
withdrawn its request (condition (C4)). A segment de-
notes a sequence of blocked nodes with the above prop-
erties. In this sequence, the dependencies of the nodes on
their successors are created sequentially. A segment can
be considered as a basic sequence because it represents a
linear growth of wait-for dependencies that is the same as
the order in the sequence. Given a segment at global time
t, every node preceding a given node i; on the segment is
blocked directly or transitively on {; at . The length of a

segment increases by one when the successor of the last .

node on the segment blocks (condition (C1)) while satis-
fying conditions (C2), (C3), and (C4). Along a segment, a
node (except the first node) blocks after it has received
the request from its predecessor (condition (C2)). This
implies that T_out; > T_out;_ for j > 1. It can be inferred
that the first event T_out; in a segment signifies a poten-
tial OI interval and the rest of the events signify success-
fully completed IO intervals.

In a distributed computation, it may happen that
T_out; £ T_out;, and there exists a dependency from j
to .y which is blocked at T_out; ,, (and transitively to
the successors of i, if any). So the notion of path is
introduced to characterize such a sequence of blocked
nodes.

+ Henceforth, a reference to ‘‘a node on a segment/path’’ will mean
‘‘a node with an event on a segment/path.”

Paths

DEFINITION 2. A path at global time ¢ is a sequence
of events (T_out; , T_out,, ..., T_out; ) at nodes iy, i, ...,
i, satisfying the following conditions:

(I) (C1) and ((C2) = ((C3) /\ (C4))).

/* conditions on blocking events. */

(II) (C5).

* conditions when the system is observed. */

Every node on a path is blocked on its successor at the
event of observation (condition (C5)). However, unlike a
segment, a node i; with an event on a path may not have
received i;_’s request when i; blocks at T_out; (an Ol
interval at node {;.) Thus, on a path, the first event in the
sequence denotes a potential OI interval whereas the
others may denote either 10 or OI completed intervals.
(Note that for a segment, all the nodes except the first
have only 10 completed intervals.) A path can be ex-
pressed as a concatenation of several segments.

A path at global time ¢ signifies that every node on the
path preceding a given node j; (j > 1) on the path is
blocked directly or transitively on i; at ¢.

Conditions ((C2) = ((C3) N (C4))) [referred to as con-
secutive blocking] and (Cl) indicate that node i, is
blocked at T_out;_ on i; which blocked at T_out;, and all
nodes on the path will remain blocked forever unless
either the last node on the path receives a reply from its
successor or some node on the path withdraws its re-
quest. However, while observing the system to detect a
path, it must be ensured not only that the latest available
state of each node is observed, but also that in this state,
all nodes that are believed to be consecutively blocked
are still blocked. This is expressed in condition (C5) [re-
ferred to as global consistency of blocking at latest ob-
servation events]. Note that condition ((C2) = ((C3) N
(C4))) asserts the blocking of nodes only at instants
T_out;. Condition (C1) relates these T_out; to the latest
available observable state (Condition (C5)) by specifying
that each T_out; is the latest event at which i; blocked
before i; was observed.

Note that the condition (C2) = (C4) is true if (C1) and
(CS) are true, but this condition is explicitly stated be-
cause i; can verify it at T_out; for the latest request re-
ceived from i;_; until T_out;. For consecutive blocking,
strictly one could require the condition (C2) = (C4) as
well but this condition is not explicitly stated because it
cannot be evaluated at T_out; . Note that this condition is
true if (C1) and (CS) are true.

Conditions for Deadlocks

A segment/path continues to exist so long as all the
involved nodes remain blocked. This property is of inter-
est for special paths that denote deadlocks. This paper
focuses on deadlocks in the single-request and AND
request models only, where a cycle in the WFG is the
necessary and sufficient condition for a deadlock. In the
OR request model, a knot in the WFG is the necessary



DISTRIBUTED DEADLOCK DETECTION 49

time segments paths
i (T out) (T _out,)
7% (T outy), (T outy) (T .outy), (T outy)
iy (T outy, T outy), {T outy) (T outy, T outy), (T outy)
ty: (T outy, T outs), {T outy, T outs) (T outy, T outs, T outy, T outs)
ts: (T outy, T outy), (T outs, T outs), (T outy, T outs, T outly, T out,,
(T _outs) T outs)
FIG. 3. Formation of a closed path of five nodes.

and sufficient condition for deadlock [2, 4, 16]. Much of
the discussion about paths and segments is valid, al-
though with a different semantics, for the OR request and
generalized request models. However, the conditions for
deadlock in these models need to be formulated differ-
ently.

DEfFINITION 3. A path (T_out;, T_out,, ..., T_out,)
is a closed path iff node i, is blocked at T_out; on i;.

Path (T_out,, T_out,, ..., T_out, ) closes at the in-
stant that the successor i, of the last node i,-, on the path
blocks at T_out; on the first node i; on the path (the path
concatenates with itself.) Figure 3 shows a closed path
with five nodes. The legend shows the formation of the
closed path by listing the segments and paths as seen by a
global observer at successive instants in absolute-time
when the participating nodes block.

DEFINITION 4. A closed path observed at global time
t denotes a deadlock at instant ¢. (i.e., each node on the
path will remain blocked on its successor forever unless a
node on the path unblocks as per Axiom 2(ii).)

Explanation. A node i; on a closed path is blocked on
its successor at T_out;. At t, each node on the closed
path is blocked on its successor and no node on the path
can get unblocked as per Axiom 2(i). There exists a dead-
lock. Assuming no node spontaneously withdraws its re-
quest or is aborted (the system does not obey Axiom
2(i1)), this state will persist forever. The smallest value ¢
can take is maxy;(abs(T-out,)).

The above analysis assumed the existence of a global
observer. A global observer with instantaneous access to
all node states has precise information of the deadlock
state and mimics access to a common memory and global
time. Though a global observer is unrealistic, the above

analysis provides an insight into distributed deadlocks
which will help us in understanding distributed deadlocks
in the absence of a global observer.

3.2. Coping with a Distributed View

Since a global observer is not realizable, one has to
deal with local observers. This means that one has to
confine one’s reasoning to what individual nodes know of
the system. Without loss of generality, it can be assumed
that there is a unique event T_detect, at node x in the
system that observes a deadlock (closed path).

A node cannot make any assertions about the system
state at absolute time ¢. The most it can deduce about the
system is what it observes from all the messages it has
received until the event of observation. A node can ob-
serve all the events that causally happened before the
observation event. These observable events identify the
computation prefix Past(T_detect,) which is pictorially
represented by the past cone [22, 23] shown in Fig. 1.
Thus, the vertical observation line at global time ¢ be-
comes the surface of a cone with vertex at T_detect, due
to the absence of common memory and common clock,
and due to non-zero message delay in the system.
| T_detect, is a consistent cut [27] and node x can draw
valid conclusions from events in Past(T_detect,).

In this framework, we have to adapt the definitions of
conditions (C1) and (C5) that a sequence (T, 7, ..., T;)
of events on nodes {; € P = {i}, iz, ..., i,} must satisfy:

(CY') Each T is the latest time T_out; at or before
(| T_detect,), when i; got blocked on its succes-
SOT Ij41.

(C5') Each node i; is blocked at (| T_detect,);, on ij.

The definitions of segment and path are the same as
before except that absolute time references are changed
to vector time references.

Segments

DEFINITION 1'. A segment at time T_detect, is a se-
quence of events (T_out;, t_out,, ..., T_out,) at nodes
i1, b, ..., I, satisfying the following conditions:

(D (C1"), (C2), (C3), and (C4).
/* conditions on blocking events. */
II) (C5').
/* conditions when the system is observed. */

Given a segment at time T_detect;, where iy, | <k =n,
is a node on the segment, every node i; preceding i is
blocked directly or transitively on i, at T_out;. Node i,
can get to know this because T_out; > T_out;_, for nodes
ij(j > 1) on the segment. Hence for nodes i;, 1 =j < kon
the segment, T_out; < (| T_out,),, i.e., T_out; belongs
to the past of every other event that occurs after it in its
segment.



50 KSHEMKALYANI AND SINGHAL

Paths

DEFINITION 2'. A path at time T_detect, is a se-
quence of events (T_out; , T_out,,, ..., T_out;) at nodes
iy, b, ..., iy, satisfying the following conditions:

(I) (C1’) and ((C2) = ((C3) N (C4))).

/* conditions on blocking events. */

(II) (C57).

/* conditions when the system is observed. */

If the outward dependencies of some two arbitrary
nodes do not lie on the same segment on a path, neither
node may know that the other is blocked since the past
cone of neither event at which the dependency is formed
necessarily includes the other. Node j; can get to know
that its predecessors on its segment of the path are
blocked on it directly or transitively. Note that if a node i
on a path at T_detect, does not advance its local clock
until it unblocks, then T_our; [i;] = T_detect,[i].

3.2.1. Conditions for Paths Revisited

We now express the conditions for a path in terms of
timestamps and local variables at a node.

Condition (C2) = ((C3) /\ (C4))

LEMMA 1. A sequence of blocking events (T_out;
T_out,,, ..., T_out;) where each i; is blocked on i;;, satis-
fies (C2) = ((C3) N (C4)) iff the nodes i; € {iy, i3, ..., i}
that have 10 intervals satisfy the following consecutive
blocking conditions:

(l) T_out,lﬂ[ij,l] = T_iniJ[ij_]] = T_Out,;[l.]'-ll

(2) i~y € in(i;) when the node i; blocks.

Proof. Part 1 (Sufficiency). T_in;[i;-\] = T_out;_|[ij-]
implies that when the 1O interval starts on node i;, the
latest i; knows of i;_;’s status is that it has made the re-
quest at T_out; [i;1]. i; adds ij_ to in(ij). T_out;[ij-1] =
T_out;_[i;-1] implies that #; has not received a message
that was sent directly or transitively indicating that i;_,
has sent a message after i, blocked at T_out; . This
proves (C2) = (C4). i;_; € in(i) at the end of the interval
implies that some request made by i, is valid. Since ij;
has not received any request from i;_, issued after the one
issued at T_out;_, the request that is valid at T_out; is
the same one as that at 7_in; . Hence, i; has not replied to
the request on which its predecessor is blocked at
T_out;_,. This proves (C2) > (C3).

Part 2 (Necessity): (C2) = ((C3) /A (C4)). The request
received by /;from i;_, is valid when it is received because
(C4) holds. On receiving the request, T_in;[i-,] =
T_out;_|[i-\] by the way the clocks are operated, and i;_,
is added to in(i;). Because (C4) holds, T_out;[i;-,] = T_in
ilij-1]. This proves (1). Since i; does not respond to the
request until it blocks (because of (C3)), it does not make
the request invalid at T_out; by a local action, and be-
cause of (C4), i; does not know the request is made in-
valid by an external action. So the request is valid at

T_out; and ij-; € in(ij) at T_out;. This proves (2). The
above reasoning is valid throughout the 10 interval on i,
hence i;_, € in(i;) throughout the 10 interval. B

Condition (C2) = ((C3) /\ (C4)) satisfied by events in
(T_out;, T_out,,, ..., T_out;) signifies that for a node i
with a completed IO interval, its predecessor i is
blocked consistently on it, (i.e., the blocked status and
timestamp T_out;_, at which i;_, blocked do not contra-
dict i’s knowledge of i;_;). This is an assertion on i at
T_out; and on i;_; at T_out, . These local assertions at
each T_out; do not imply that (T_out;,, T_out,, ...,
T_out; ) forms a path. To observe the existence of a path,
the system must be observed at T_detect, along the con-
sistent cut | T_detect, and it must be ensured in addition
that: (a) each node i; blocked at T_out; is blocked at
(| T_detect,), (C5'), and (b) events in the sequence
(T_out;, T_out,,, ..., T_out;), on which (C2), (C3), and
(C4) are specified, are related to | T_detect, as per [C1'],
i.e., each node i; blocked at T_ou, in the sequence must
remain blocked until (| T_detect,), .

Note that i; may infer at T_out; using (C2) = (C3) AN
(C4) that it has a completed 10 interval for the latest
request received from j;_;, even though i;_; may have
unblocked and sent a newer request to i, signifying an Ol
interval at /; in a path observed at T_detect,. This occurs
because i; cannot ensure (C1’) with respect to T_detect,
when it receives the latest request from i;_,. Even so, this
inference is useful for distributed deadlock detection.

Condition (C5")

Condition (CS') pertains to observing a set of blocked
nodes consistently along | T_detect,. The condition that
a set of observed events {7}, T,,, ..., T.} lie on a consis-
tent cut is stated by Mattern [23],

sup(T;,, T, ...

’ Ti,,) = [Til[il]’ Ti;[iZ]s very Ti,,[in]]

where sup(T;,, T,,, ..., T;) = T|(Vij), (T[i;] = max(T,[i;],
o T L.

LEMMA 2. A setof events{T,, T, ..., T;} observed at
T_detect, satisfies (C5') iff the events in the set satisfy
the following global consistency conditions:

(1) sup(Tip Ti;? ey Ti,,) = [Ti,[il], Tiz[izla LERR Ti,,[in]]a and
Vi; in the set, T,~J[i)~] = T_detect.[i;]
(2) (V)| T, is in the set, i; is blocked at T; on ij.,.

Proof. Part 1 (Necessity): If {T;, T, ..., T;} satisfies
(C5') when observed at T_detect,, each T; in the set lies
on | T_detect.. W show that (1) and (2) are satisfied. (1)
T,li] = (| T_detect,);[i}) and therefore [T;[ii, T.lial, ...,
T, [i,]] = T_detect, . Since events on | T_detect, lie on a
consistent cut, the first equality follows [23]. (2) Clearly,
ij is blocked at each T; on ., as per (C5').

Part 2 (Sufficiency): It is shown that T,[i] = (| 7-
detect,);[i;] when {T;, T;, ..., T, } satisfies (1) and (2). If

2



DISTRIBUTED DEADLOCK DETECTION 51

T i1 < (| T_detect,);[i;], then T;[i;] < T_detect,lij], a
contradiction. If T; [ij} > (| T_detect,);[i;], then T, [i;] >
T_detect,[i;], a contradiction. It can be concluded that T;
lies on | T_detect, and {T,, T, ..., T,} is a consistent
cut. Clearly, node j; is also blocked at T; on i;,,. So (C5')
is satisfied. =

Note that vector timestamps are not needed for (C2) >
((C3) /\ (C4)) but are needed for (C5).

3.2.2. Comments on “Event T_detect,”

We examine the relation between an observation event
T_detect, and the consistent cuts that it can observe.
This helps in determining what global states can be and
should be observed.

A consistent cut CCut = {T;, T;,, ..., T, } has a time-
stamp [T, [i1], T [i2], ..., T [i.]] as shown by Mattern [23].
Charron-Bost shows that in a run of a computation C,
every consistent cut is generated by a unique antichain’
in (C, <) [5). Moreover, every antichain of size =2 in C
generates a unique consistent cut with timestamp
T_detect, such that the supremum of the timestamps of
the events in the anti-chain is T_detect, [5]. Such a time-
stamp does not correspond to a real event on nodes i, iz,
..., i,. Only antichains of size 1 in C, i.e., individual
events in C, generate a unique consistent cut with the
timestamp of a real event, namely, the event itself; the
other events on that consistent cut belong to the past of
that event.

ASSERTION 1.  For any event T_detect,, there exists a
unique observable consistent cut that is exactly | T_
detect, .

Justification. Let CCut = {T;, T,, ..., T;} be the
unique consistent cut identified by and containing
T_detect, (such a cut exists [5]). For any 7, € CCut,
there are three cases: (1) T,[i] < (| T_detect,);[i], in
which case T, cannot be in CCut. (2) T;[i] > (| T_de-
tect,); [ij], in which case T, is not observable at T_detect,.
Q)T [t,] = (| T_detect,), [1,] in which case T, is observ-
able at T_detect, and can belong to CCut. Thus each
element of | T_detect, belongs to the unique observable
consistent cut CCut.

3.2.3. Conditions for Deadlock

THEOREM 1. There exists a path at T_detect, iff there
exists a set S = {i;, iz, ..., I,} of nodes such that

(1) The set of events (| T_detect,);, where i; € S, sat-
isfies (CS') (global consistency of blocking at latest ob-
servation events).

(2) The sequence of events (T_out;,, T_out,, ...,
T_out,) identified by (C1"), satisfies (C2) = (C3) N\ (C4)
(consecutive blocking).

% An antichain of a partially ordered set is a subset in which any two
elements are incomparable.

Proof. Follows from the definition of path. Lemmas 1
and 2 indicate how to evaluate (C2) = (C3) /A (C4) and
(C5’), respectively. H

COROLLARY 1.
(T_out;,, T_out,,, ...,
forms a consistent cut.

The set of events in the sequence
T_out,) identified in Theorem |

Proof. | T_detect, is a consistent cut. No message
sent after (| T_detect,); reaches node i; before (| 7_
detect,), and therefore before T_out; . Also, no message
is sent between T_out; and (| T_detect,),; . Therefore, no
message sent after T_but,-J reaches i, before T_out; . The
result follows. =W

DEerFINITION 4’. A closed path at T_detect, denotes a
deadlock at T_detect, (i.e., each node on the path will
remain blocked on its successor forever unless a node
unblocks as per Axiom 2(ii)).

Explanation. By Axioms 1 and 2, a blocked node on
the path will not send any message (i.e., will remain
blocked) until it receives a reply from its successor on the
path or it unblocks in the abnormal mode (Axiom 2(ii)).
Consider a node i, which has an Ol interval. i, stays
blocked at least until its successor i+, sends iy, a reply or
i, unblocks as per Axiom 2(ii). If i, | has an IO interval, it
does not send i, a reply until #,., sends iy, a reply or i,
unblocks as per Axiom 2(ii). By induction, a node i, such
that i, is the first node on the next segment in the path is
reached. Nodes i, and i; have Ol intervals and i, stays
blocked at least until i; sends a reply to its predecessor or
some node on the segment from i, to i, unblocks as per
Axiom 2(ii).

No node i; on the path has become unblocked until
(| T_detect, )i,» which is the most information available
at instant T_detect,. If after (| T_detect,);, no node un-
blocks as per Axiom 2(ii)), then i; stays blocked on i, at
least until i, sends a reply to its predecessor.

Assuming that after | T_detect,, no node unblocks as
per Axiom 2(ii), it can be observed that every node with
an Ol interval on the path stays blocked at least until the
next node with an Ol interval on the path sends a reply to
its predecessor. By induction, all the nodes with Ol inter-
vals on the closed path stay blocked at least until they
send a reply to their predecessors; however, a blocked
node will never send a reply. Also, a node with an 10
interval on the path stays blocked at least until the node
(with an OI interval) on the next segment on the path
sends a reply to its predecessor.

Hence, all the nodes remain blocked forever, implying
that (T_out;, T_out,,, ..., T_out,; ) is a deadlock. Note
that none of the blocked nodes can have their requests
satisfied in the normal mode (case (i) in Axiom 2).

3.2.4. An Inherent Limitation in Observing Deadlocks

A deadlock at T_detect, is based on what can be ob-
served along the unique consistent cut | T_detect,



52 KSHEMKALYANI AND SINGHAL

—> time

T detect ,,

Node i

d T_derectx )i f abs(T_detect,)

FIG. 4. Past cone of detection event T_detect,.

whose events lie along the thick line in Fig. 4. However,
no assertion can be made about the deadlock status at
abs(T_detect,) because events that occured at any node j;
between (| T_detect,); and abs(T_detect,) cannot be ob-
served at abs(T_detect,). This is an inherent limitation of
a nonglobal observer in a distributed system. There is no
way of guaranteeing that at the absolute time when a
deadlock is detected, the deadlock indeed exists.

This inherent limitation specially creates a problem
when nodes can unblock in the abnormal mode (Axiom
2). This can result in the detection of false deadlocks
(i.e., deadlocks that do not exist at the time of detection).
For example, node i;’s request can be satisfied in the
abnormal mode (Axiom 2(ii)) during a period from
(| T_detect,); to abs(T_detect,), as a result of which the
deadlock may not persist at abs(T_detect,). However, it
will be observed by node x at abs(T_detect,).

3.2.5. Inferring if a Set of Observed Events Forms
a Deadlock

The problem of detecting distributed deadlocks can be
phrased as follows: given a set of events {T_out,,
T_out,,, ..., T_out, }, do they form a deadlock for an ob-
server? This is equivalent to sampling each node i; at
T_out; and determining if these events form a deadlock.
Based on the results obtained so far, we answer this
question next.

Given a set of events, the past of all these events can
be constructed by doing a union on the pasts of each
event [5]. This operation yields a consistent global state
because it takes the transitive closure under the happens
before relation of all the messages known to be received.
Given a set of events {T_out;, T_out,,, ..., T_out,} re-
ported to a control node x, it can construct Uy, (Past
(T_out;)) to give Past(T-detect,). The observer x can
now check Past(T_detect,) for a closed path by using
Theorem 1. (Another way of looking at a deadlock detec-
tion event is that it lies in the intersection of the future
cones of the deadlocked nodes.)

Centralized Detection of Deadlocks

We can use the above result to devise a centralized
deadlock detection scheme which works as follows: each
node i; reports its status to a central node x that maintains

the WFG along | T_detect,. The status reported by i
includes all local variables that are necessary for evalua-
tion of a path. These variables are required in Theorem 1
which uses Lemmas 1 and 2 to evaluate (C2) = ((C3) N
(C4)) and (C5’), respectively. Specifically, at the time
node i; blocks, it reports to node x the following variables:
(i) T_out; (= T;), (ii) for every other node i, the i;th
component of the timestamp 7_in; when the most recent
request from i, was received, and (iii) for every other
node i, a boolean value indicating whether currently i, €
in(i;). Node i; also reports its timestamp at the time it gets
unblocked.

The central site x works as outlined next: whenever it
gets new data, it (1) updates its WFG by adding new
wait-for edges and deleting old wait-for edges. (2) If there
is a wrap-around sequence of biocked nodes, it checks if
each adjoining pair in the sequence satisfies consecutive
blocking ((C2) = ((C3) /A (C4))). (3) If (2) holds and each
blocked node j; in the wrap-around sequence remains
blocked until | 7_detect, ((C5') and (C1")), it declares
deadlock. A variant of this scheme is given in [17].

3.3. Distributed Deadlock Detection

Distributed deadlock detection can be viewed as detec-
tion of a special type of consistent cut (global snapshot
[3]), in which each node satisfies consecutive blocking
and global consistency of blocking at the latest observa-
tion events. For distributed detection of deadlocks, each
blocked node should be able to confirm both its incident
dependencies, (i.e., “‘in’’ and ‘‘out’” dependencies) be-
cause no central node collects the necessary information;
Instead, all the involved nodes collectively detect the
deadlock. This requires that (| T_detect,); = max
(T-in;, T_out,) for all the nodes i; on the path. The event
in the system where a path is detected is such that the
ends of the completed intervals on the nodes on the path
lie in its past cone, and all information received until then
must support the fact that those nodes indeed form a
path. Thus, for distributed detection, the characteriza-
tion of deadlock needs to be extended by examining the
timestamps at the ends of intervals on the nodes.

DEFINITION 5. A path (T_out;, T_out;, ..., T_out;)
at T_detect, is a ‘‘confirmed’’ path if for all nodes i; on
the path, (| T_detect,);, = max(T_in;, T_out,), i.e., a
completed interval at each node on the confirmed path
can be observed at T_detect, .

Not only do nodes on a confirmed path know that the
nodes before them on their segment are blocked, but also
the first nodes on segments (i.e., nodes which have OI
intervals) in the confirmed path know at the end of their
interval that all the nodes in the previous segment are
blocked. A deadlock detected at T_detect, is a closed
“‘confirmed’’ path at T_detect,.

A node i; can ascertain the following about the system
state: i;_; is waiting on i; at T_out; , and i; is waiting on i},



DISTRIBUTED DEADLOCK DETECTION 53

at T_out,, only at or after the end of the interval. A node
i; can confirm involvement in a deadlock only if a node is
waiting on it and it is waiting on some node. Observe that
the following conditions hold at the end of (completed)
Ol intervals on the nodes with OI intervals on the con-
firmed path:

(N T_out,-J[ij] = T_out [i];

(2) i+ € out(i;) during the interval;

(3) T_out;_li-1] = T-in[ij-1].

Constraint (1) follows because i; remains blocked from
T_out; until (| T_detect,); and because it does not send a
message with a timestamp greater than T_out,[i;] in this
period, as per Axiom 1. Constraint (2) follows because i;
remains blocked from T_out; until (! T_detect,),. Con-
straint (3) follows because at the end of its interval, i
does not perceive i;_; as having moved its local clock
beyond T_out;_[ij-,] which is exactly the time when i;_,
got blocked on i; on the current dependency, as per Ax-
iom 1.

Due to the distributed nature of the dependency infor-
mation, i;_,’s dependency on i; can belong to | T; only
when /; receives a valid request from i;_, at T_in; . A node
with an IO interval on a path can know that all nodes
before it on its segment are blocked when it blocks at
T_out; because dependencies are formed serially and this
information is valid along | T_ out; (the information actu-
ally becomes known sooner at T_in;). A node i; with a
completed OI interval (i.e., the first node on a segment)
can know at T_in, that all the nodes in the previous seg-
ment are blocked. These conclusions can be made at
T_in, because the blocked events of nodes on the pre-
vious segment belong to | 7_in, .

Semi-Distributed Algorithm: The above scheme sug-
gests a semi-distributed detection algorithm in which
completed OI intervals are reported to a central node.
When a node completes an Ol interval (this will be the
first node in a segment) at event T_in;, it reports all the
events on the preceding segment (which now belong to
the past of T_in;) to a central node rather than each node
in the preceding segment reporting itself to the central
node (as done in the scheme in Section 3.2.5). The out-
ward dependency information of the nodes on a segment
flows with the request when each of the nodes blocks,
until it reaches the first node on the next segment. Hence,
if the average length of a segment is s, and a closed path
is of length d, the algorithm needs d/s message transmis-
sions.

Distributed Algorithm: In a (fully) distributed deadlock
detection algorithm, the more frequently a node broad-
casts messages, the sooner other nodes learn of its latest
state. A distributed deadlock detection algorithm can dis-
seminate its state information by adapting a wide range of
policies. At one extreme, when a node’s blocked status
changes, the changed status is broadcast to all other
nodes. Each node in this broadcast algorithm behaves
like the central node in the centralized scheme in Section
3.2.5. An example of this algorithm is the Isloor-

Marsland algorithm [15]. At the other extreme, when a
path is extended/formed, only the minimum number of
messages to satisfy the requirements of deadlock detec-
tion are sent. Broadcast algorithms have high overheads,
and so we focus on algorithms in which information is
propagated in a directed manner.

All the dependency information needed to evaluate
consecutive blocking and the global consistency of block-
ing at the observation events which was identified in
Lemmas 1 and 2, respectively, needs to be propagated.
This information was enumerated in the centralized de-
tection scheme of Section 3.2.5. The information T; of
each i; can be combined as it propagates to evaluate
Lemma 2 on-line.

Examples

Several probe-based algorithms, e.g., [7, 33, 35], and
path-pushing algorithms, e.g., [26], are based on the di-
rected information propagation scheme outlined above.
In probe-based algorithms, node i; initiates a probe when
it blocks (an outward dependency is formed). The probe
is stored at node i, if i;;; is active. When i;,| blocks on
node ij;, i;+, forwards a copy of i;’s probe to ij+,. This is
exactly when i;;, has an IO interval. If /., was blocked
when it received i’s probe (i;;; has an Ol interval), then
ij’s probe has to be explicitly forwarded to i;,, because it
is not going to send any more computation messages. In
this case, i;, is the first node on its segment.

Status of a deadlock as seen by i; can change whenever
a message arrives or an incident dependency is formed or
broken. A node i, may learn of an event at node i; when
(1) i, receives a message from i;, or (2) a message sent
from j; to i is received at iy, after which a message is sent
by i, to i, and is received at i,. This requires intelligent
interpretation of the timestamp of each received message
in order to always observe the system on the surface of
the past cone; imposing FIFO behavior on the communi-
cation channels does not solve the problem.

Deadlock detection messages should carry a vector
timestamp to correctly evaluate Lemma 2 on-line. In Sec-
tions 5 and 6, we use the developed formalism to demon-
strate that algorithms [7, 14, 35] are incorrect. Now on
the discussion is restricted to a nonglobal observer.

4. DEADLOCK RESOLUTION

A deadlock resolution event represents the withdrawal
of request(s) by a node on a closed path. Let the event of
resolving a deadlock detected at T_detect, be T_resolvey.
(Note that in general, the resolver and the detector of a
deadlock may be different.) The correctness of a detected
deadlock is examined by observing the relation among
T_detect,, T_resolve, and (T_out; , T_out,, ..., T_out; )
in the timing diagram shown in Fig. 5. Let abs(max
wiy(T—out;)) be denoted by ¢, the global time at which
deadlock forms.



54 KSHEMKALYANI AND SINGHAL

T _detect ,

i abs(T _detect )

Event T_out, _(all these form a closed path)
Possible resoliition event T_resolve,
Detection event  T_detect X

~Hes

Instant at which deadlock is formed as seen by global observer

FIG. 5.
events.

Relationship between deadlock detection and resolution

Clearly, Vi;, abs(T_detect,) = abs(T_out;). There are
six cases depending on the relationship between
T_detect, and T_resolve,. These are denoted as (1)-(6)
below and in Fig. 5.

(1) abs(T_resolvey) < trand (T_resolve, co T_detect,).
“‘Deadlock’’ is broken before it is formed at global time
tr. However, T_resolve, is not observable at T._detect,
because T_resolve, is concurrent with T_detect, .

(2) tr < abs(T-resolve;) < abs(T_detect,) and
(T_resolve, co T_detect,). Deadlock is detected in global
time after it has formed. However, in global time, the
deadlock ceases to exist before it is detected. T_resolve,
occurred concurrently with T_detect, and cannot be ob-
served at T_detect, because it happens after | T_detect,.
This is an inherent limitation due to the lack of a global
observer. Note that the first two cases are indistinguish-
able to the observer.

3) tr < abs(T_detect)) < abs(T_resolve;) and
(T_resolve, co T_detect,). Deadlock exists at the global
time when it is detected. Though it is resolved after it
forms and after it is detected in global time, the resolution
event occurs concurrently with the detection event and
the resolution is not a consequence of the detection, i.c.,
T_resolve, does not lie in the future cone of T_detect,.
This case is indistinguishable from the previous two
cases to the observer.

(4) T_detect, < T_resolve,. The resolution at
T_resolve, occurs with knowledge about T_detect, and
lies in the future cone of T_detect,.

(5) abs(T_resolvey) < tyand (T_resolve;, < T_detect,).
“‘Deadlock’ is broken before it is formed at global time ¢
and resolution event T_resolve, is observable at
T_detect,. Nevertheless, the observer sees the corre-
sponding closed path at the surface of the past cone
| T_detect, because of an algorithmic error. Clearly,
event T_detect, falsely declares a deadlock.

6) tr < abs(T_resolvey) < abs(T_detect,) and
(T_resolve, < T_detect,). Deadlock is broken in global
time after it formed and T_resolve, is observable at T_

detect,. Nevertheless, the observer sees the correspond-
ing closed path at the surface of the past cone | T_de-
tect, because of an algorithmic error. T_resolve; occurred
before T_detect, and can be observed at T_detect, be-
cause it happens before | T_detect.. Clearly, event
T_detect, falsely declares a deadlock.

5. FALSE DEADLOCKS

We now use the developed framework to define false
deadlocks. Roesler and Burkhard [28] have defined two
types of false deadlocks, viz., pseudo and phantom, in
terms of physical global time. However, these definitions
are rather naive and use physical global time which is
impossible to realize. In this section, we define false
deadlocks precisely under the state-theoretic framework
developed here. It turns out that there are three types of
false deadlocks, namely, shadow, phantom, and pseudo.

5.1. Shadow Deadlocks

DEFINITION 6. A shadow deadlock is a deadlock that
is observed along | T_detect,, but is resolved concur-
rently with the detection event 7T_detect,. (Event
T_detect, detects a shadow of the deadlock that has been
concurrently resolved.)

A shadow deadlock is observed due to the inherent
limitation that at T_detect,, an observer x can observe
only what occurred up to | T_detect,. The information
along the | T_detect, indicates a deadlock but the dead-
lock resolution event cannot be observed because it is
concurrent with T_detect,. Nothing can be done to avoid
shadow deadlocks (except in a ‘‘restricted model’’; see
Section 6) because they occur due to inherent limitations.
No node involved in a shadow deadlock can determine
the instant at which the deadlock is resolved because a
concurrent resolution of the deadlock could be taking
place. Shadow deadlocks are represented by cases (1),
(2), and (3) in the previous section.

5.2. Phantom Deadlocks

DEFINITION 7. A phantom deadlock is a deadlock
that is declared at T_detect, because a closed path is
observed along | T_detect,, but the corresponding dead-
lock has been resolved in Past(T_detect,).

A phantom deadlock is a deadlock which existed in the
system for a global observer or for a nonglobal observer
(at some possibly nonexistent event), but is not present in
the system along T_detect,. Phantom deadlocks occur
due to algorithmic errors. The main algorithmic errors
are as follows: (i) information about outdated dependen-
cies is not cleaned properly, (ii) outdated information is
propagated, and (iii) temporal information which can cap-
ture causal relationships is not included in the deadlock
detection process. Phantom deadlocks are represented
by cases (5) and (6) in the previous section.



DISTRIBUTED DEADLOCK DETECTION 55

(i) (i)

a path of cleaning probe for node "a"
a path of probe for node “a”
a path of probe for node "c"

reply — . request

FIG. 6. An example of a pseudo deadlock in the Vossen and Wang
algorithm [35].

5.3. Pseudo Deadlocks

DEFINITION 8. A pseudo deadlock is a deadlock that is
declared at T_detect, but the corresponding closed path
(T_out;,, T_out;, ..., T_out;) such that T_our; <
T_detect,, never existed for any observation event.

Various segments and paths of a pseudo deadlock
never existed simultaneously for a global or a nonglobal
observer. The information along | T_detect, indicates
no deadlock, but incorrect deductions are made by the
algorithm. Pseudo deadlocks are reported due to al-
gorithmic errors. The primary error is that an algorithm
fails to include temporal information in the reasoning and
wrongly concludes that a set of segments/paths, which
existed at different times, constitute a closed path.

The algorithms by Vossen and Wang [35], Obermarck
[26], Sinha and Natarajan [33], Choudhary et al. [7], Ho
and Ramamoorthy [14] and Roesler and Burkhard [28]
are some of the algorithms that declare pseudo dead-
locks. The two-phase algorithm of [14] reports pseudo
deadlocks because temporally unrelated blocking events
that do not satisfy condition (C2) = ((C3) A\ (C4)) are
used to declare deadlocks. We next give a detailed exam-
ple to show how the Vossen and Wang algorithm [35]
(which is also a representative of the algorithms [7, 33])
detects pseudo deadlocks because it does not satisfy
(C5).

An Example

In the Vossen and Wang algorithm [35], a node circu-
lates probe messages along the edges of the WFG and
detects a deadlock when it receives its own probe. It then
initiates cleaning probes which are propagated along the
edges of the WFG to clean the probes that it had propa-
gated in the WFG and then it aborts. The example is
shown through three scenarios in Fig. 6.

Scenario (1): The probe initiated by node ‘‘c’’ returns
to node ‘‘c’’ which detects deadlock. Node ‘‘c’’ sends
out cleanmg probes for all nodes (including node “a’)

whose probes it had propagated (i.e., forwarded).

Scenario (ii): Node ‘‘¢’” removes adjacent WFG edges
and aborts. Node “b” becomes unblocked, blocks on
node ‘‘¢”” which promptly replies to *‘b”’ and unblocks
“p.r

Scenario (iil): A WFG edge from node ‘¢’ to node
“‘a’” forms. Node s probe arrives back at “‘a’’ and
node ““a’ declares deadlock ‘‘a-b-c-d-e.”” Node that the
cleanmg probe for node ‘a’ is still chasing the probe—lt
had not reached node ‘‘e¢’’ when ‘‘e’’ blocked on “‘a.’

Node ‘“‘a’ declares a pseudo deadlock because the
deadlock could not have been observed by a global or a
nonglobal observer. Note ‘‘e’” ’s past cone contained the
fact that node ‘‘c’’ had aborted, yet it did not represent
this information correctly. When “‘e’’ blocked, it propa-
gated the probe for ‘‘a’ without takmg into account this
information. Thus, node ‘‘a’’ got back an inaccurate state
of the WFG and violated (C5 ). This is a limitation of this
algorithm because it cannot detect causal ordering of
messages as probes don’t carry timestamps.

Note that had the interaction between *‘b’’ and ‘‘e’’ not
occurred in scenario (ii), then the deadlock detected by
“‘a” *‘shadow’’ deadlock. This is because

ss LRI |

a”’ would be a
‘‘e’” ’s past cone would not contain the information that
*‘c’” had aborted.

In scenario (ii), assume that the interaction between
“b” and ‘‘e”’ does not occur. Instead, the following oc-
cur: “‘b”’ replies to *‘a,” ‘b’ sends a request to ‘‘h”
which is not shown (assume that two-phase locking [1] is
not followed by “‘b”’), **h’’ receives *‘b’’ ’s request, “*h”’
sends a request to *‘a,’” and *‘a’’ receives “*h’’ s request.
Then i m scenario (m) when “*a’’ receives its own probe
from ‘‘e,”” it declares a phantom deadlock ‘‘a-b-c-d-e.”
This is a phantom deadlock because the closed path did
exist for any omniscent observer but was resolved in
s past cone. ‘‘a’’ could not recognize the resolution
because it did not use vector clocks.

u LENR

6. DEADLOCKS IN A RESTRICTED MODEL

A restricted model with each of the following features
is identified:

* Single-request model.
* Nodes cannot abort spontaneously.
* A single resolution for a detected deadlock.

Since a node can make a single request at a time, dead-
locks are isolated, i.e., a node can be part of at most one
deadlock. Also, deadlock resolution cannot occur con-
currently with detection of the deadlock because resolu-
tion occurs only as a result of detection. Since a node
cannot spontaneously withdraw its request, deadlocks
are stable, i.e., a deadlock persists until explicit resolu-
tion of it is performed. A very interesting consequence of
all this is that the surface of the past cone | T_detect,
becomes a vertical line abs(T_detect,).

In the restricted model, deadlock resolution can occur
only as a result of detection due to stability of blocking



56 KSHEMKALYANI AND SINGHAL

(i.e., T_detect, < T_resolve;), therefore, abs(T_detect,)
< abs(T_resolvey). Consequently, cases (1)—(3) in Fig. 5
can be avoided in this model. (They should be avoided
because they lead to unnecessary resolutions.) Shadow
deadlocks should never occur. When a deadlock is de-
tected, it is guaranteed to exist in global time. (Consecu-
tive blocking of nodes implies that (T_out; , T_out,,, ...,
T_out,) is a consistent cut. So check (3) in the central-
ized detection scheme (Section 3.2.5) can be deleted.)

LEMMA 3. [In the restricted model, a deadlock which
is detected at T_detect, exists at abs(T_detect,).

Proof. Follows because (i) each member of (T}, T,

., T; ) is blocked at a time in Past(T_detect,) and there-
fore, at a time less than abs(T_detect,); (ii) there is stabil-
ity of blocking. m

Note that stability of deadlocks is not guaranteed in the
AND and the generalized request models because re-
quests can be satisfied in the abnormal mode (case (ii) of
Axiom 2). Specifically, stability of deadlocks is not guar-
anteed whenever a system permits the following: (i) a
node can be a part of multiple closed paths (conse-
quently, a closed path may get resolved due to a resolu-
tion of another closed path) or (ii) a node can spontane-
ously withdraw its request.

Several deadlock detection algorithms for the re-
stricted model are incorrect. The algorithm by Vossen
and Wang [35] works incorrectly even in this model.
Sinha and Natarajan’s algorithm [33] and Choudhary et
al.’s algorithm [7] which are designed for the single re-
quest model also detect false deadlocks [20, 29]. These
algorithms have the problem of undetected deadlocks,
too. We next look at the false deadlock problem in [7].

An Example

Choudhary et al.’s algorithm [7] is probe-based and
detects deadlocks by circulating probes in the WFG.
Since ‘‘probes’ and ‘‘cleaning probes’ do not carry
timestamp information, it is not possible to carry the
timestamp of T_resolve,. To avoid a situation where
node k is detected as a part of the deadlock by x and
T_resolve, < T_detect,, the algorithm uses a ‘‘freezing
scheme’” wherein the information of the resolution event
is spread throughout the WFG (the closed path in this
model), using ‘‘cleaning’’ probes, before a resolution is
actually carried out. In doing so, the algorithm goes
wrong and reintroduces information about the node
which is about to be resolved into the system. This propa-
gates without check and causes pseudo deadlocks to be
detected. The algorithm is designed for a database sys-
tem where Tr; represents transaction i and DM; repre-
sents the data manager for data j.

For example, in Fig. 7 suppose Tr; is the victim chosen
to resolve the deadlock. Consider the following sequence
of actions: (i) Tr; sends a ‘‘clean’’ message to DM, and
waits for it to return before aborting. (ii) In the mean-

Tr; DM Tr
DM, DM
Tr
4 Try
DM,
Tr5 [ . - DM5

FIG. 7. An example of Choudhary er al.’s algorithm {7].

while, it receives Trs’s probe from DM; and forwards the
probe to DM,. (iii) Tr; now receives its own ‘‘clean”
message and aborts. (iv) Tr, Try, and Try successively
become active (after Tr; releases DM;). (v) Try starts
waiting transitively on Trs through Tre (not shown in Fig.
7). (vi) Tr4 receives the Trs’s probe from DM, and for-
wards it toward Trs via Trs. (vii) The data manager where
Trsis the holder (not shown in Fig. 7) receives Trs's probe
and detects a false deadlock (Trs, Try, Try, Tre).

Note that Tr, becomes active only after Tr; aborts and
Tr, and Tr, become active. The knowledge that 7r; has
aborted lies in the past cone of Tr,. Thus, Tr, could have
discarded Trs's probe which was forwarded to it by Try
(because Tr; has aborted since then).

The error of not viewing the system along the surface
of the past cone appeared in the Vossen—-Wang algorithm
[35], too. An additional error in the algorithm [7] that is
specific to the restricted model, is that in step (ii), Trs
reintroduces information that it is blocked and undoes
the actions of the cleaning probe.

7. CORRECTNESS CRITERIA

The classical criteria for the correctness of distributed
deadlock detection algorithms are as follows:

1. Progress (No undetected deadlocks): A distributed
deadlock detection algorithm must detect all deadiocks in
finite time.

2. Safety (No false deadlocks): A distributed deadlock
detection algorithm must not report false deadlocks.

These criteria were directly taken from shared memory
systems where the global system state is instantaneously
and consistently available. These correctness criteria
must be adapted for distributed deadlock detection to
account for the fact that no node in a distributed system
can have an instantaneous view of the system state. Each
node deduces the status of all other nodes from all the
knowledge available to it. The latest consistent knowl-
edge that a node x can have about the system state at an
instant abs(T_detect,) is represented by the surface of
the past cone of the observation event T_detect, . There-
fore, all assertions about deadlock can be made only
along the unique observable consistent cut | T_detect,.
Consequently, the correctness criteria for a distributed
deadlock detection algorithm become as follows:



DISTRIBUTED DEADLOCK DETECTION 57

1'. Progress (No undetected deadlocks): A distributed
deadlock detection algorithm must report all deadlocks
(closed paths as per Theorem 1) which it can observe
along | T_detect, for any observable event T_detect,.

2’. Safety (No false deadlocks): A distributed deadlock
detection algorithm should report a deadlock at T_derect,
only if it observes the corresponding closed path (as per
Theorem 1) along | T_detect,.

Correctness of distributed deadlock detection depends
to a large extent upon observing the surface of the past
cone | T_detect, consistently. However, not only should
the surface of the cone be observed and inferred cor-
rectly, but also a distributed deadlock detection algo-
rithm should take appropriate actions (such as promptly
propagating information about wait-for dependencies and
promptly cleaning or invalidating information about out-
dated dependencies caused by a resolution) to ensure
that the surface of the cone represents the system state
accurately. Therefore, besides the progress and safety
conditions, we need an additional correctness condition
for a distributed deadlock detection algorithm to ensure
consistency of the information along the surface of the
past cone. This correctness condition is given below:

3. Consistency of Information (surface of the past cone
should be correct): The surface of the past cone
| T_detect, of any observation event T_detect, at node x
must correctly reflect the complete system history con-
tained in the past cone of the event.

If multiple nodes detect the same deadlock, only one of
the nodes should be permitted to resolve the deadlock.

Note that many distributed deadlock detection algo-
rithms are incorrect because they do not satisfy the third
correctness condition. They do not take appropriate
actions to ensure that the surface of the cone represents
the system state accurately. Some algorithms do not
propagate wait-for dependencies correctly; conse-
quently, an existing deadlock may not be noticeable at
the surface of the past cone, resulting in failure to detect
existing deadlocks. Example of such algorithms are algo-
rithms of Menasce and Muntz [25], Sinha and Natarajan
[33], and Choudhary er al. [7]. Many algorithms do not
clean/invalidate out-dated wait-for dependencies (such
situations are created by a deadlock resolution or a spon-
taneous abort) correctly or do not collect the surface of
the cone correctly; consequently, a deadlock cycle ap-
pears at the surface of the past cone even though there
may not be a deadlock, resulting in detection of false
deadlocks. Examples of the algorithms that do not clean
wait-for dependencies in some cases are Sinha and Na-
tarajan [33] and Choudhary et al. [7]. Examples of the
algorithms that do not view the surface of the cone cor-
rectly are Gray [13] and Ho and Ramamoorthy [14].
These two algorithms do not satisfy condition “2’.
Safety”” and a deadlock is observed even though the cor-
responding closed path never existed.

To ensure that information about a deadlock appears
on the surface of the past cone in finite time, all necessary

deadlock detection activities for a distributed algorithm
should have been initiated before or at the end of the
interval at each node. A distributed deadlock detection
algorithm must circulate the states of the nodes so as to
bring all the blocking events within some node’s view in a
finite number of steps.

8. SUMMARY AND DISCUSSION

Detection of distributed deadlocks is difficult because
no node in a distributed system has an instantaneous
view of the system state. The definition of a deadlock and
correctness criteria for a distributed deadlock detection
algorithm must be redefined for distributed systems to
take this into account.

This paper has presented a characterization of distrib-
uted deadlocks which explains the process of formation
of distributed deadlocks in a state-theoretic framework.
We have analyzed the formation of distributed deadlocks
from the basic building blocks of deadlocks. We have
examined the interaction between distributed deadlock
detection and resolution which provides a deeper insight
into the properties of distributed deadlocks. The charac-
terization has resulted in a new set of correctness criteria
for distributed deadlock detection algorithms.

Characterization of distributed deadlocks for a nonglo-
bal observer is more complex than it is for a global ob-
server because a nonglobal observer does not have an
instantaneous view of the system state due to the inher-
ent system limitations—lack of a global memory and a
common physical clock. We have characterized distrib-
uted deadlocks from the basic building blocks, namely,
segments and paths, and have discussed how a node
(nonglobal observer) can observe them in terms of local
variables and timestamps, in distributed systems. For an
observation event T_detect,, a nonglobal observer can
base its decision on the information available only along
| T_detect,, the unique observable consistent cut at
T_detect, which represents the (nonvertical) surface of
the past cone. This is equivalent to taking a global snap-
shot [3] along | T_detect,, and assembling it at T_detect,
to check for deadlocks. What is effectively observed in
this snapshot is the virtual global state that would have
been reached if each node /; in the snapshot initiated no
further action after (| T_detect,), .

An analysis of deadlock detection and resolution re-
veals that resolution may contribute to detection of false
deadlocks. Deadlocks which are observed along the
unique observable consistent cut at the observation
event, but which are resolved concurrently with the ob-
servation event may be treated as ‘‘existing’’ deadlocks.
We have defined three types of false deadlocks, viz.,
shadow, phantom, and pseudo deadlocks, in the devel-
oped framework.

The effect of a global observer can be achieved in a
restricted system model that was identified. Here, stabil-



58 KSHEMKALYANI AND SINGHAL

ity of blocking guarantees that a deadlock observed by a
nonglobal observer along the surface of a past cone per-
sists until the absolute time of the observation instant.

Based on our state-theoretic analysis of distributed
deadlocks, we have defined a new set of correctness cri-
teria for a distributed deadlock detection algorithm,
which consists of the following three parts: (1) Every
deadlock observed along the unique observable consis-
tent cut | T_detect, must be reported. (2) All assertions
about a deadlock at an event T_detrect, at node x must be
made only along | T_detect,. (3) A distributed deadlock
detection algorithm should take appropriate actions (such
as prompt propagation of information about wait-for de-
pendencies and prompt cleaning of information about
out-dated dependencies caused by a resolution) to insure
that the surface of the cone represents the system state
accurately. These three criteria essentially require that
system state information should be correctly observed as
well as correctly disseminated.

Future work can involve the characterization of dead-
locks in the OR and generalized request models along the
lines of the AND request model dealt with in this paper.
Though the concept of segments and paths presented
here holds for these request models also, there is a differ-
ent semantics involved in these models.

ACKNOWLEDGMENTS
We thank the referees for their very useful comments.
REFERENCES

1. Bernstein, P. A., and Goodman, N. Concurrency control in distrib-
uted database systems, ACM Computing Surveys 13, 2 (June 1981),
pp. 185-221.

2. Bracha, G., and Toueg, S. Distributed deadlock detection, Distri-
but. Comput. 2 (1987), 127-138.

3. Chandy, K. M., and Lamport, L. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Trans. Comput. Sys-
tems 3, 1 (1985), 63-75.

4. Chandy, K. M., Misra, J., and Haas, L. M. Distributed deadlock
detection. ACM Trans. Comput. Systems 1, 2 (1983), 144-156.

5. Charron-Bost, B. Combinatorics and geometry of consistent cuts:
Application to concurrency theory, Proceedings of the 3rd Interna-
tional Workshop on Distributed Algorithms, 1989. Lecture Notes in
Computer Science, Springer-Verlag, New York/Berlin, 1989, vol.
392, pp. 45-56.

6. Charron-Bost, B. Concerning the size of logical clocks in distrib-
uted systems. Inform. Process. Lett. (July 1991) 11-16.

7. Choudbary, A. L., et al. A modified priority-based probe algorithm
for distributed deadlock detection and resolution. IEEE Trans.
Software Eng. (Jan. 1989), 10-17.

8. Coffman, E. G., Elphick, M., and Shoshani, A. System deadlocks.
ACM Comput. Surveys (June 1971), 66-78.

9. Datta, A., and Ghosh, S. Synthesis of a class of deadlock-free
Petri-nets, J. Assoc. Comput. Mach. (July 1984), 486-506.

10. Fidge, C. A. Timestamps in message-passing systems that preserve
partial ordering. Austral. Comput. Sci. Comm. 10, 1 (Feb. 1988),
56-66.

11. Fidge, C. A. Logical time in distributed computing systems. /EEE
Comput. (Aug. 1991), 28-33.

12. Gligor, V. G., and Shattuck, S. H. On deadlock detection in distrib-
uted systems. IEEE Trans. Software Eng. 6, 5 (1980), 435-440.

13. Gray, J. Notes on database operating systems. In Operating Sys-
tems: An Advanced Course, Springer-Verlag, New York, 1978, pp.
393-481.

14. Ho, G. S., Ramamoorthy, C. V. Protocols for deadlock detection in
distributed database systems. /IEEE Trans. Software Eng. SE-8, 6
(Nov. 1982), 554-557.

15. Isloor, S. S., and Marsland, T. A. An effective on-line deadlock
detection technique for distributed database management systems.
Proc. COMPSAC 78, (Nov. 1978), 283-288.

16. Knapp, E., Deadlock detection in distributed databases. ACM
Comput. Surveys 19, 4 (Dec. 1987), 303-328.

17. Kshemkalyani, A. D., and Singhal, M. Correct two-phase and one-
phase deadlock detection algorithms for distributed systems. Pro-
ceedings of the 2nd IEEE Symposium on Parallel and Distributed
Processing, 1990, pp. 126-129.

18. Kshemkalyani, A. D., and Singhal, M. Characterization of distrib-
uted deadlocks. Technical Report OSU-CISRC-6/90-TR15, The
Ohio State University, June 1990.

19. Kshemkalyani, A. D. Characterization and correctness of distrib-
uted deadlock detection and resolution. Ph.D. dissertation, The
Ohio State University, Aug. 1991,

20. Kshemkalyani, A. D., and Singhal, M. Invariant-based verification
of a distributed deadlock detection algorithm. IEEE Trans. Soft-
ware Eng. SE-17, 8 (Aug. 1991), 789-799.

21. Lamport, L. Time, clocks, and the ordering of events in a distrib-
uted system. Comm. ACM 21, 7 (July 1978), 558-565.

22. Lamport, L. The mutual exclusion problem: Part 1: A theory of
interprocess communication. J. Assoc. Comput. Mach. 33, 2 (Apr.
1986), 313-326.

23. Mattern, F. Virtual Time and Global States of Distributed Systems.
Parallel and Distributed Algorithms, North-Holland, Amsterdam,
1989, pp. 215-226.

24. Meldal, S., Sankar, S., and Vera, J. Exploiting locality in maintain-
ing potential causality. 10th ACM Symposium on Principles of Dis-
tributed Computing, 1991, pp. 231-240.

25. Menasce, D. A., Muntz, R. R. Locking and deadlock detection in
distributed databases. IEEE Trans. Software Eng. §, 3 (1979), 195-
202.

26. Obermarck, R. Distributed deadlock detection algorithm. ACM
Trans. Database Systems (June 1982), 187-210.

27. Panengaden, P., and Taylor, K. Concurrent common knowledge: A
new definition of agreement for asynchronous systems. Proceed-
ings of the 5th ACM Symposium on Principles of Distributed Com-
puting, 1988, pp. 197-209.

28. Roesler, M., and Burkhard, W. A. Resolution of deadlocks in ob-
ject-oriented distributed systems. [EEE Trans. Comput. 38, 8
(1989), 1212-1224.

29. Sanders, B., and Heuberger, P. A. Distributed deadlock detection
and resolution with probes. Proceedings of the 3rd International
Workshop on Distributed Algorithms, 1989. Lecture Notes in Com-
puter Science, Springer-Verlag, New York/Berlin, 1989, Vol. 392,
pp- 207-218.

30. Shih, C-S. Distributed deadlock detection and its application to
real-time systems. COINS Technical Report 92-60, University of
Mass., Sept. 1992.

31. Singhal, M. Deadlock detection in distributed systems, Computer
(Nov. 1989), 37-48.

32. Singhal, M., and Kshemkalyani, A. D. Efficient implementation of
vector timestamps. Inform. Process. Lett. 43 (Aug. 1992), 47-52.

33. Sinha, M. K., and Natarajan, N. A priority-based distributed dead-
lock detection algorithm. /EEE Trans. Software Eng. (Jan. 1985),
67-80.



DISTRIBUTED DEADLOCK DETECTION 59

34. Tay, Y. C., and Loke, W. T. A theory for deadlocks. CS-TR-344-
91, Princeton University, Aug. 1991.

35. Vossen, G., and Wang, S. S. Correct and efficient deadlock detec-
tion and resolution in distributed database systems. Proceedings of
the 5th International Conference on Data Engineering, 1989, pp.
287-294.

AJAY D. KSHEMKALYANI received the B.Tech. degree in com-
puter science and engineering from the Indian Institute of Technology,
Bombay, India, in 1987, and the M.S. and Ph.D. degrees in computer
and information science from the Ohio State University, Columbus, in
1988 and 1991, respectively. He is currently an advisor in the Network-
ing Systems Architecture Division in IBM at Research Triangle Park,

Received April 23, 1992; revised December 9, 1992; accepted January
27, 1993

North Carolina. His current research interests include distributed sys-
tems, operating systems, computer architecture, and databases. He is a
member of the ACM and the IEEE Computer Society.

MUKESH SINGHAL is currently an associate professor of com-
puter and information science at The Ohio State University, Columbus.
He received the Bachelor of Engineering degree in electronics and com-
munication engineering with high distinction from University of
Roorkee, Roorkee, India, in 1980 and the Ph.D. degree in computer
science from University of Maryland, College Park, in May 1986. His
current research interests include distributed systems, operating sys-
tems, databases, and performance modeling. He has coauthored a book
titled Advanced Concepts in Operating Systems: Distributed, Multipro-
cessor, and Database Operating Systems (McGraw-Hill, New York,
1994).



