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Abstract

Existing approaches to active learning are generally op-
timistic about their certainty with respect to data shift
between labeled and unlabeled data. They assume that
unknown datapoint labels follow the inductive biases
of the active learner. As a result, the most useful data-
point labels—ones that refute current inductive biases—
are rarely solicited. We propose a shift-pessimistic ap-
proach to active learning that assumes the worst-case
about the unknown conditional label distribution. This
closely aligns model uncertainty with generalization
error, enabling more useful label solicitation. We in-
vestigate the theoretical benefits of this approach and
demonstrate its empirical advantages on probabilistic
binary classification tasks.

Introduction
Obtaining large amounts of labeled data is prohibitively ex-
pensive for many learning tasks. Producing each label could
require an invasive medical test and expensive expert knowl-
edge, for example. Active learning (Settles 2012) aims to al-
leviate this burden by soliciting labels from datapoints that
reduce prediction error (loss) by the greatest amount. This
has the potential to significantly improve data-efficiency be-
yond what is possible with randomly provided labels (An-
gluin 1988). However, data produced from an active learner
violates the independent and identically distributed (IID)
data property broadly assumed by supervised machine learn-
ing techniques (Sugiyama and Kawanabe 2012). This poses
serious pitfalls for active learning methods both in theory
and in practice that have not yet been resolved.

Existing active learning methods are generally optimistic
about their own uncertainty with respect to the sample bias
in the labeled data, which is often an intentional byproduct
of the active learner’s label solicitation strategy. They em-
ploy an underlying supervised machine learning model and
assume that all unlabeled datapoints’ labels are distributed
according to the model’s (often strong) inductive biases.
This approach has theoretical justification in IID settings
where the inductive biases are shaped by increasing amounts
of representative data. However, the potential of improved
data-efficiency benefits from active learning is only realized
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(a) Optimistic active leaner (b) Pessimistic active learner

Figure 1: A binary prediction task with + and * classes.
Probabilistic predictions ranging from dark red (+) to dark
blue (*) are shown after 10 examples solicited (white cir-
cles) from active learning using: (a) a standard optimistic
approach—uncertainty sampling (Lewis and Gale 1994)
with logistic regression; and (b) uncertainty sampling us-
ing our more pessimistic robust bias-aware (RBA) active
learner. The optimistic active learner exhaustively explores
a false decision boundary and extrapolates its predictions to
other portions of the input space, incurring large prediction
loss. The shift-active learner avoids being misled, and pro-
vides predictions with significantly smaller loss.

by biasing label solicitation towards non-representative data
that is the most informative (Settles 2012). Unfortunately,
the combination of optimistic extrapolation based on IID
assumptions and intentionally non-IID data collection often
leads not only to inefficient learning, but also to extreme in-
accuracies. Even advocates of popular active learning meth-
ods suggest that “random sampling ... may be more advis-
able than taking one’s chances on active learning with an
inappropriate learning model” (Settles 2012).

The perils of optimistic active learning extend far beyond
the more benign risks of model misspecification. For ex-
ample, a logistic regression model fits the synthetic dataset
of Figure 1 in its entirety with fairly small average predic-
tion loss. However, the optimistic active learner solicits a
sequence of labels that does not uncover this appropriately
fit model, as shown in Figure 1a. This is primarily because it
solicits labels for examples that would be the most useful if
its current inductive biases were correct. After obtaining an
initial ‘+’-class label and a noisy second ‘*’-class label from



the bottom-left-most datapoint, the active learner forms an
incorrect inductive bias—that a decision boundary for the
dataset as a whole exists between those two datapoints—
and exhaustively solicits labels to better define the belief
contours of this incorrect decision boundary. As shown in
this example, the active learner typically avoids soliciting
the most informative labels, which would strongly refute the
active learner’s current inductive biases.

In this paper, by explicitly considering active learning as
a special case of covariate shift, we develop a pessimistic
approach to active learning that avoids inefficiencies cre-
ated by the combination of optimism and non-representative
label solicitation. Our approach leverages a recently devel-
oped model for learning from biased source sample data by
assuming the worst-case about the unknown conditional la-
bel distribution (Liu and Ziebart 2014). Under this approach,
we show that model uncertainty is closely calibrated to gen-
eralization loss. Thus, common label solicitation strategies
guided by model uncertainty tend to directly improve the
model’s predictive performance. In addition to these theo-
retical properties, we evaluate and compare the effectiveness
of our approach on a range of classification tasks. Figure 1b
shows the key difference from previous methods: the lim-
ited, more pessimistic extrapolation from available labeled
data providing smaller prediction loss.

Background and Previous Work
Active Learning
A pool-based active learner (Lewis and Gale 1994) sequen-
tially chooses datapoint labels to solicit from a set (pool) of
unlabeled datapoints, (xi) ∈ U . It constructs an estimate of
the conditional label distribution, P̂ (y|x), from its labeled
dataset (xj , yj) ∈ L. It uses this estimate to select the next
datapoint label to solicit. We denote the entire set of labeled
and unlabeled datapoints as D = U ∪ L.

Numerous metrics have been developed to assess
the expected utility of a datapoint. The most com-
mon, uncertainty sampling (Lewis and Gale 1994; Set-
tles 2012), solicits datapoint labels for which the ac-
tive learner is least certain. The value-conditioned en-
tropy, H(Y |X = xi) , EP̂ (y|x)[− log P̂ (Y |X)|xi] =

−
∑
y∈Y P̂ (y|xi) log P̂ (y|xi), often measures this uncer-

tainty. Other metrics assess how a datapoint label: (a) is ex-
pected to change the prediction model (Settles and Craven
2008); (b) reduces an upper bound on the generalization er-
ror in expectation (Mackay 1992); or (c) represents the input
patterns of remaining unlabeled data (Settles 2012).

Yet, as illustrated in Figure 1, the pool-based active learn-
ing algorithm often performs poorly in practice (Attenberg
and Provost 2011). Ad-hoc modifications to the algorithm
that limit the power of the active learner—undermining the
purported benefits of active learning—are often required for
existing active learners to be competitive with random sam-
pling. These modifications decrease the potential for bias in
the labeled dataset by making the label solicitation strategy
more similar to random sampling. One modification is to
“seed” the learner with a set of randomly drawn datapoint

labels (Schein and Ungar 2007; Dligach and Palmer 2011).
In other words, the active learner is restricted to sampling
uniformly for its first n datapoints. A second modification
solicits labels from a very small random subset of the un-
labeled dataset (e.g., a pool of 10 examples (Schein and
Ungar 2007)) rather than the entire unlabeled dataset, U .
These modifications treat the symptoms resulting from op-
timistic modeling and non-IID label solicitation rather than
its cause. Our approach differs from methods that are pes-
simistic about active learning from a bandit learning per-
spective (Rokach, Naamani, and Shmilovici 2008).

Learning under sample selection bias
Inherent sample selection bias exists in active learning
because examples for label solicitation are not chosen
uniformly at random (Sugiyama and Kawanabe 2012).
However, since the active learner can only select ex-
amples based on the input values, xi, independently
from the unknown label, yi, this corresponds to a spe-
cial case of sample selection bias known as covariate
shift (Shimodaira 2000). This setting requires that a com-
mon conditional label distribution, P (y|x), is shared in
both source, Psrc(y, x) = P (y|x)Psrc(x), and target,
Ptrg(y, x) = P (y|x)Ptrg(x), distributions. Learning under
covariate shift estimates this shared conditional label dis-
tribution from sample source data, P̃src(y, x), using predic-
tor P̂ (y|x), with the goal of minimizing target distribution
loss, EPtrg(x)P (y|x)[− log P̂ (Y |X)]. In the pool-based active
learning setting, the source distribution represents available
labeled dataL and the target distribution represents the com-
bination of labeled and unlabeled data1 D.

Minimizing the prediction loss for a target distribution
that differs from the source data’s distribution is difficult.
In IID settings, researchers typically minimize the empiri-
cal loss of labeled sample data (Sugiyama and Kawanabe
2012). With increasing data, this sample-based approxima-
tion converges linearly to the source/target distribution’s er-
ror. Unfortunately, target sample data is not available to
directly measure the empirical loss in the biased setting.
Importance sampling (Hammersley and Morton 1954) is a
prevalent approach for this setting that estimates the target
distribution loss by reweighting the source samples accord-
ing to the target-source density ratio, Ptrg(x)/Psrc(x) (Shi-
modaira 2000; Zadrozny 2004). In the asymptotic limit (in-
finite amounts of source data), the predictor (with parame-
ters θ) minimizing the reweighted loss is equivalent to the
predictor that minimizes the target loss (Shimodaira 2000),

lim
m→∞

min
θ

E
P̃

(m)
src (x)P̃ (y|x)

[
Ptrg(X)

Psrc(X)
loss

(
Y, f̂θ(X)

)]
= min

θ
EPtrg(x)P (y|x)

[
loss

(
Y, f̂θ(X)

)]
. (1)

Despite this asymptotic guarantee, sample reweighting un-
der large sample selection bias can converge very slowly to
the target loss as the number of source datapoints (m) grows.

1The remaining unlabeled data alone could be used for the tar-
get distribution if generalization beyond the pool is not intended.



In fact, finite second moments on the target-source density
ratio, EPsrc(x)

[
(Ptrg(X)/Psrc(X))2

]
< ∞, are required for

any finite-sample generalization bounds (Cortes, Mansour,
and Mohri 2010). Not satisfying this requirement leads to
estimates with high variance and target distribution predic-
tions with overly optimistic certainty for any finite amount
of source data.

Active learning using sample reweighting has been inves-
tigated in a handful of learning tasks (Kanamori and Shi-
modaira 2003; Sugiyama 2005; Bach 2007). Unfortunately,
common label solicitation strategies often produce labeled
datapoint distributions that are highly non-representative, as
shown in Figure 1. These source distributions lack finite
second moment density ratios and produce high-variance
predictions from small amounts of data. Extensions to the
streaming active learning setting (Beygelzimer, Dasgupta,
and Langford 2009) randomize the label solicitation strat-
egy to improve sample complexity bounds.

Approach
Robust bias-aware prediction
We employ a recently-developed approach for robust pre-
diction in settings with dataset shift (Liu and Ziebart 2014).
It provides robust bias-aware (RBA) predictions in the ac-
tive learning setting for data distributed according to the
full data distribution PD(x), given labeled data samples (de-
noted with empirical measure P̃L(x)) treated as being drawn
from a labeled data distribution PL(x). A minimax estima-
tion problem (the primal) and a regularized maximum like-
lihood estimation problem (the dual) provide equivalent so-
lutions to the formulation.

The primal problem is a minimax game between estimator
choosing P̂ (y|x) and constrained adversary, choosing eval-
uation distribution P̌ (y|x):

min
P̂ (y|x)

max
P̌ (y|x)∈Ξ̃

EPD(x)P̌ (y|x)[

logarithmic loss︷ ︸︸ ︷
− log P̂ (Y |X)]. (2)

The set Ξ̃ constrains the adversary to (approximately) match
a set of its statistics, EP̃L(x)P̌ (y|x)[f(X,Y )] with sample
statistics EP̃L(x)P̃ (y|x)[f(X,Y )] from the labeled data dis-
tribution. The dual problem selects model parameters, θ, by
maximizing a regularized full data distribution likelihood:

θ∗ = argmax
θ

EPD(x)P (y|x)[log P̂θ(Y |X)]− λ||θ||, (3)

with the conditional label distribution estimate’s form as:

P̂θ(y|x) = e
PL(x)

PD(x)
θ·f(x,y)

/∑
y′∈Y

e
PL(x)

PD(x)
θ·f(x,y′)

. (4)

The density ratio, PL(x)
PD(x) , moderates the predictions to be

less certain wherever the labeled data underrepresents the
full data distribution and more certain wherever the labeled
data overrepresents it. The uncertainty of this distribution
closely matches to its generalization error (Theorem 1).

Theorem 1. Assuming that the actual label distribution
P (y|x) is within the set Ξ̃, the full data entropy of the RBA
predictor upper bounds its generalization loss:

HD(Y |X) , EPD(x)P̂ (y|x)

[
− log P̂ (Y |X)

]
(5)

≥ EPD(x)P (y|x)[− log P̂ (Y |X)].

Proof. The proof follows from Grünwald and Dawid (2004)
and Topsøe (1979) using: (a) strong duality; (b) the equiva-
lence of the logloss minimizer to its evaluation distribution
when given; and (c) the assumption that P (y|x) is in set Ξ̃:

min
P̂ (y|x)

max
P̌ (y|x)∈Ξ̃

EPD(x)P̌ (y|x)[− log P̂ (Y |X)]

(a)
= max

P̌ (y|x)∈Ξ̃
min
P̂ (y|x)

EPD(x)P̌ (y|x)[− log P̂ (Y |X)]

(b)
= max
P̂ (y|x)∈Ξ̃

HD(Y |X)
(c)

≥ EPD(x)P (y|x)[− log P̂ (Y |X)].

Constructing a constraint set Ξ̃ from finite sample data to
satisfy the premise of Theorem 1 is overly restrictive. In-
stead, we can relax the guarantee to be probabilistic based
on finite sample error bounds in Corollary 1.
Corollary 1. When δ defining the `1-norm or `2-norm con-
straint set,∣∣∣∣∣∣EP̃L(x)P̂ (y|x)[f(X,Y )]− EP̃L(x)P̃ (y|x)[f(X,Y )]

∣∣∣∣∣∣ ≤ δ,
is chosen using sample error bounds between the labeled
data distribution’s sample statistics and expected statistics,

P
(∣∣∣∣∣∣EP̃L(x)P̂ (y|x)[f(X,Y )]− EP̃L(x)P̃ (y|x)[f(X,Y )]

∣∣∣∣∣∣ ≥ δ) ≤ α,
then the bound (5) of Theorem 1 holds with probability at
least (1− α).
The constraint set slack δ corresponds to `1 or `2 regulariza-
tion weight λ in the dual optimization problem (3) (Dudı́k
and Schapire 2006).

Training the RBA predictor appears difficult because the
dual objective function (3) maximizes the log likelihood of
the full data, which is partially unlabeled. However, that ob-
jective function’s gradient is based on labeled data distribu-
tion statistics,

EPL(x)P (y|x)[f(X,Y )]− EPL(x)P̂ (y|x)[f(X,Y )]− λ∇θ||θ||
≈ EP̃L(x)P̃ (y|x)[f(X,Y )]− EP̃L(x)P̂ (y|x)[f(X,Y )]− λ∇θ||θ||,

which can be safely approximated using labeled data distri-
bution samples from P̃L(x).

Density estimation
The degree that information from labeled data generalizes
to other portions of the input space in the RBA approach is
controlled by the density estimates of the labeled data distri-
bution, PL(x), and the entire data distribution, PD(x). If the
labeled data distribution estimate provides minimal support
beyond the labeled data samples, density predictions outside
of the labeled samples will tend to be overly conservative



and maximally uncertain. If the labeled data distribution es-
timate provides too broad of support for the full data dis-
tribution, the guarantees of Corollary 1 will be improbable
(i.e., a large α will be required). If the full data distribution
is misestimated, the prediction guarantees (Corollary 1) will
not apply to actual full data distribution samples.

Density estimation methods have been investigated ex-
tensively in the importance weighting approach (1) to sam-
ple selection bias (Shimodaira 2000; Dudı́k, Schapire, and
Phillips 2005; Huang et al. 2006; Sugiyama et al. 2008;
Bickel, Brückner, and Scheffer 2009; Yu and Szepesvári
2012; Wen, Yu, and Greiner 2014). In that model, these im-
portance weights, formed from density estimates, shape the
strong inductive biases of the approach. Rather than inves-
tigate the benefits of each density estimation technique for
RBA prediction, we employ a widely accepted density es-
timation technique when generalized estimates are needed:
kernel density estimation with Gaussian kernels.

We leverage specific properties of the active learning set-
ting to help alleviate some of the potentially negative conse-
quences of inaccurate density estimation. We narrow our fo-
cus to minimizing the loss on a specific set of full dataset dis-
tribution samples (i.e. all labeled and unlabeled datapoints).
Thus, we employ the uniform distribution of datapoints,

PD(x) =

{
1
|D| if x ∈ D
0 otherwise,

to represent the full data distribution density. This would
be ill-advised for general covariate shift prediction, be-
cause it would make the density ratio PL(x)

PD(x) infinite (i.e,
no “penalty” for overly certain predictions) at many labeled
sample datapoints in L. However, for the active learning set-
ting, all labeled data samples will have support in the full
distribution, since L ⊆ D, so this situation does not occur.

Active learning using robust predictions
Conditional label distribution estimates guide label solicita-
tion within an active learner as shown in Algorithm 1.

Algorithm 1 Label solicitation for pool-based active learner
with covariate shift correction
Input: unlabeled pool dataset U , labeled dataset L
Output: example xi ∈ U to solicit label

Estimate labeled distribution density PL(x)
Estimate full data distribution density PD(x) (D = U∪L)
Estimate P̂ (y|x) from dataset L, PL(x), and PD(x).
Compute valuei ← metric(P̂ , xi,D,U) for each xi ∈ U
return xargmaxi valuei (example label to solicit)

Using uncertainty sampling and kernel density estimation
for PL(x), the complexity of each label solicitation is
O(|L|2 + Tk|L|+ k|U|), where k is the number of features
and T is the number of optimization steps.

The metrics used to evaluate different unlabeled data-
points for many label solicitation strategies, including uncer-
tainty sampling, are heuristic/greedy methods for minimiz-
ing model uncertainty. Theorem 1 and Corollary 1 provide

theoretical guarantees that this is an appropriate objective
when using the RBA predictor.
Corollary 2. An active learning strategy for RBA predic-
tion that efficiently reduces RBA model uncertainty also effi-
ciently reduces prediction loss.

In contrast, we can consider the importance reweight-
ing approach to estimating the conditional label distribu-
tion within an active learning algorithm. Cortes et al. (2010)
show that even when importance weights are not bounded,
under this approach, for any hypothesis h the generaliza-
tion loss R(h) can be bounded as a function of the empirical
importance-weighted loss R̂w(h) as follows:

R(h) ≤ R̂w(h) +O

√EPL(x) [w(X)2]
3/8

√
p log(mp ) + log( 1

δ )

m

 ,

where w(x) = PL(x)/PD(x), EPL(x)

[
w(X)2

]
is finite, p

is an upper bound on the pseudo-dimension, a notion of di-
mension for the hypothesis space, and 1 − δ is the bound
confidence.

Popular label solicitation strategies (Settles 2012) tend
to choose labels with the goal of greedily or approx-
imately minimizing the (importance-weighted) empirical
loss R̂w(h). Often they do so without appropriately bound-
ing the density ratio, EPL(x)

[
(PD(X)/PL(X))

2
]
, which is

needed for the empirical loss to generalize from the subset
of labeled datapoints to the rest of the dataset. For reason-
ably large confidence values 1− δ, this bound can be looser
than agnostic predictions (uniform over labels with logloss
of log2 |Y|) in such cases.

Unfortunately, minimizing the prediction loss for a non-
representative labeled data distribution provides no guaran-
tees for the prediction loss on the broader data distribution
(Sugiyama and Kawanabe 2012). Thus, active learners that
minimize the uncertainty of the logistic regression model
should instead solicit labels from representative datapoints
to provide any theoretical performance guarantees.

Experiments
Classification tasks
We evaluate the performance of different active learning ap-
proaches using four datasets from the UCI repository (Bache
and Lichman 2013). We consider datasets with real-valued
features to simplify density estimation for methods that ad-
dress covariate shift. We reduce multi-class datasets to bi-
nary classification tasks by merging classes (typically plu-
rality class versus other) as detailed in Table 1.

Table 1: Datasets for empirical evaluation
Dataset Features Examples Positive labels Negative labels

Iris 4 150 Setosa all others
Seed 7 210 Type “1” all others

Banknote 4 1372 Class “0” Class“1”
E. coli 8 336 Cytoplasm all others

In each of our experiments, we divide the dataset into a train-
ing set (80% of data) and a testing set (the remaining 20%).



(a) Iris (b) Seed (c) Banknote (d) E. coli

Figure 2: Logloss of optimistic active learning versus passive (IID) learning for the first 20 datapoints of learning averaged
over 30 randomized withheld evaluation dataset splits with 95% confidence intervals.

Learning methods
We apply three different models for estimating the con-
ditional label distribution: Standard logistic regression
(abbreviated as standard in this section) uses the Boltz-
mann distribution P (y|x) = eθ·f(x,y)/(

∑
y′∈Y e

θ·f(x,y))
and minimizes the logloss of the labeled distribution
samples, minθ EP̃L(x)P̃ (y|x)[− log P̂θ(Y |X)] + λ||θ||;
Sample reweighted logistic regression (abbrevi-
ated as reweighted) uses the same logistic regression
model, but with parameters estimated to minimize
the importance weighted estimate of the target loss,
minθ EP̃L(x)P̃ (y|x)

[
−PD(X)
PL(X) log P̂θ(Y |X)

]
+ λ||θ|| ; and

Robust bias-aware prediction (abbreviated as robust)
uses the conditional label distribution of (4) trained by max-
imizing target likelihood (3) (approximating the gradient
with labeled datapoints).

We employ two label solicitation strategies for each
model: Uncertainty sampling (abbreviated as active) se-
lects the example with the largest value-conditioned entropy
from the unlabeled dataset. The first datapoint label so-
licited is selected uniformly at random (the same first data-
point as passive learners); and Random sampling (abbrevi-
ated as passive) selects each datapoint uniformly at random
from the unlabeled dataset. In addition, we apply a density-
ratio-based strategy with our robust approach: Density-ratio
sampling (abbreviated as active density) selects the exam-
ple with the highest PD(x)

PL(x) under the estimated distribution.
We conduct 30 experiments with each learner on ran-

domized training/testing splits of each dataset and report the
mean and the 95% confidence interval of the predictive per-
formance after every data point solicited in the first 20 steps,
corresponding to 0.05 significance level in student t-test. We
focus on the first 20 examples because real applications re-
quire good predictive performance with limited labeled data.

Density estimation and dimension reduction
We apply Gaussian kernel density estimation (KDE) on the
labeled examples to estimate the labeled data density,

PL(x) =
1

|L|
∑
xi∈L

KH(x− xi)

with a bandwidth that minimizes the logloss on the whole
dataset, H=argminEPD(x)[− log P̂ (X)], from a restricted
set of bandwidths proportionate to a covariance estimate of
the entire data, H = αΣ̂(D). For higher dimensional data
(Seed and E. coli), we first apply principal component anal-
ysis to reduce the dimensionality to a space that covers at
least 95% of the input variance, before applying Gaussian
KDE. We use the uniform distribution over training and test-
ing datapoints for the full data distribution density.

Features and regularization
For all methods, we use first-order and second-order
statistics of the inputs as features: x2

1y, x2
2y, . . ., x

2
Ky,

x1x2y, x1x3y, . . ., xK−1xKy, x1y, x2y, . . . , xKy, y. Since
the regularization weight λ corresponds to slack in the con-
straints (Corollary 1) and feature scales differ, we use a
different regularization weight for each feature correspond-
ing with the 95% confidence interval of the feature’s mean,
2σ(φ(x, y))/

√
|L|. However when the scale of the density

ratio (PL(x)/PD(x)) is overwhelmingly large (E.coli) or
small (Banknote), we reweight each feature’s mean using the
learning model’s density ratio before taking the standard de-
viation in the reweighted and robust algorithms.

Optimistic active learning versus IID learning
We first investigate how the optimistic active learning meth-
ods (active standard and active reweighted) compare to IID
logistic regression (passive standard). In Figures 2a and 2b,
the logloss of active standard and active reweighted are
worse than passive learners for the entire 20 steps of learn-
ing with statistical significance. This is similarly the case
for the active standard and active reweighted algorithms in
the first 10 steps of learning in Banknote (Figure 2d). This
frequent poor performance results from the active learners
getting “stuck” soliciting labels suggested by its optimistic
biases to be useful rather than labels that would correct its
incorrect beliefs. Further prediction improvements often re-
quire first exhausting from the pool of examples that con-
form to the learner’s incorrect beliefs. Only when the induc-
tive biases of labeled data match those of the unlabeled data,
as in active methods for the E. coli dataset, will the opti-
mistic active learner not provide high logloss in the initial
steps of active learning.



(a) Iris (b) Seed (c) Banknote (d) E. coli

Figure 3: Logloss of shift-pessimistic active learning versus passive (IID) learning for the first 20 datapoints of learning
averaged over 30 randomized withheld evaluation dataset splits with 95% confidence intervals.

(a) Iris (b) Seed (c) Banknote (d) E. coli

Figure 4: Classification error rate of all learning methods for the first 20 datapoints of learning averaged over 30 randomized
withheld evaluation dataset splits. The legend is shared for all datasets. Active standard and active reweighted overlap in (a).

Pessimistic active learning versus IID learning
We next compare the performance of our shift-pessimistic
active learning method (active robust and active density ro-
bust) to several passive learning methods. As shown in Fig-
ure 3, active robust and active density robust perform bet-
ter from the very beginning than agnostic baseline, which
would provide a logloss of 1, and are better than, or at least
comparable to any other methods for all amounts of avail-
able data. Small error bars reflect high stability compared to
other methods. In contrast, IID learning methods are quite
unstable especially at the beginning due to the bias of a
small, randomly chosen sample. Active density robust can-
not significantly compete with passive robust because it only
considers densities when soliciting labels. Passive robust
outperforms passive standard and reweighted, which shows
that robust bias-aware prediction effectively controls the ex-
tent to which the prediction should generalize. However,
since the inductive biases from labeled data tend to gener-
alize accurately using the passive standard and reweighted
methods on the E.coli dataset, they exceed the passive ro-
bust method given 20 labeled examples.

Comparing classification accuracy
Though all the algorithms do not minimize classification er-
ror directly, the log loss upper bounds the non-convex clas-
sification error (0-1 loss). Thus, one might expect that effi-
ciently reducing log loss in the active learning setting will
lead to low classification error. We investigate this in Figure

4, comparing the classification error rate of all seven meth-
ods on each dataset. The active robust approach provides the
highest prediction accuracy for almost all amounts of avail-
able labeled data. In contrast, the high log loss predictions of
active standard and active reweighted in Iris and Seed trans-
late to poor classification error rates.

Conclusions
We have focused on the often detrimental combination of:
machine learning models that are optimistic in the face of
their own uncertainty; and active learning strategies that un-
intentionally avoid soliciting labels that would refute opti-
mistic extrapolations. We propose a new approach to con-
structing prediction models within an active learning algo-
rithm by considering the problem as a covariate shift predic-
tion task and adopting pessimism about all uncertain proper-
ties of the conditional label distribution. Theoretically, this
aligns model uncertainty with prediction loss on remain-
ing unlabeled datapoints, better justifying the use of the
model’s label estimates within active learning label solici-
tation strategies. We have shown that our RBA approach en-
counters lower prediction loss and accuracy than IID learn-
ing in settings where previous optimistic active learning
methods are often not competitive with IID learning.
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