IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 1, JANUARY 1994 43

Efficient Detection and Resolution of
Generalized Distributed Deadlocks

Ajay D. Kshemkalyani, Member, IEEE, and Mukesh Singhal, Associate Member, IEEE

Abstract—We present an efficient one-phase algorithm that
consists of two concurrent sweeps of messages to detect general-
ized distributed deadlocks. In the outward sweep, the algorithm
records a snapshot of a distributed wait-for-graph (WFG). In the
inward sweep, the algorithm performs reduction of the recorded
distributed WFG to check for a deadlock. The two sweeps can
overlap in time at a process. We prove the correctness of the
algorithm. The algorithm has a worst-case message complexity
of 4¢ — 2n + 2/ and a time complexity of 2d hops, where ¢ is the
number of edges, n is the number of nodes, ! is the number of
leaf nodes, and d is the diameter of the WFG. This is a notable
improvement over the existing algorithms to detect generalized
deadlocks.

Index Terms—Distributed snapshot, graph reduction, distrib-
uted system, generalized deadlock.

I. INTRODUCTION

ISTRIBUTED systems are prone to deadlocks—system

states in which some processes wait indefinitely for each
other for their requests to be satisfied. Detecting deadlocks is
therefore an important problem in distributed systems. The
wait-for relation between processes is modeled by a wait-
for graph (WFG), which is a directed graph whose nodes are
processes. An edge from node ¢ to node j indicates that process
¢ has requested a resource from process j and that process j
has not granted the resource to process ¢. A system in which a
process makes requests for () resources and remains blocked
until it is granted any P out of the) resources is said to follow
the P-out-of-Q request model [1]. The P-out-of-Q request
model is also known as the generalized request model, because
it is a generalization of the AND and OR request models [7].
The generalized request model also includes the AND-OR
request model, in which the condition for a blocked process
to get unblocked can be expressed as a disjunction of P-out-
of-@ type requests [4]. Generalized deadlocks correspond to
deadlocks in the P-out-of-Q) request model.

We present an efficient algorithm for detecting generalized
distributed deadlocks, and prove its correctness. Detecting
generalized deadlocks [8] in a distributed system is a difficult
problem [1], [7], [11] because it requires detection of a com-
plex topology in the global WFG. The topology is determined
by the conditions that need to be satisfied for each of the

Manuscript received July 1992; revised October 1993. Recommended by
S. Lam.

A. D. Kshemkalyani was with the Department of Computer and Information
Science, The Ohio State University, Columbus, OH 43210. He is now with
IBM Corp., Research Triangle Park, NC 27709.

M. Singhal is with the Department of Computer and Information Science,
The Ohio State University, Columbus, OH 43210.

IEEE Log Number 9214490.

blocked processes in the WFG to unblock. A cycle in the
WFG is a necessary but not sufficient condition, whereas a
knot in the WFG is a sufficient but not necessary condition,
for a generalized deadlock. The algorithm presented is for
the P-out-of-Q) request model (a single disjunct) to simplify
the presentation. In the conclusions, we point out how the
algorithm can easily detect deadlocks in the AND-OR request
model without increasing complexity.

Although several distributed deadlock detection algorithms
have been proposed [1], [2], [4], [7], [10], [11], [12], {13], only
the algorithms in [1], [13] are designed to detect generalized
distributed deadlocks. The algorithm presented by Bracha and
Toueg [1] consists of two phases. In the first phase, the
algorithm records a snapshot of a distributed WFG, and, in
the second phase, the algorithm simulates the granting of
requests to check for generalized deadlocks. The second phase
is nested within the first phase. Therefore, the first phase
terminates after the second phase has terminated. Wang er al.
[13] proposed a distributed two-phase algorithm for detecting
generalized deadlocks in the distributed WFG. In the first
phase, the algorithm records a snapshot of a distributed WFG.
A termination detection technique is used to detect the end
of the first phase, after which the second phase is initiated to
reduce the static WFG recorded in the first phase to detect a
deadlock.

The proposed algorithm consists of a single phase. The
single phase comprises a diffusion of messages outward from
an initiator process along the edges of the WFG (called the
outward sweep), and then the echoing of diffusion messages
inward to the initiator process (called the inward sweep). In
the outward sweep, the algorithm records a consistent snapshot
of a distributed WFG [3]. In the inward sweep, a reduction
procedure that simulates unblocking of those processes whose
requests can be granted is applied to the recorded distributed
WFG to determine whether a deadlock exists. An edge in a
WFG is reduced if the request it represents can be granted
during the reduction process. A node in a WFG is reduced if
P out of the @ requests on which it is blocked can be granted
during the reduction process. After the reduction procedure
has been applied to the recorded WFG, all of the processes
that are not reduced are deadlocked.

Note that both the outward and the inward sweeps are
carried out concurrently in the sense that the inward sweep can
begin before the outward sweep is over. The algorithm deals
with the complications introduced because the two sweeps
can overlap in time at any node in the WFG; that is, the
reduction of a process can begin before the state of all

0098-5589/94$04.00 © 1994 IEEE

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. I, JANUARY 1994

TABLE 1
PERFORMANCE COMPARISON, GIVEN A WFG, n = NUMBER OF ITs NODES, I =
NUMBER OF ITs LEAF NODES, ¢ = NUMBER OF ITs EDGES, d = ITS DIAMETER.

- Proposed
Criterion Bracha- Toueg [1] Wang et al. [13] algorithm
Phases 2 2 1
Delay 4d 3d+1 2d
Messages e Ge 4e —2n 421

WFG edges incident at that process have been recorded. The
algorithm has a message complexity of 4e —2n +2[and a time
complexity of 2d hops, where e is the number of edges, n is
the number of nodes, [is the number of leaf nodes, and d is
the diameter of the WFG. Table I compares the performance
of the proposed algorithm and the algorithms in [1], [13].
The proposed algorithm performs better than the algorithms
in {1], [13]. It is conjectured that the algorithm has the best
time complexity that can be achieved by an algorithm that
applies reduction to a distributed WFG to detect generalized
distributed deadlocks.

The rest of the paper is organized as follows: In Section II,
we discuss preliminaries, which include the system model and
the problem definition/statement. In Section III, we present the
algorithm. In Section IV, we prove the algorithm’s correctness.
In Section V, we analyze the performance of the algorithm. In
Section VI, we briefly discuss how to extend the algorithm to
handle deadlock resolution. Section VII contains concluding
remarks.

II. PRELIMINARIES

A. System Model

The system has n nodes, and every two nodes are connected
by a logical channel. There is no shared memory in the system.
A variable or constant z local to process i is denoted by
z;. The nodes communicate by sending messages, which are
delivered in the order sent on each logical channel. An event in
a computation can be an internal event, a message send event,
or a message receive event. Events are assigned time stamps
using Lamport’s logical clocks [9]. The clock at process i is
t;, which denotes the local time at process i.

Events in the system can be classified as computation events
and control events. A computation event is any event that
occurs as a result of the execution of an application process.
A control event is any event that occurs as a result of the
execution of the (system) deadlock detection algorithm. A
computation message is any message that is sent because of
the execution of an application process. A control message
is any message that is sent because of the execution of the
deadlock detection algorithm.

The computation messages that occur in the underlying
computation include REQUEST, REPLY, and CANCEL mes-
sages. A node sends a REQUEST message to g other nodes
when it blocks (goes from active to idle state) on a p-out-of-g
request. A REPLY message denotes the granting of a request.
The node unblocks (goes from idle to active state) when p
out of its ¢ requests are granted. When the node unblocks, it

sends CANCEL messages to withdraw the remaining ¢ — p
requests it had sent.

The following two axioms describe the blocking and un-
blocking of nodes:

Axiom I: A node blocks when it sends a p-out-of-q request,
and then it does not send any computation messages until it
gets unblocked.

Axiom 2: A blocked node gets unblocked if and only if
its requests are satisfied without any intervention of the
underlying computation.

Note that Axiom 2 describes the normal way in which a
node can get unblocked. A node can get unblocked abnormally
if it spontaneously withdraws its requests or if its requests are
satisfied as a result of the resolution of a deadlock of which it
is a part [8]. We do not allow a node to unblock abnormally
for simplicity.

A node 7 has the following local variables to keep track of
its state:

1) t;: integer — 0O; /*current local time.*/

2) t-block;: integer «— 0; /*the time at which node i was

last blocked.*

3) iny: set of integer — {); /*set of nodes whose requests

are outstanding at node i.*/

4) out;: set of integer — (; /*set of nodes for which node

¢ is waiting since t_block;.*/

5) pi: integer — 0; /*the number of replies required for

unblocking.*/

The operations of the underlying computation that pertain
to acquisition and release of resources follow. REQUEST and
REPLY messages contain the requester’s clock value at the
time it blocked, so that a REPLY can be matched with its
corresponding REQUEST. (The updating of the local clock
and the assignment of time stamps to messages is not shown.)
The semantics of “a — b is if a then b else skip.

send REQUEST’s

/*Executed by process i when it blocks for a p;-out-of-g;
request. Parameters p; and ¢; depend on the application and
the ¢; processes are identified by the application process and/or
the operating system.*/
p; < application-dependent value;
For each node j of ¢; nodes on which 7 blocks, do

out; — out; J{j};

send REQUEST() to j;
t_bl()(ik,‘

receive REQUEST(k)

/*Executed by process ¢ when it receives a request made by
process k.*/

ing — in; U{k}.

send REPLY

/*Executed by process ¢ when it replies to a request by process
k.*/

ing — in; — {k};

send REPLY (%) to k.

receive REPLY(j)

[*Executed by process ¢ when it receives a reply from process

— t,‘.

KSHEMKALYANI AND SINGHAL: GENERALIZED DISTRIBUTED DEADLOCKS

7 to its corresponding request. A reply to an outdated request
can be identified by the timestamp of the outdated request on
the reply and is ignored.*/

out; — out; — {j}

pi —pi —L

pi =0 —
t block; « 0;
for every j in out;, send CANCEL(?) to 7;
()'U.t,' — (D

receive CANCEL(k)

/*Executed by process ¢ when it receives a cancel from process
k.*/

i

—in; — {k}.

The only computation events that are relevant to dead-
lock detection are the events of send REQUEST, receive
REQUEST, send REPLY, receive REPLY, send CANCEL,
and receive CANCEL. The local state variables that they
alter are t_block;, in;, out;, and p;. To detect deadlocks, we
need to observe only the above-listed variables at processes
in the WFG consistently. Thus, in a snapshot of the WFG,
we are concerned only with the local state of a process
(active/blocked, and how many requests from the ones that are
outstanding need to be granted so that unblocking can occur),
and with the sending and receiving of REQUEST, REPLY,
and CANCEL messages.

Definition I: A consistent snapshot [3] is a collection of
local states of processes (defined by ¢_block;, in;, out;, and p;
for process 7) such that if the receipt of a REQUEST, REPLY,
or CANCEL message is recorded in a local state, the sending
of the message is also recorded in the local state at the process
which sent the message.

Thus, every receive event need not be recorded, but if a
receive event is recorded, the corresponding send event must
also be recorded.

B. Problem Statement

A generalized deadlock exists in the system iff a certain
complex topology, identified next, exists in the global WFG.

Definition 2: A generalized deadlock is a graph (D, K)
where D is a nonempty set of nodes that are blocked on p-
out-of-g requests in a WFG, and K is the set of WFG edges
between nodes in D, such that Vi € D, at least ¢; —p; + 1
outgoing WFG edges are incident on other nodes in D.

From Axiom 1 and 2, it follows that none of the nodes in D
gets unblocked. All nodes in D thus remain blocked forever.
After all of the grantable requests of nodes in D have been
granted, each WFG consisting of a minimal subset of D that
satisfies the condition for a generalized deadlock forms a knot
topologically. All of the nodes in the WFG that do not belong
to any D have at least p; edges to nodes that do not belong to
any D. All of these nodes are not deadlocked, because their
requests can be satisfied.

C. Correctness Conditions

A distributed deadlock detection algorithm should satisfy
the following two correctness conditions:

45

1) If a deadlock exists, it is detected by the algorithm within
a finite time after the ‘deddlock has formed.

2) If a deadlock is declared, the deadlock exists in the

system.

At the time that a node blocks, it initiates a deadlock
detection algorithm. Note that only the processes that are
reachable from a process in the WFG can be involved in
deadlock with that process. Therefore, to detect whether a
process is deadlocked, we need to examine only that part of
the WFG that is reachable from that process.

In the outward sweep of the algorithm, a snapshot of only
those processes that can be reached from the initiator in the
WFG is taken. Also, at a node in the WFG, only those wait-
for edges that can be traversed starting from the initiator are
recorded. Thus, a snapshot of complete WFG of the entire
system is not taken. Only that part of the WFG that is obtained
by projecting the WFG over the reachability set of the initiator
is of concern.'

A correctness proof of the algorithm must include the
following two points to show that the above two correctness
criteria are satisfied. First, it must be shown that the entire
WEFG reachable from the initiator is recorded by the algorithm
consistently. Second, it must be shown that the reduction of
the recorded WFG snapshot is performed correctly.

III. A DISTRIBUTED DEADLOCK DETECTION ALGORITHM

When a node 7 blocks on a P-out-of-() request, it initiates
the deadlock detection algorithm. The algorithm records that
part of the WFG that is reachable from ¢ (hereinafter referred to
as 7’s WFG) in a distributed snapshot [3]. Such a distributed
snapshot includes only those wait-for edges and nodes that
form 7’s WFG. Since multiple nodes may block concurrently,
they may each initiate the deadlock detection algorithm con-
currently. Each invocation of the deadlock detection algorithm
is treated independently and is identified by the initiator’s
identity and the local time at which the initiator blocked.
Every node maintains a local snapshot for the latest deadlock
detection algorithm initiated by every other node. We will
focus on a single instance of the deadlock detection algorithm.

Next, we discuss the basic idea behind the algorithm with
the help of an example (shown in Figs. 1 and 2). Fig. 1 shows
initiation of deadlock detection by node A and Fig. 2 shows
the state after node D is reduced. The notation xz/y beside
a node in the figures indicates that the node is blocked and
needs replies to z out of the y outstanding requests so that
it can unblock.

A. Basic ldea

Distributed WFG is recorded using FLOOD messages dur-
ing the outward sweep and is examined for deadlocks us-
ing ECHO messages during the inward sweep. The initiator
records its local state and sends FLOOD messages along its
outgoing wait-for edges at the time it blocks.

At the time a node ¢ receives the first FLOOD message
along an existing incoming wait-for edge, it records its local

"The reachable set of a node is the set of nodes that can be reached from
it in the WFG.

46 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 1. JANUARY 1994

A (initiator)

REQUEST
FLOOD
REPLY
ECHO

Fig. 1. An example-run of the algorithm.

state (out;. p;. t_block;, and this particular incoming wait-
for edge). If the node happens to be blocked at this time, it
sends FLOOD’s along its outgoing wait-for edges to ensure
that all nodes in the reachability set of the initiator participate
in recording the WFG in the outward sweep. For example, in
Fig. 1, when node C receives FLOOD from node A, it sends
FLOGD’s to nodes D, E, and F. If the node happens to be
active at this time, (i.e., it does not have any outgoing wait-
for edges), then it initiates reduction of the incoming wait-for
edge by returning an ECHO message on it. For example, in
Fig. 1, node H returns an ECHO to node D in response to
a FLOOD from it. Note that such an active node can initiate
reduction (by sending back an ECHO in response to a FLOOD
along an incoming wait-for edge) even before the states of all
other incoming wait-for edges have been recorded in the WFG
snapshot at that node. For example, node F in Fig. 1 starts
reduction after receiving a FLOOD from C even before it has
received FLOOD’s from D and E.

At the time a node receives a FLOOD, it need not have an
incoming wait-for edge from the node that sent the FLOOD,
because it may have already sent back a REPLY to the node.
In this case, the node returns an ECHO in response to the
FLOOD. For example, in Fig. 1, when node I receives a
FLOOD from node D, it returns an ECHO to node D.

ECHO messages perform reduction of the nodes and edges
in the WFG by simulating the granting of requests in the
inward sweep. A node gets reduced at the time it has received
p ECHO’s. When a node is reduced, it sends ECHO’s along
all the incoming wait-for edges incident on it in the WFG
snapshot to continue the progress of the inward sweep. These
ECHO’s in turn may reduce other nodes. The initiator node
detects a deadlock if it is not reduced when the deadlock de-
tection algorithm terminates. The nodes in the WFG snapshot
that have not been reduced are deadlocked. The order in which
reduction of the nodes and edges of the WFG is performed
does not alter the final result.

In general, WFG reduction can begin at a nonleaf node
before recording of the WFG has been compieted at that node.
This happens when ECHO’s arrive and begin reduction at a
nonleaf node before FLOOD’s have arrived along all incoming
wait-for edges and recorded the complete local WFG at that

REQUEST
FLOOD
REPLY
ECHO

A (initiator)

Fig. 2. An example-run of the algorithm (continued from Fig. 1).

node. For example, node D in Fig. 1 starts reduction (by
sending an ECHO to node C) after it receives ECHO’s from
H and G, even before FLOOD from B has arrived at D. When
a FLOOD on an incoming wait-for edge arrives at a node that
is already reduced, the node simply returns an ECHO along
that wait-for edge. For example, in Fig. 2, when a FLOOD
from node B arrives at node D, node D returns an ECHO to
B. Thus, the two activities of recording the WFG snapshot and
reducing the nodes and edges in the WFG snapshot are done
concurrently in a single phase, and no serialization is imposed
between the two activities, as is done in [13]. Since reduction is
applied to an incompletely recorded WFG at nodes, the local
snapshot at each node has to be judiciously manipulated to
give the effect that reduction is initiated after WFG recording
has been completed. The reduction operations at any node can
be permuted with the WFG recording operations that follow
them at that node, without affecting the result.

B. Termination Detection

A termination detection technique based on weights [6], [13]
detects the termination of the algorithm by using SHORT mes-
sages (in addition to FLOOD’s and ECHO’s). A weight of 1 at
the initiator node, when the algorithm is initiated, is distributed
among all FLOOD messages sent out by the initiator. When
the first FLOOD is received at a nonleaf node along an existing
WFG edge, the weight of the received FLOOD is distributed
among the FLOOD’s sent along outgoing wait-for edges at
that node. Weights in all subsequent FLOOD’s arriving along
existing WFG edges at a nonleaf node that is not yet reduced
are returned to the initiator through SHORT messages. For
example, in Fig. 1, node C receives a FLOOD from node A
followed by a FLOOD from node B. When node C receives a
FLOOD from B, it sends a SHORT to the initiator node A.

When a FLOOD is received at a leaf node, its weight is
returned in the ECHO message sent by the leaf node to the
sender of the FLOOD. Note that an ECHO is like a reply
in the simulated unblocking of processes. When an ECHO
arriving at a node does not reduce the node, its weight is
sent directly to the initiator through a SHORT message. For
example, in Fig. 1, when node D receives an ECHO from
node H, it sends a SHORT to the initiator node A. When an

KSHEMKALYANI AND SINGHAL: GENERALIZED DISTRIBUTED DEADLOCKS

ECHO that arrives at a node reduces that node, the weight
of the ECHO is distributed among the ECHO’s that are sent
by that node along the incoming edges in its WFG snapshot.
For example, in Fig. 2, at the time node C gets reduced (after
receiving ECHO’s from nodes D and F), it sends ECHO’s to
nodes A and B. When an ECHO arrives at a reduced node,
its weight is sent directly to the initiator through a SHORT
message. For example, in Fig. 2, when an ECHO from node E
arrives at node C after node C has been reduced (by receiving
ECHO’s from nodes D and F), node C sends a SHORT to
initiator node A. The algorithm maintains an invariant that the
sum of the weights in FLOOD, ECHO, and SHORT messages
plus the weight at the initiator (received in SHORT and ECHO
messages) is always 1. The algorithm terminates when the
weight at the initiator becomes 1, signifying that all WFG
recording and reduction activity has completed.

C. The Algorithm

FLOOD, ECHO, and SHORT control messages use weights
introduced in [6] for termination detection. The weight in a
message is a real number from 0 to 1. An event at which a
FLOOD, ECHO, or SHORT message is sent or received is a
control event.

A node ¢ stores the local snapshot to detect deadlocks in
a data structure LS;, which is an array of records. Record
LS;[init] stores a snapshot at node i corresponding to dead-
lock detection initiation by the initiator node zn:t. (See Snap-
shot Data Structure at the bottom of this page.)

In addition, the initiator has a variable in which it collects
returned weights.

Wi real «— 1.0; [*weight to detect termination of

deadlock detection algorithm.*/

The other variables at a node have been defined in Section
IL.LA. The procedures in the algorithm (next page) define the
deadlock detection algorithm and are executed atomically. For
the sake of notational convenience, the initiator’s identity is
dropped when referring to LS;; that is, LS;[init] is denoted

IV. CORRECTNESS PROOF

Different instances of the algorithm can be distinguished
from each other by using time stamps, and various instances of
the algorithm do not interfere with each other. Therefore, cor-
rectness proof is given for a single instance of the algorithm.
We prove that the algorithm satisfies the correctness conditions
given in Section II.B by showing the following results:

1) The execution of the algorithm terminates.

2) The entire WFG reachable from the initiator is recorded

in a consistent distributed snapshot in the outward sweep.

47

3) In the inward sweep, ECHO’s correctly reduce the

recorded snapshot of the WFG.

The algorithm is initiated within a timeout period when a
node blocks. By theorem 2, only all nodes that are not reduced
on the termination of the algorithm are deadlocked. Thus, the
correctness conditions of Section II.B are satisfied.

A. Algorithm Termination

Let w(TY PFE) represent the weight of a message of type
TYPE. The following weight invariant is satisfied by the
latest algorithm instance initiated by the initiator init:

Invariant 1:

> w(FLOOD) + Y w(ECHO)
VYFLOOD VECHO
+) w(SHORT) + wtiny =1
VSHORT

A message (and its weight) is discarded only if the message
belongs to an outdated instance of the algorithm.

Definition 3: The algorithm is said to be “terminated” when
Wwtinie = 1. .
Observation 1: A weight in a FLOOD, ECHO, or SHORT
message is always in transit until it reaches the initiator node
tnit and is added to wtini:.

Observation 2: Table Il illustrates how a node ¢ reacts when
it receives a FLOOD from node k.

Corollary 1: At most one FLOOD is sent on a WFG edge.

Proof: Follows from observation 2. Note that only the
initiator initiates the FLOOD phase, and other nodes send
FLOOD’s on outgoing edges only at the time that they receive -
the first FLOOD (and Case F1-A in Table II holds). Any other
FLOOD received is sent as a SHORT or ECHO, because the
local snapshot recording is not initiated by such a FLOOD.
Moreover, the receipt of an ECHO never causes the sending
of a FLOOD. O

Observation 3: A node j is recorded in LS;.in only at the
time that a FLOOD is received by node ¢ from that node and
7 € in; (Case F1 or F4). From corollary 1, this happens at
most once.

Observation 4: After LS;.p has been recorded, it is mono-
tone nonincreasing.

Observation 5: At the time node ¢ receives an ECHO from
node j, if LS;.p is decremented to 0 (Case E2—A) (which can
happen at most once by observation 4), then an ECHO is sent
1o all nodes in LS;.in; otherwise (Cases E1, E2-B), the weight
in the ECHO is sent to snit in a SHORT.

Observation 6: Node i sends an ECHO to node j only at
the times (i) Case (F1-B), (F4-A), (F2), or (F3) hold at the
time a FLOOD is received from j, or (ii) Case (E2-A) holds
and j € LS;.in, at the time some ECHO is received.

Snapshot Data Structure
LS; : array [1..N] of record
out: set of integer — 0;
in: set of integer — {;
t. integer — O;
p: integer — 0.

/*nodes for which node ¢ is waiting in the snapshot*/
/*nodes waiting for node ¢ in the snapshot*/

/*time when inst initiated snapshot.*/

/*value of p as seen in snapshot.*/

48 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 1. JANUARY 1994

Algorithm

initiate a SNAPSHOT
/*Executed by process i to detect whether it is deadlocked. */
init — 1
Whiniz — 0
LS;.t «— t;
LS;.out — out;
LS;in «— 0
LSip « p;
send FLOOD(i,1,t;,1/|out;]) to each j in out;.
receive FLOOD(k, init, t.init, w)
/*Executed by process ¢ on receiving a FLOOD message from k.*/
[
/*Valid FLOOD for a new snapshot. */
LSt < tanit Nk € in;, —

LS;.out — out;;

LSiin — {k};

LS;.t «— tianit;

LSip « pi

pi >0 —

send FLOOD(3, init, t_init, w/|out;|) to each j € outy;
pi =0 —
send ECHO(i. init, t_init, w) to k;

O
/* FLOOD for a new snapshot is received
along an edge that has ceased to exist. A reply
has already been sent back to the sender of the FLOOD.*/
LS;t < tanit Nk € in;, —
send ECHO(4, init, t_init, w) to k.
|
/* FLOOD for a current snapshot is received along
an edge that has ceased to exist. A reply has already been sent back to the
sender of the FLOOD.*/

LS;t = tanit Nk & in;, —
send ECHO(i,init, t_init, w) to k.
O
/*Valid FLOOD for current snapshot.*/
LS.t = tinit Nk € in; —
LSiin — LS;in |J{k};
LS;p = 0 —
send ECHO(i, init, tinit, w) to k;
LSip > 0 —
send SHORT (init, t_init, w) to init.
a
/*Outdated FLOOD. */

LS;.t > t.init — discard the flood message.
|

receive ECHO(j, 4nit, t_init, w)
/*Executed by process 7 on receiving an ECHO from j for a current snapshot
for which LS;.t = t_init. ECHO for an outdated snapshot (LS;.t > t_init)
is discarded. */
LSt = tinit —

LS;.out — LSi.out — {j};

LS;p =0 —

[*initial weight.*/

/*Case F1%/

/* i is blocked. Case F1-A*/

/* i is unblocked. Case F1-B*/

/* Case F2*/

/* Case F3 */

/*Case F4*/

/* 4 is unblocked in snapshot. Case F4-A */

/* 4 is blocked in snapshot. Case F4-B*/

/* Case F5 */

/* i is unblocked in snapshot. Case E1 */

KSHEMKALYANI AND SINGHAL: GENERALIZED DISTRIBUTED DEADLOCKS

Algorithm (continued)
send SHORT (init, t_init, w) to init.
LS;p >0 —
LS;p «~ LS;p -1,
LS,,' p o= 00—
init = 4 — declare not deadlocked; exit.

49

/* i is blocked in snapshot. Case E2 */

/¥ i becomes unblocked in snapshot. Case E2-A */

send ECHO(i,init, tinit,w/|LS;.in|) to all k € LS;.in;

send SHORT (init,t_init, w) to init.
receive SHORT (init, tinit, w)
/*Executed by process 7 (which is always ¢n:t) on receiving a
SHORT for which t_init = t_block;. SHORT for an outdated
snapshot (t_init < t_block;) is discarded.*/

tinit = tblock; ANLS;p = 0 —
discard the message.
tanit = tblock; NLS;p > 0 —

u)/'init
u}t‘init

— wiing + w;
= 1 — declare deadlock and abort.

/* i remains blocked in snapshot. Case E2-B */

TABLE 1T
ACTIONS AT NODE ¢ at the time IT RECEIVES A FLOOD FRoM NODE k.

Action at node i
at the time it
receives a
FLOOD from
node k.

Has snapshot
recording already
begun at node + ?

kein?

No if p; > 0 then
record LS;.out,
record LS;.p,
add k to LS;.in,
and send
FLOOD's to
nodes in
LS;.out.
if p; = 0 then
record LS,.p as
0, add & to
LS,.in,
record LS;.out
as {}, and return
an ECHO to k.
ifLS,.p>0
then
add k to LS,.in
and send a
SHORT 1o /nit.
if LS,.p =0
then
add A to LS,.in
and return an
ECHO to k.
return an ECHO
to k.

(Case F1-A)

(Case F1-B)

Yes (Case F4-B)

(Case F4-A)

No does not matter (Cases F2,F3)

Corollary 2: At most one ECHO is sent on an edge
recorded in the WFG.
Proof: At the time node ¢ receives a FLOOD from node
j (which can happen at most once according to corollary 1),
one of the following cases arises:

If Case (F2) or (F3) holds at node i, an ECHO is returned
to j. An ECHO was not sent to j before, because j
¢ LS;.in before. Node j’s identifier is not inserted in
LS,;.in now or later (observation 3), and another ECHO
is never sent to j, because j ¢ LS;.in henceforth.

“If Case (FI-B) or (F4-A) holds at node ¢, an ECHO
is returned to j and j’s identifier is inserted in LS;.in
at this time. An ECHO was not sent before, because j
& LS;.in before (observation 6). By observation 4 and
due to the fact that LS;.p is already 0, it follows that
Case E2-A will not be executed later. Therefore, from
observation 6, it follows that an ECHO will not be sent
to j again.
If Case (F1-A) or (F4-B) holds at node i, an ECHO is
not sent to j and node j’s identifier is added to LS;.in.
From observation 5, an ECHO is sent to each node in
LS;.in only at the time LS;.p is decremented to zero on
receipt of an ECHO. The prior receipt of an ECHO could
not have caused an ECHO to be sent to j because the
nonincreasing LS;.p is > 0 at this time. At a later time,
LS;.p may decrement to zero and cause an ECHO to be
sent. This can happen at most once by observation 4.

2)

3)

Hence, at most one ECHO is sent on an edge recorded in the
WFG. d

A message hop denotes one logical transfer of a message
from the sender node to the receiver node. We use the number
of hops that occur serially as a measure of time.

Lemma 1: The algorithm terminates in a finite number of
message hops, bounded by 2e, where e is the number of edges
in the WFG.

Proof: The algorithm terminates when wt;n;; becomes
one at the initiator process, at which time there are no
FLOOD’s, ECHO’s, or SHORT’s in transit for that deadlock
detection initiation. At most one FLOOD is sent on a WFG
edge (corollary 1), and at most one ECHO is sent on a WFG
edge (corollary 2). Weights in control messages are always in

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 1, JANUARY 1994

transit (observation 1), and a weight in a SHORT message,
which takes a single hop, is never transferred to a FLOOD or
ECHO message. It follows that the algorithm terminates in at
most 2e message hops.

It should be noted that 2e message hops is a very loose
upper bound because many control messages may be in transit
concurrently.

B. Recording Reachability Set in the Snapshot

Theorem I: The algorithm records a consistent snapshot of

a distributed WFG of the initiator’s reachability set.
Proof: Let init be the initiator node. It needs to be shown

that [Completeness] all of the nodes reachable from node i
in the WFG record their local state, and [Consistency] if the
receipt of a message is recorded in a local state, the send of
that message is also recorded in the local state of the node that
sent the message (definition 1).

Completeness follows from the following:

1) The initiator records its state LS;,;;.out and LS;p:.p
and sends FLOOD’s along its outward WFG edges. No
other node initiates FLOOD’s.

2) A node i records LS;.out and LS;.p only at the time
at which it receives the first FLOOD from some j and
J € in; (Case F1). Because of ordered message delivery
on the channels, the WFG edge from j to 7 exists at node
v iff j € in,;. At this time, if ¢ is blocked, i.e., node 7
has outgoing edges in the WFG, it propagates FLOOD’s
along its outward edges (Case F1-A). Therefore, only
all nodes in the initiator’s reachability set record their
local states.

3) Whenever node ¢ receives a FLOOD from node 7, j
is not recorded in LS;.in if j ¢ in; to reflect the fact
that the WFG edge from j to i does not exist (Cases
F2 and F3). Because of the ordered message delivery on
channels, the WFG edge from j to 4 exists at node ¢ iff
J € in;. To undo the recording of 4 in LS;.out, i sends
an ECHO to j. Thus, if an edge does not belong to the
initiator’s WFG, it is not recorded in its snapshot.

Note that if node i is active at the time it receives a FLOOD,
it does not propagate FLOOD’s. If node i blocks sometime
later, then init’s WFG is extended. However, the distributed
snapshot that is recorded for nit shows i as active and does
not consist of the portion of the WFG extended because of
the blocking of node i. If a deadlock results because node i
blocks, the deadlock will be detected by the instance of the
algorithm initiated by node 7 when it blocks.

Consistency follows from the following:

1) Node j is recorded in LS;.in only at all times that a
FLOOD is received from j and j € in; (Cases F1 and
F4). This reflects the fact that the WFG edge from j
to ¢ indeed exists. (Because of the ordered delivery of
messages, the WFG edge from 7 to ¢ exists at node ¢
iff j € in;.) By observation 2, j must have recorded i
in LS;.out when it sent a FLOOD to i (Case F1-A).
Therefore, the local states recorded collectively form a
consistent snapshot of the initiator’s WFG. (That is, the
causes of all of the effects are recorded.) O

C. Reduction of the Recorded WFG Snapshot

Lemma 2: If a node ¢ sends an ECHO to node j, then node
¢ must have received a FLOOD from node j.
Proof: Node i sends an ECHO to node j only in one of
the following two situations:
1) On the receipt of a FLOOD from j if Case F1-B, F2,
F3, or F4-A in the algorithm holds; or
2) On the receipt of an ECHO if LS;.p decrements to 0 and
J € LS;.in at this time. By observation 3, j is added
to LS;.in only if a FLOOD has been received from j
as per Case F1 or F4. (Note that at the instant such a
FLOOD was received from j, only Case F1-A or F4-B
could have been executed, because LS;.p was greater

than 0.)
In both of the above situations, 7 must have received a FLOOD
from j. Hence, the lemma. O

Observation 7: If node i receives an ECHO from node j,
the local snapshot recording at node ¢ has already begun, node
¢ has already sent a FLOOD to node j, and j € LS;.out
(follows from lemma 2 and observation 2).

Before proving that the reduction is performed correctly, we
define a function & on the nodes in the WFG as follows:

h{t) —0 if 4 is a leaf node in the WFG
00 if 7 is deadlocked

1+ (p" smallest of {h(j)|j € out;}) otherwise.

A node ¢ blocked on a p;-out-of-g; request needs to receive
pi to unblock. h(7) indicates the length of the p;** shortest
path traversed by all of the REPLY’s to reach i. If node
were to get unblocked by receiving REPLY s, at least one of
them would have to travserse a path of length k(). However,
this would not preclude node ¢ from getting unblocked by
receiving a REPLY that had traversed a path of length greater
than h(i), because more than p; number of nodes may send
REPLYs.

A node that is not deadlocked has a finite value of h, because
it has at least p; edges to other nodes that are not deadlocked
and there is a sequence of REPLY’s by which the node can
get unblocked. If a node is deadlocked, it is assigned a value
of infinity for h because there is no sequence of REPLY’s by
which the node can get unblocked. The length of the shortest
path traversed by a series of REPLY’s to unblock a deadlocked
node is oo.

The above definition of h needs three modifications before
it is applicable to a dynamically recorded WFG.

1) LS;.p and LS;.out should be used instead of p; and

out; in the definition.

2) Because of the dynamic recording of the WFG, a node

J may receive a FLOOD from node 7 after node j has
sent a REPLY to node i. When node j receives the
FLOOD from node i in this situation, i € in(j) (Cases
F2, F3) and j returns an ECHO to ¢. The edge from i to
J does not exist, but got recorded at ¢ because of finite
message delays. Such an edge is termed a phantom edge.
In such situations, node ¢ is defined to perceive h(j) as
0, because the edge from ¢ to j is a phantom edge and

KSHEMKALYANI AND SINGHAL: GENERALIZED DISTRIBUTED DEADLOCKS

node 7 is perceived active by node i. Note that node j
may not be a part of the WFG; but if it is, it must be
through some other node &, and k may see a nonzero
value of A(j).

3) A leaf node in the WFG may send FLOOD’s along
phantom edges. h(z) is defined to be 0 only if it
first records its state as active and does not send any
FLOOD’s, i.e., executes Case F1-B.

The modified definition of h based on the dynamic recording
appears at the bottom of the next page.

We now show that the algorithm performs reduction cor-
rectly. A node in the recorded WFG gets reduced iff it receives
a sufficient number of ECHO’s. A node in the WFG performs
reduction iff it gets reduced and then sends an ECHO only in
response to every FLOOD it receives.

Lemma 3: A node i for which h(i) < oc performs reduc-
tion.

Proof: We prove that reduction of the recorded WFG
(as per the statement of theorem 1) is performed correctly by
nodes whose h is finite by using induction on A(%).

Base Case h(i) = 0: It will be shown that a node ¢ for
which h(7) = 0 performs reduction correctly. When such a
node 4 recieves the first FLOOD, which is from node j and
j € in; at the time, node i executes Case F1-B by initiating
its local snapshot recording and recording itself as “active”
(LS;.p = 0). Node i is reduced because it has received a
sufficient number of ECHO’s, which is O in this case. Such
a node returns an ECHO for every FLOOD that it receives
(Cases F1-B, F4-A, F2, and F3). Recall that Cases F2 and
F3 correspond to a phantom edge. Cases Fl-A, F4-B, El,
and E2 do not occur at this node. From lemma 2, it follows
that if an ECHO is sent, it is only in response to a FLOOD.
Therefore, a node for which A(i) = 0 sends an ECHO only
in response to every FLOOD it receives, and thus performs
reduction correctly.

h(i) =z >0: Assume that a node ¢ with h(i) = z
performs reduction correctly.

h(i) =z + 1: It needs to be shown that a node i with
h(z) = z + 1 performs reduction correctly. At the time node i
receives the first FLOOD, which is from node j and j € in;,
node 7 executes Case F1-A and records LS;.p > 0 because
it is blocked. Each node k& of at least p; number of nodes
in LS;.out 1) has h(k) < z, by definition, and performs
reduction correctly by the induction assumption, or 2) returns
an ECHO along a phantom edge by executing Case F2 or F3.
Since an ECHO is sent at most once on an incoming WFG
edge (corollary 2), node 7 will receive exactly one ECHO from
each of these nodes in LS;.out. Node ¢ gets reduced when it
receives p; ECHO’s and the monotone nonincreasing function
LS;.p becomes 0. It needs to be shown that node ¢ sends an

51

ECHO only to each node from which it receives a FLOOD.

Node ¢ returns an ECHO to node j when it receives a
FLOOD from node 7 and j ¢ in; (Cases F2 and F3), regardless
of whether node ¢ is reduced. It remains to be shown that node
i sends an ECHO only to each node from which it receives
a FLOOD and executes Cases F1 and F4. If a FLOOD is
received before the node gets reduced, Case F4-B or FI-A
holds and no ECHO is returned; instead, the identity of the
sender of the FLOOD is added to LS;.in, so that when node
i gets reduced later (Case E2-A), it can send an ECHO to the
sender of the FLOOD. At the time 4 receives the p;t* ECHO, it
executes Case E2-A, gets reduced, and sends an ECHO to each
node in LS;.in. If a FLOOD is received after the node gets
reduced, Case F4-A holds and an ECHO is returned. Therefore,
when node ¢ gets reduced, it sends ECHO’s to all of the nodes
from which it has received FLOOD’s and returns ECHO’s
to all nodes from which it subsequently receives FLOOD’s.
Hence, a node whose h = = + 1 performs reduction correctly;
i.e., it sends ECHO’s in response to all FLOOD’s, and only
in response to alt FLOOD’s. Hence, the lemma. |

Lemma 4: A node i for which h(i) = oc does not get
reduced.

Proof: By definition, all nodes whose h is oc form a
deadlock (D, K) in the WFG. All of these nodes are recorded
in the snapshot of the WFG (theorem 1). For any node ¢ € D,
¢ has at least q; — p; + 1 WFG edges to nodes in D, which
belong to the set K. None of the edges in K are phantom
edges. At the time that node i receives the first FLOOD,
which is from node j and j € in;, node ¢ records LS;.p
= p;(> 0) and propagates FLOOD on its ¢; outward edges
without returning an ECHO (Case F1-A).

The earliest that node 7 in D can send an ECHO to another
node in D along an edge in K is when it receives p; ECHO’s,
LS;.p becomes 0, and i gets reduced (Case E2-A) because of
observation 6 and the following three facts:

1) Node 2 never executes Cases F1-B;

2) Node i will not send an ECHO by Case F4-A until after

it gets reduced;

3) Node 7 does not send an ECHO to another node in D
along an edge in K by Cases F2 and F3, because the
edges in K exist; i.e., the edges in K are not phantom
edges.

From observation 7 and corollary 2, a node may receive at
most one ECHO only on an outgoing WFG edge. A node i in
D may receive at most p; —1 ECHO’s from 1) nodes outside
D (whose h is finite), possibly along phantom edges, and 2)
from nodes in D (whose h is oc) along phantom edges that do
not belong to K. In both 1) and 2), the ECHO’s are received
along edges that do not belong to K. A node ¢ in D does

h(i) —0
oC

1+ (LS;.p'" smallest of {h(j) | j € LS;.out})

if i executes Case F1-B

if 4 is deadlocked

otherwise /* Note that h(j) is read as 0 if (i.j)
is a phantom edge * /

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 1. JANUARY 1994

not get reduced and does not send an ECHO to another node
in D along an edge in K at least until it receives an ECHO
from another node in D along an edge in K. Consequently,
no node in D receives an ECHO from another node in D
along an edge in K. All such nodes are not reduced when the
algorithm terminates. |

Theorem 2: Reduction of the recorded snapshot is per-
formed correctly.

Proof: Follows from lemmas 3 and 4. The order of
reduction of nodes is unpredictable because of unpredictable
message delays. From Holt’s result [5], however, the nodes can
be reduced in any order without changing the final outcome. [

V. PERFORMANCE

The proposed algorithm has a better message and time
complexity than existing algorithms for detecting generalized
distributed deadlocks. Consider a system of n nodes with e
edges in the WFG and a diameter of d for the WFG. In
comparing message complexity, we consider logical message
transfers. Based on the type of underlying communication
network, a logical message may result in the transfer of a
number of physical messages, and that is not an issue here.

The Herman-Chandy algorithm for the specialized
AND-OR request model [4] has a message complexity of
n messages per edge of the WFG and a time complexity of
2d hops. The Bracha—Toueg algorithm [1] has a message
complexity of four messages per edge of the WFG and a time
complexity of 4d hops. The algorithm in [13] has a message
complexity of six messages per edge of the WFG and a time
complexity of 3d + 1 hops.

The message complexity of the proposed algorithm has four
components.

1) There are at most e FLOOD's, by corollary 1.

2) There are at most e ECHO’s, by corollary 2.

a) The number of FLOOD’s converted to
SHORT’s is at most “e — n + [—
(number of edges to leaf nodes),” where [is
the number of leaf nodes in the WFG. This is so
because (n — 1) FLOOD’s cannot be converted to
SHORT’s as each internal node uses one FLOOD
to expand the WFG recording (Case F1-A), and
because (number of edges to leaf mnodes)
FLOOD’s cannot be converted to SHORT’s,
since a leaf node always sends back an ECHO
when a FLOOD arrives (Case F1-B).

b) The number of ECHO’s converted to SHORTs is
at most “e — n + 1,” because if a nonleaf node in
the WFG receives an ECHO along each outgoing
edge in the WFG, one of the ECHO’s will reduce
the node and will not be converted to a SHORT.

Thus, the upper bound on the message complexity of the
algorithm is 4¢ — 2n 4 2{ — (number of edges to leaf nodes)
< 4e messages. (This can be approximately stated as (4e —
2n + 2[) < 4e messages.)

Recall that the logical transfer of each message takes one
hop. The algorithm can be viewed to execute in steps. In step
0, the initiator sends FLOOD’s. In step 4 > 0, a node receives

any messages sent to it in step ¢ — 1, performs local action,
and sends messages.

A FLOOD that causes a node to execute Case Fl when
the FLOOD is received causes that node to be included in the
recorded WFG. A spanning tree can be defined on the recorded
WFG as follows. The initiator is the root of the spanning tree.
A node ¢ is the parent of node j iff the FLOOD received from
node 7 causes node j to execute Case F1. The height of the
spanning tree is at most d. From observation 1, corollary 1,
and the fact that a FLOOD is generated only at the time a node
executes Case FI1-A, it follows that the last step in which a
FLOOD is sent denotes one less than the length of the longest
spanning tree path from the initiator to some node. This is
at most d — 1. Thus, all FLOOD’s are delivered in at most
d steps, and the FLOOD’s delivered in step d are converted
to SHORT’s (Case F4-B) or ECHO’s (Case F4-A, F3, F2, or
F1-B).

An ECHO is initiated only in Cases F1-B, F4-A, F2, and
F3 with the transfer of the weight from a FLOOD. The last
step in which ECHO’s may be initiated is d. ECHO’s may
travel only backward along the edges traversed by FLOOD's
(lemma 2). ECHO’s can travel at most d — 1 hops before being
converted to SHORT’s, or at most d hops before reaching the
initiator. Thus, the worst case time complexity of the algorithm
is 2d.

It is conjectured that the algorithm has the optimal time
complexity for detecting generalized deadlocks by using the
technique of WFG recording and reduction, as explained next.
The time complexity of 2d hops represents the round-trip travel
time from the initiator to the farthest node in the WFG. This
is the lower bound on the time because a given edge has to
be recorded in the WFG before it can be reduced. To record
the farthest edge in the WFG requires d hops. From the time
the farthest edge is recorded in the WFG snapshot, d message
hops are required in the worst case to complete reduction of
the rest of the WFG.

Table I compares the performance of the proposed algorithm
and the algorithms by Bracha and Toueg, and Wang et al.

Each blocked node may initiate its own detection algorithm.
This gives rise to m instances of the algorithm in a deadlock
of m nodes. An optimization on the number of messages
can be performed by maintaining a time stamp-based priority
order on all invocations of the detection algorithm and by
suppressing lower-priority invocations [1].

VI. HANDLING DEADLOCK RESOLUTION

The presented algorithm works for a system in which
axiom 2 is valid; i.e., a blocked node can get unblocked only
if its requests are satisfied without any intervention of the
underlying computation. Axiom 2 ensures that if a deadlock
exists in the system, it will be stable. Hence, if a deadlock is
detected, it still exists in the system.

In another system model, a node can get unblocked “ab-
normally” if it spontaneously withdraws its requests, or if its
requests are satisfied because of the resolution of a deadlock of
which it is a part. An example of this model is one that allows
a waiting process to time out. In this model, deadlocks are not

KSHEMKALYANI AND SINGHAL: GENERALIZED DISTRIBUTED DEADLOCKS

stable, and the latest possible state should be observed when
detecting deadlock. The algorithm presented in this paper can
be modified to achieve this as follows: If a node’s state is
recorded as blocked in a local snapshot, then, if it unblocks
abnormally, it initiates reduction of the (may be partially)
recorded snapshot. This is necessary because the node does
not know whether it will get reduced and will be able to
send out ECHO’s during the normal course of the algorithm
to implicitly propagate the fact that it is now unblocked.
However, the node has become unblocked and would like to
ensure that the initiator becomes aware of this and does not
detect deadlock falsely.

The readers are referred to [8] for a detailed treatment of
this modified algorithm and its correctness proof. The upper
bound on message complexity of this modified algorithm is
between (4e — 2n + 21) and (5¢ — 2n + 2l), and the upper
bound on the time complexity is 2d. Thus, it has a better
time complexity than and a comparable message complexity
to the best existing algorithms [1], [13], which do not even
consider deadlock resolution (i.e., treat deadlock as a stable
property).

VII. CONCLUSION

We have presented a distributed algorithm for detecting
generalized deadlocks. Existing algorithms that detect gener-
alized deadlocks use two distinct phases: one to record the
snapshot of the WFG and the other to reduce the WFG to
detect a deadlock. The proposed algorithm is a single-phased
algorithm; it records a snapshot of the WEG of the initiator and
concurrently reduces the WFG to check whether the initiator is
deadlocked. Since reduction may be begun on an incompletely
recorded WFG, the local snapshot at each node has to be
carefully manipulated to give the effect that reduction of the
WFG snapshot begins after the WFG snapshot has been fully
recorded.

The correctness proof of the algorithm was provided in
two steps. First, it was shown that the algorithm records a
consistent distributed snapshot of the initiator’s reachability set
in the outward sweep. Then it was shown that reduction of the
recorded snapshot, which begins in the inward sweep before
the outward sweep is over, is performed correctly. Hence,
when the algorithm terminates, a node in the WFG is not
reduced iff it is deadlocked.

Since the algorithm uses a single phase to detect general-
ized distributed deadlocks, the message complexity and the
time complexity of the algorithm are better than those of
existing algorithms that use two phases. It is conjectured that
the algorithm is optimal in time complexity if generalized
deadlocks are to be detected by using distributed reduction
of the WFG.

Finally, it can be observed that the presented algorithm, as
well as the algorithms in [1], [13], can work in a request model
in which a node requires replies on an arbitrary combination
of its outgoing WFG edges in order to get unblocked. This
arbitrary combination can be expressed as a predicate on
elements in out; and can be recorded in the snapshot as
LS;.pred. When a node receives an ECHO, it evaluates

53

LS;.pred. The node gets reduced (i.e., executes Case E2-A)
when LS;.pred, which is monotonic, changes from false to
true, instead of when LS;.p becomes 0.

For the correctness proof of the above change to the algo-
rithm, or for an alternate realization of the change described
above, one can view the predicate in disjunctive normal form
(DNF), where each disjunct is x is of type P-out-of-Q} [4].
A disjunct z at node ¢ requires p; , REPLY’s out of ¢; .
REQUEST’s, so that node ¢ will get unblocked. Every node in
a deadlock (D, K) has at least ¢; » — p; . + 1 outgoing WFG
edges to other nodes in D for each disjunct z. In the definition
of function h(i), the minimum overall disjuncts = of { pf};
smallest value of {A(j)|j € out; . }} is used. In the algorithm,
there will be a distinct LS;.p,, LS;.out,, and LS;.q,, for
each disjunct x at node i. A node will execute Case E2-A (get
reduced) at the earliest time that LS;.p, becomes O for some
x. The presented algorithm is a special case of this scheme
with a single z and was presented in this form for simplicity.
With the extensions to permit multiple disjuncts as described
above, the presented algorithm works for the arbitrary request
model.

ACKNOWLEDGMENT

The authors are greatly indebted to three anonymous ref-
erees for their painstakingly detailed comments on an earlier
version of the paper.

REFERENCES

[1] G. Bracha and S. Toeug, “Distributed deadlock detection.” Distributed
Comput., vol. 2, pp. 127-138, 1987.

[2] A.L. Choudhary et al., “A modified priority-based probe algorithm for
distributed deadlock detection and resolution,” IEEE Trans. Software
Eng., vol. 16, pp. 10~17, Jan. 1989.

[3] K.M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol.
3, pp. 63-75, 1985.

[4] T. Herman and K.M. Chandy, “A distributed procedure to detect
AND/OR deadlocks,” Dept. Comput. Sci. Tech. Rep. TR-LCS-8301,
University of Texas, Austin, TX, Feb. 1983.

[5] R.C. Holt, “Some deadlock properties of computer systems,” ACM
Comput. Surveys, vol. 4, 1972.

{6] S. Huang, “Detecting termination of distributed computations by exter-

nal agents,” Proc. 9th Int. Conf. Distributed Comput. Syst., pp. 79-84,

1989.

E. Knapp, “Deadlock detection in distributed databases,” ACM Comput-

ing Surveys, vol. 19, pp. 303-328, Dec. 1987.

[8] A.D. Kshemkalyani, “Characterization and correctness of distributed
deadlock detection and resolution,” Ph.D. dissertation, Ohio State Uni-
versity, Aug. 1991.

[9] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Communic. ACM, vol. 21, pp. 558-565. July 1978.

M. Roesler and W. A. Burkhard, “Resolution of deadlocks in object-

oriented distributed systems,” [EEE Trans. Comput., vol. 38, pp.

1212-1224, 1989.

M. Singhal, “Deadlock detection in distributed systems,”™ Comput., pp.

37-48, Nov. 1989.

M. K. Sinha and N. Natarajan, “A priority-based distributed deadlock

detection algorithm,” IEEE Trans. Software Eng.. vol. 12, pp. 67-80,

Jan. 1985.

J. Wang, S. Huang. and N. Chen, “A distributed algorithm for detecting

generalized deadlocks.” Tech. Rep., Dept. of Comput. Sci., National

Tsing-Hua University, 1990.

17

(10

(1]
[12]

[13]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. |, JANUARY 1994

A.D. Kshemkalyani received the B. Tech. degree in
computer science and engineering from the Indian
Institute of Technology, Bombay, India, in 1987,
and the M.S. and Ph.D. degrees in computer and
information science from the Ohio State University,
Columbus, OH, in 1988 and 1991, respectively.

He is currently working in the Networking Sys-
tems Architecture Division at IBM Corp. in Re-
search Triangle Park, NC. His current research inter-
ests include distributed systems, operating systems,
computer architecture, and databases.

M. Singhal received the B. Eng. degree in electron-
ics and communication engineering with high dis-
tinction from the University of Roorkee, Roorkee,
India, in 1980, and the Ph.D. degree in computer
science from the University of Maryland, College
Park, MD, in May 1986.

He is currently an Associate Professor of com-
puter and information science at the Ohio State
University, Columbus, OH. His current research
interests include distributed systems, operating sys-
tems, databases, and performance modeling. He

has co-authored a book titled, Advanced Concepts in Operating Systems:
Distributed, Multiprocessor, and Database Operating Systems (New York:
McGraw-Hill, 1994).

