
1

A Design Workflow for Dynamically
Reconfigurable Multi-FPGA Systems

Alessandro Panella∗, Marco D. Santambrogio†‡, Francesco Redaelli†, Fabio Cancare†, and Donatella Sciuto†
∗ Computer Science Department - University of Illinois at Chicago, Email: apanel2@uic.edu

† Dipartimento di Elettronica e Informazione (DEI) - Politecnico di Milano,
Email: {santambr, cancare, fredaelli, sciuto}@elet.polimi.it

‡ Computer Science and Artificial Intelligence Laboratory - Massachusetts Institute of Technology, Email:
santambr@mit.edu

Abstract—Multi-FPGA systems (MFS’s) represent a promising
technology for various applications, such as the implementation
of supercomputers and parallel and computational intensive
emulation systems. On the other hand, dynamic reconfigurability
expands the possibilities of traditional FPGAs by providing them
the capability of adapting their functionality while still running
to cope with runtime environment changes. These two research
directions are merged together in this work, that describes a
methodology for designing dynamic reconfigurable MFS’s. In this
paper a novel MFS design flow has been described, which makes
use of blocks reuse through dynamic reconfigurability to make
the implementation of large systems feasible even on multi-FPGA
architectures with strict physical constraints. Functional to this
goal is the development of an algorithm for the extraction of the
isomorphic structures of a circuit that extensively exploits the
hierarchy of the design.

I. INTRODUCTION

The use of Field Reprogrammable Gate Arrays (FPGAs) is
nowadays widespread in both industry and academic research.
Their computational power can be increased through the
creation of clusters of chips. Besides obviously augmenting
the available physical area, this also provides the possibility
of massively exploiting parallel computation. Such multi-
FPGA systems (MFS’s) are currently used in supercomputing
applications and logic emulation of custom circuits [1]. A
computational paradigm attracting growing interest is recon-
figurable computing (RC). An early definition given by Gerald
Estrin refers to RC as the process of altering the location or
the functionality of a system element, as a response to faults,
changes in the environment or explicit application needs [2].
Due to their reprogrammability, FPGAs currently represent the
leading technology for implementing reconfigurable systems.
In recent years, the evolution of FPGA architectures has
made it possible to further increase the degree of flexibility
in the use of such chips. This innovation is represented by
the possibility of having parts of the FPGA reconfigured at
run-time, while others are still running, so that the execution
of the system never ceases. This technique is called partial
dynamic reconfigurability, as opposed to the standard static
reconfigurability. A number of works about MFS design
can be found in literature (e.g. [1], [3]–[5]), but only few
approaches have been proposed that explore the field of
dynamically reconfigurable MFS’s ([6], [7]). Merging together
the potential of MFS’s and reconfigurability is nevertheless

a promising research direction. Although the area available
on MFS’s is usually large, some complex applications may
require even more space, thus imposing the replacement of
the physical architecture with a larger one, a process that is
very expensive and time-consuming. By providing a larger
virtual area, dynamic reconfigurability allows to go beyond
the physical space constraints of the architecture [8]. The
presented work proposes a novel design methodology that
exploits the dynamic reconfigurability of interconnections in
MFS’s. This allows design blocks of the application to be used
more than once during execution, with the result of significant
area savings. At the best of our knowledge, no other work on
multi-FPGA design has explored this scenario.

The remainder of this paper is organized as follows. Sec-
tions II, III, and IV present the proposed MFS design workflow
and describe in details the three phases it is composed of.
Section V provides the obtained experimental results, while
Section VI briefly reports previous works on MFS design,
comparing them with the proposed methodology. Section VII
concludes the paper providing some hints for future work.

II. PROPOSED WORKFLOW AND DESIGN EXTRACTION

The approach proposed in this paper consists of a workflow
for the design of MFS’s, whose abstract view is represented
in Fig. 1 and is briefly described in the following.

Design
Extraction

VHDL

Application
Description

Multi-FPGA
Architecture
Description

Global
Physical
Layout

Feasible?
Reuse &
Dynamic

Reconfiguration
no

Output files

yes

Figure 1. Outline of the proposed multi-FPGA systems design workflow.

The input of the design process consists of a VHDL
description of the application and a specification of the target

2

multi-FPGA architecture. The VHDL code undergoes a design
extraction phase, which aims at collecting the information
relevant to the design structure. A global physical layout
phase performs the partitioning, placement and routing of the
application on the specified architecture. At this point, two sit-
uations are possible. If the application fits into the architecture,
the flows ends. Otherwise, another step is undertaken, aimed at
exploiting the dynamic reconfiguration of the communication
infrastructure for modules reuse. The output of the workflow
is a new VHDL specification, describing the modules to be
instantiated on each FPGA, together with information about
the reconfiguration of interconnections. This process relies on
existing commercial tools (e.g. Xilinx ISE) for subsequent
intra-FPGA synthesis.

A. Intermediate Representation

The VHDL specification received as input is parsed and
interpreted, and the result is saved in a specifically designed
intermediate representation, that maintains information both
on the structure and the hierarchy of the design tree-like data
structure. Hierarchy information is useful to our task for two
important reasons. The first one depends on what makes the
designer choose a particular design hierarchy when imple-
menting the VHDL application. The designer follows some
simple implicit rule in recursively aggregating – or splitting
down – components. Design blocks are built based on their
functionality: if two sub-components (children) carry out oper-
ations that are theoretically portions of a larger function, they
are likely to be aggregated in a bigger component (parent).
It is evident that such sub-components are probably strongly
interconnected. Therefore, it seems natural and favorable to
exploit this information in the partitioning, placement and
routing of the input circuit. The second reason is rooted in the
concept of regularity: if two components belong to the same
type, they are roots of two identical sub-trees in the hierarchy.
Therefore, when a given operation is carried out during the
execution of some algorithm in one of these subtrees, it can
be immediately replicated in the other one.

B. VHDL Preprocessing and Extraction

The extraction phase is composed of two steps. First, the
VHDL specification is preprocessed to reduce it to a pure
VHDL structural description. The resulting code contains
only structural statements for the intermediate nodes of the
hierarchical tree, while behavioral and data-flow instructions
are allowed exclusively in leaf blocks. To obtain a pure
structural description, two operations are carried out for each
component in the design:

1) For every process, a leaf component is created which
contains the process. The process in the original file is
replaced by the instantiation of this component.

2) All data-flow instructions are turned into a leaf com-
ponent, and are replaced by the instantiation of such
component.

Then, the specification is parsed into the intermediate repre-
sentation. The estimated FPGA area occupation in number of

slices is retrieved by this step, using existing FPGA synthesis
tools such as Xilinx XST [9]. Each leaf of the extracted
hierarchical tree is then constituted by a single VHDL process
or a group of data-flow instructions. The granularity of this
structure is quite coarse, especially if compared to usual
gate-level netlists. The choice of handling the circuit at a
process-level granularity arises from the fact that the presented
workflow performs a global mapping of the application on a
multi-FPGA architecture, with subsequent phases taking care
of fine-grained local syntheses. In this context, dealing with a
low number of relatively large design modules leads to faster
results.

III. GLOBAL PHYSICAL LAYOUT

The global layout phase deals with the search of a feasible
mapping of the parsed application on a multi-FPGA architec-
ture received as input, while optimizing some objectives, i.e.
the interconnections length. Such mapping assigns one and
only one host FPGA of the architecture to each leaf block of
the input application and routes interconnections between any
two communicating modules assigned to different chips. The
cost function to be minimized is the estimated length of the
interconnections between blocks assigned to different FPGAs,
measured in number of hops and weighted over connections
width. Let us define w(i, j) as the amount of communication
in number of bits between nodes i and j and let ci identify the
FPGA node i is assigned to. The cost function to be minimized
is the Weighted Estimated Wire Length (WEWL), computed as
follows:

WEWL =
∑

1≤i<j≤n

w(i, j)d(ci, cj)

where n is the number of nodes in the architecture, w(i, j)
is the size in bits of the interconnection between nodes i
and j, and d(ci, cj) is the estimated distance between FPGAs
ci and cj in the architecture. Off-chip wires are undesirable
since ([10]): they degrade performances, constitute a source
of faults, and increase the need of I/O pins. In this paper,
only global partitioning and placement are addressed. Global
partitioning aims at creating partitions of leaf design nodes
such that their size is not bigger than the area available
on the FPGAs composing the architecture and the cut-size
is minimized. Placement generates a one-to-one mapping
between the created partitions and the FPGAs that minimizes
interconnection length. The partitioning algorithm is a bottom-
up clustering that exploits the regularities extracted from the
design hierarchy. At the beginning, each leaf of the design hi-
erarchy is considered as a cluster and is assigned a type, given
by the VHDL component the node is instance of. Then, the
two clusters maximizing a given closeness metric are collapsed
together, provided this does not violate maximum area and I/O
pin count constraints. Let us define as B = {1, 2, ..., N} the
set of all leaves of the design hierarchy, P = {P1, P2, ..., PM}
a partitioning over B. Being P and Q ∈ P , the metrics
considered by the algorithm are:

• Connection (CONN): volume of communication between

3

two clusters (in bits).

CONN(P,Q) =
∑

i∈P,j∈Q,i<j

w(i, j)

• Communication Ratio (CR): ratio between the communi-
cation volume internal to the resulting cluster (Internal
Communication – IC) and the communication volume
with other clusters (External Communication – EC).

IC(P,Q) =
∑

i,j∈P∪Q,i<j

w(i, j)

EC(P,Q) =
∑

i∈Q∪P,j∈B\(P∪Q),i<j

w(i, j)

• Communication Density (CD): ratio between the Internal
Communication and the number of edges of an hypothet-
ical complete graph built on the resulting cluster.

CD(P,Q) =
IC(P,Q)

CliqueSize(P ∪Q)

Two possible cases can arise when two clusters are col-
lapsed:

1) If the two clusters belong to the same parent in the hier-
archy, other instances of the parent’s type are searched
in the hierarchy to apply the same transformation. The
same type is assigned to these newly created clusters. In
other words, a collapse operation induces other ones.

2) If the two clusters do not belong to the same parent,
the newly created cluster is added as a child of the root
node, being such cluster unique and surely not involved
in any regularity patterns.

This schema, exemplified in Gif. 2, is iterated until no
more clusters can be formed or only one cluster remains.
Throughout the algorithm, intermediate hierarchy nodes with
a single child are dropped. Notice that the use of the hierarchy
information overcomes a traditional problem of clustering
algorithms, represented by the locality of closeness metrics.
The placement step is essentially a one-to-one mapping of the

TOP

AB1

D1C1 D3B2

D2C2
induces

TOP

AB1

CD1 D3B2

CD2

TOP

A

D3

CDCD1 2

Figure 2. Two iterations of the clustering algorithm.

generated partitions on the FPGAs of the target architecture.
When dealing with a small number of chips, an optimal solu-
tion can be easily found. In general, a topology-independent
iterative method can be considered. A simulated annealing
(SA) approach has been developed and tested, whose objective
function is the expected wire length needed for inter-FPGA
communication. If partition K is assigned to chip cK , then
this function is

∑
I,J∈P d(cI , cJ)CONN(I, J), where d(·, ·)

is the distance in number of hops between two chips,

IV. REUSE AND DYNAMIC RECONFIGURABILITY

The attempt to find a static global layout may fail, due
to the bounded area available on the architecture. In such a
case, a design blocks reuse technique is adopted. Consider
a dynamically interconnected circuit structure where the nets
connecting the blocks can be added and dropped at run-time.
In this scenario, a block can be connected to more than one
net in non-overlapping time intervals. In this way two or
more identical parts of the application can be implemented
by a single block with dynamic interconnections. A crossbar
topology can be used to implement this kind of circuit: the
reprogrammable switch-boxes in the crossbar chip can be dy-
namically reconfigured to implement temporary connections,
as shown in Fig. 3. Other multi-FPGA architectures (e.g. bus-
based) can be considered as well. The problem of design parts

A

B
D

C E2

E1 o1

o2

i1

i2

i3

(a)

Ai1

Bi2

Ci3

D

E

[t0,t1][t1+δ,t2]

FPGA1

FPGA2

FPGA3

FPGA4

o1 @[t0,t1]
o2 @[t1+δ,t2]

SB

(b)

}

Figure 3. Input structure (a) and possible crossbar implementation (b).

reuse can be decomposed in two sub-problems: (1) what are
the parts of the design to consider, and (2) which ones of those
should be reused. The proposed solution to these problems is
presented in the following paragraphs.

A. Isomorphic Structures

One straightforward answer to the first question is to
consider each leaf in the design hierarchy as a potentially
reusable part. This is not satisfying, because it leaves out
any repeated pattern constituted by more than one atomic
block. The concept of isomorphic structure comes to help.
Definition: Isomorphic Structures. Two structures C1 and
C2 are isomorphic if for each block contained in C1 there
exists one block in C2 of the same type (and vice-versa), and
the interconnections among the blocks are identical. (As a
particular case, two atomic blocks having the same type are
isomorphic). Consider every isomorphic structure in the design
represents the perfect answer to our question. Unfortunately,
the identification of all isomorphisms is known from graph
theory to be an NP-complete problem, therefore the proposed
technique aims at finding some isomorphic structures in the
input circuit. These structures are provided by the clustering
algorithm described in the previous section: clusters belonging
to the same type are isomorphic structures.

B. Blocks Reuse Choices

Although the reuse of blocks causes a beneficial reduction
of the amount of area required for implementing the circuit,
it also implies extra execution time, necessary to carry out

4

the reconfigurations. The problem to be solved is therefore to
find a blocks reuse strategy which allows the input applica-
tion to fit in the architecture while minimizing the required
reconfiguration time. Complicating the problem is the fact
that isomorphic structures are in general overlapping: this
introduces mutual constraints to be fulfilled when choosing
which blocks to instantiate. In spite of that, the isomorphic
structures extracted by the clustering algorithm have a peculiar
nature: given two clusters, either one contains the other either
they do not overlap. This is because the algorithm generates a
clusters hierarchy, that can be viewed as a dendrogram, as the
one shown in Fig. 4. This context implies that any cut of the

D1E1D2 F1 G E2D4 F2 D3
0

1

2

3

4

5

6

Type # Inst.

DG 1
DE 2
F 2

1D

2-cut

1DEFD

Type # Inst.

DEF 2
DG 1

1D

3-cutiterations

Figure 4. Example of extraction of horizontal cuts.

dendrogram represents a full, flat, typed specification of the
input application. The number of possible cuts is exponential
in the number of initial clusters, therefore only the subset given
by horizontal cuts is considered by the proposed methodology:
the reuse problem is individually solved for each of these cuts,
and the best solution is then returned. Being n(ci) the number
of occurrences of cluster type ci ∈ C, a solution to the problem
is represented by a function m(ci) : C → {1, 2, ..., n(ci)},
which represents the number of instances of cluster type
ci in the resulting dynamically interconnected structure. In
a partial crossbar topology as the one described above, the
reconfiguration time related to a cluster can be estimated by
considering that it is with good approximation proportional
to the area that has to be reconfigured. In turn, such area is
proportional to the width of the external interconnections of
the cluster, denoted as w(ci). This quantity has to be multiplied
by the number of reconfigurations implied by the solution,
equal to n(ci)−m(ci). We can conclude that the actual time
needed for the reconfigurations is proportional to the following
quantity, that therefore has to be minimized:

Trec ∝
∑
ci∈C

{[n(ci)−m(ci)] ∗ w(ci)}. (1)

The area occupied by the resulting system has to be smaller
than the overall capacity of the architecture A. Mathematically,
this constraint is expressed as

∑
ci∈C [a(ci) ∗m(ci)] < A.

Despite being the problem NP-complete, an Integer Linear
Programmig (ILP) model is simply obtainable from these
formulae and it has shown to run in acceptable time (see
Section V). Considering again the nature of the isomorphic
structures that are considered for reuse, obtained by a clus-
tering process that tries to minimize the amount of external
communication. Combined with (1), this fact implies that these

structures are good with respect to the goal of minimizing the
reconfiguration time.

V. EXPERIMENTS AND CASE STUDY

Four VHDL test circuits have been used for validating the
global layout algorithms proposed in this paper: an encryp-
tion/decryption core (3DES), a Finite Impulse Response filter
(FIR), a cypher (NOEK), and a combination of the first two
(3DES+FIR). Quantitative information of these circuits are
reported in Table I.

Table I
TEST DESIGNS CHARACTERISTICS.

Circuit 3DES FIR NOEK 3DES+FIR
Size (slices) 1613 561 958 2141
Nodes in hierarchy 67 231 29 301
Leaves 52 211 25 264
Leaves size (slices)

Mean 19.21 2.66 38.32 8.11
Std. Dev. 28.5 4.94 72.45 27.36

Table II reports some numerical results1 of the execution of
the MFS design workflow proposed in this paper. In particular,
results are shown for partitioning using the three different
clustering metrics that have been introduced in Section III:
Connection, Communication Ratio, and Communication Den-
sity. For carrying out experiments on the test circuits explained
above, three hypothetical FPGA dimensions have been con-
sidered: 300, 400, and 600 slices. The partitioning quality
is tested against the results obtained by using the METIS
partitioning algorithm. For carrying out this comparison, the
cutsize of the resulting partitioning is considered, which is
the amount of communication – in number of bits – among
different partitions. Moreover, the results for the one-to-one
placement and for solving the instances of the ILP model for
blocks reuse are listed in the table.

The table shows that the Connection metric (CONN) for
clustering leads to smaller cutsizes in the majority of the
cases, although it sometimes implies the use of one additional
partition. The time required for partitioning is reasonably low,
even if it grows more than linearly with the number of nodes
in the design hierarchy. These results are compared with the
ones obtained using the METIS partitioning algorithm ([11]),
which currently represents the state-of-art for partitioning large
flat netlists. In some cases the proposed clustering algorithm
behaves better than METIS. This can be noticed to happen
for circuits whose leaves size has a high variance-mean ratio
(i.e. 3DES and 3DES-FIR), while it is not true circuits whose
structure is more similar to a typical flat netlists. This shows
that the proposed approach is promising, as it provides good
results in partitioning hierarchical structures extracted from
VHDL with large and irregular blocks dimensions. The one-
to-one placement algorithm has been tested on 4-mesh multi-
FPGA topologies. The running times are acceptable, and grow
roughly linearly as the number of partitions increases.

The ILP model for computing the best solution in clusters
reuse has been solved by actually considering a maximum

1All tests have been carried out using an Intel Core 2 Duo 2.2 GHz machine.

5

Table II
EXPERIMENTAL RESULTS FOR THE PROPOSED METHODOLOGY AND COMPARISON WITH THE METIS PARTITIONING ALGORITHM.

Circuit 3DES FIR NOEK 3DES+FIR
Partition Size (slices) 300 400 600 300 400 600 300 400 600 300 400 600
Partitioning (Clustering)

CONN
Cutsize 547 550 349 36 50 0 1965 2061 1314 610 620 434

M # Partitions 7 5 3 2 2 1 4 3 2 9 6 4
E Time (ms) 18 17 19 970 952 974 3 3 3 2034 2019 1990
T

CR
Cutsize 1604 1296 1193 130 197 0 2672 2478 1643 1371 1482 1344

R # Partitions 6 5 3 2 2 1 4 3 2 8 6 4
I Time (ms) 13 13 13 639 663 660 2 2 2 1165 1255 1261
C

CD
Cutsize 915 692 417 111 53 0 1965 1995 1506 1348 1001 976
Partitions 6 5 3 3 2 1 4 3 2 8 6 4
Time (ms) 13 13 14 337 334 342 2 2 2 1187 1082 1167

Partitioning w/ MeTiS - Cutsize 577 1536 1335 27 27 0 2128 1518 1421 2148 2826 1683

1-to-1 Placement WEWL 1224 621 494 36 50 0 2287 2061 1314 2099 775 753
Time (ms) 1335 789 540 2 2 1 655 528 2 1658 892 753

ILP Model Solving # Runs 42 34 46 186 186 187 22 23 22 228 229 230
Time (ms) 420 492 474 2103 2142 2078 2173 2325 2296 2763 2685 2753

area equal to the 80% of the one actually available on the
architecture. This is a common technique used to counter-
balance possible estimation errors. It can be seen that, even
when the number of executions is high, the running time is
reasonably low. A more detailed analysis shows that such
time depends on both the size of the circuit and the number
of required executions of the solver, which is equal to the
number of iterations performed by the clustering algorithm
(i.e. the depth of the dendrogram), that in turn is bounded by
the number of leaves in the design hierarchy. In order to show
how the proposed workflow works in practice, a sample case
study is provided. The user needs to deploy a parallel JPEG
decoder composed by two identical decoding modules on a
multi-FPGA architecture. The estimated overall size of the
application is 3978 slices, with a design hierarchy composed
of 174 nodes, 162 of which are leaves. The architecture used
within these experiments is composed by Xilinx XC3S100E2

devices ([12]), due to their low power and low costs charac-
teristics, each with an available area of 960 slices and 108 I/O
pins. The best result is obtained by partitioning the application
using the Connection metric, that produces five partitions with
a cutsize of 198. The METIS algorithm gives a cutsize equal
to 388.

Consider now a scenario where the multi-FPGA system
under exam deploys hardware applications on-demand: it is
likely that a certain sequence of received requests limits
the current available area. Within this environment, assume
that the total available area is bounded to 3000 slices. The
blocks reuse methodology is then applied in this case. Every
typed circuit specification resulting from horizontal cuts of
the clustering dendrogram is given as input to the ILP model
solver. The estimated reconfiguration times obtained from the
executions of the ILP solver are shown in Fig. 5. The lowest
reconfiguration time is obtained from cuts 14 to 18 of the
dendrogram. The corresponding ILP solutions suggest two
structures to be used twice during execution. One is a leave of
the design hierarchy, while the other is a structured component
that results from some collapsing operations in the clustering

2The proposed approach has not been thought and implemented to target
just one specific FPGA devices. Using different devices would only mean
having different constraints and resources availability

!"#$%

!"$$%

!#$%

$%

#$%

"$$%

"#$%

&$$%

"
%

'
%

(
%

"
$
%

"
)
%

"
*
%

"
+
%

&
&
%

&
#
%

&
,
%

)
"
%

)
'
%

)
(
%

'
$
%

'
)
%

'
*
%

'
+
%

#
&
%

#
#
%

#
,
%

*
"
%

*
'
%

*
(
%

(
$
%

(
)
%

(
*
%

(
+
%

,
&
%

,
#
%

,
,
%

+
"
%

+
'
%

+
(
%

"
$
$
%

"
$
)
%

"
$
*
%

"
$
+
%

"
"
&
%

"
"
#
%

"
"
,
%

!
"
#$
%&
'(

"
%

)*"+,-./%0.$%

Dendrogram Cut

Es
tim

at
ed

 R
ec

on
fig

ur
at

io
n

Ti
m

e

Figure 5. Case study: estimated reconfiguration time for different dendrogram
cuts. The value -100 represents the impossibility to find a solution to the ILP
model.
algorithm.

VI. RELATED WORKS

The design of MFS’s is addressed in several works. In [13],
[14], the authors proposed a the Virtual wires approach to
overcome pin limitations by intelligently multiplexing each
physical wire among multiple logical wires. Hauck ([1], [15])
provides a complete workflow for the design of MFS’s, by
proposing an integrated methodology for global partitioning,
placement, and routing. The application to be mapped is
recursively bi-partitioned using, in each iteration, a multilevel
algorithm based on the Fiduccia-Mattheyses (FM) heuristic
([16]). The recursive bi-partitioning is driven by partitioning
orderings: the first two obtained partitions are placed on the
two least connected portions of the architecture, and so on
recursively. This technique also implicitly provides the global
routing of the application on the architecture.

Khalid’s work ([3], [17]) focuses on the evaluation of
different MFS topologies rather than on the performances of
the adopted algorithms. Nevertheless, he proposes a complete
MFS design workflow, in which the three global layout
steps are carried out sequentially. For partitioning the input
application, Khalid uses a simple recursive FM bi-partitioning
algorithm. Global placement is executed differently depending
on the architectural topology; for instance, a force directed
approach is used for mesh topologies. To cope with the routing
problem, a general topology-independent approach based on
graph structures is proposed, as well as several algorithms
tailored to specific topologies, that provide better results.

6

A direct comparison between these approaches and the
proposed methodology can be carried out in terms of par-
titioning results. Both Hauck and Kahlid use derivations of
the FM heuristic, in a multilevel process and in recursive
bi-partitioning, respectively. In Section V comparisons with
METIS are shown. Being a multilevel partitioning algorithm
that also uses FM as a baseline, METIS represents a progress
with respect to recursive FM and has been reported to outper-
form Hauck’s approach ([18]).

Other approaches focus on parts of the MFS design flow. In
[19] the authors propose a genetic algorithm with fuzzy fitness
function for MFS partitioning and placement targeted to 4-
mesh topologies. [20] use simulated annealing to cope with
global partitioning and placement. Iterative techniques seem
indeed suitable to cope with high dimensional and complex
problems such as global layout. Works like [21] and [4]
show the advantages of exploiting the design hierarchy of
the application, instead of using a flat netlist representation,
by providing heuristic algorithms that traverse the hierarchy
structure. In [22] the authors include an HDL synthesis step
in the MFS design flow: a Verilog description is analyzed and
turned into a hierarchical tree, and a top-down set covering
algorithm is applied to generate partitions.

The approaches presented so far in this section deal with
the design of MFS without taking into account dynamic
reconfiguration. Instead, in [6] the authors propose a parti-
tioning and synthesis process claimed to generate dynamically
reconfigurable MFS’s. The input specification is transformed
into a directed task-graph, which is divided in time segments
(temporal partitioning). Then, a binary non-linear program-
ming model performs a spatial partitioning over the FPGAs
of the architecture for each time segment. At run-time, after
a time segment is completed, execution is stopped and all
the FPGAs are reconfigured, with temporary results stored in
memory. Clearly, this is approach is not “dynamic” in the sense
described in section I. In order to be truly dynamic, a MFS
must be partially reconfigured, so that reconfiguration times
are masked and the execution never ceases.

This is exactly what the methodology described in the
present work proposes, by introducing partial dynamic recon-
figurability in a standard MFS design workflow. In particular,
inter-FPGA interconnections are partially reconfigured with
the goal of saving area through blocks reuse, without requiring
the execution of the system to cease.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper a novel MFS design flow has been de-
scribed, which makes use of blocks reuse through dynamic
reconfigurability to make the implementation of large sys-
tems feasible even on mutli-FPGA architectures with strict
physical constraints. Experimental results have been provided
in Section V to validate the proposed methodology. Among
the others, a remarkable novelty is the exploitation of the
design hierarchy both producing good partitioning results and
extracting isomorphic structures. Future work will deal with
the improvement of the clustering algorithm by adopting more
powerful clustering metrics and developing solutions to go

beyond its intrinsic greediness. An algorithm for scheduling
the reuse of components has to be developed, along with an
effective routing methodology. Finally the proposed approach
will be used in conjunction with the virtual wires approaches
that has been proven [13] not to need for expensive crossbar
technology while increasing FPGA utilization.

REFERENCES

[1] Scott Hauck. Multi-FPGA Systems. PhD thesis, University of Washing-
ton, 1995.

[2] G. Estrin. Organization of Computer Systems–The Fixed Plus Variable
Structure Computer. Proc. Western Joint Computer Conf., Western Joint
Computer Conference, New York, pages 33–40, April 1960.

[3] M. Khalid. Routing Architecture and Layout Synthesis for Multi-FPGA
Systems. PhD thesis, University of Toronto, 1999.

[4] H. Krupnova, A. Abbara, and G. Saucier. A Hierarchy-Driven FPGA
Partitioning Method. Proceedings of the 34th annual conference on
Design automation conference, pages 522–525, 1997.

[5] Ranieri Baraglia, Raffaele Perego, J. Ignacio Hidalgo, Juan Lanchares,
and Francisco Tirado. A Parallel Compact Genetic Algorithm for Multi-
FPGA Partitioning. pdp, 00:113, 2001.

[6] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri. An
Integrated Partitioning and Synthesis System for Dynamically Recon-
figurable Multi-FPGA Architectures. IPPS/SPDP, pages 31–36, 1998.

[7] Vincenzo Rana, Marco D. Santambrogio, Donatella Sciuto, Boris Kettel-
hoit, Markus Köster, Mario Porrmann, and Ulrich Rückert. Partial Dy-
namic Reconfiguration in a Multi-FPGA Clustered Architecture Based
on Linux. In IPDPS, 2007.

[8] Eylon Caspi, Michael Chu, Randy Huang, Joseph Yeh, John Wawrzynek,
and André DeHon. Stream computations organized for reconfigurable
execution (score). In FPL ’00: Proceedings of the The Roadmap
to Reconfigurable Computing, 10th International Workshop on Field-
Programmable Logic and Applications, pages 605–614, London, UK,
2000. Springer-Verlag.

[9] Xilinx, Inc. XST User Guide.
[10] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation.

Number 6 in Lecture Notes Series on Computing. World Scientific
Publishing, 1999.

[11] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme
for Irregular Graphs. Journal of Parallel and Distributed Computing,
48:96–129, 1998.

[12] Xilinx, Inc. Spartan-3E FPGA Family: Complete Data Sheet, 2008.
[13] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Zimi Hanono,

David M. Hoki, and Anant Agarwal. Logic emulation with virtual wires.
pages 625–642, 2002.

[14] J. Babb, R. Tessier, M. Dahl, S.Z. Hanono, D.M. Hoki, and A. Agarwal.
Logic emulation with virtual wires. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 16(6):609–626, 1997.

[15] Scott Hauck. The roles of FPGAs in reprogrammable systems, 1998.
[16] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for

improving network partitions. In DAC ’82: Proceedings of the 19th
conference on Design automation, pages 175–181. IEEE Press, 1982.

[17] M.A.S. Khalid and J. Rose. Experimental Evaluation of Mesh and
Partial Crossbar Routing Architectures for Multi-FPGA Systems. IFIP
IWLAS97, Grenoble, France, pages 119–127, 1997.

[18] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hyper-
graph Partitioning: Applications in VLSI Domain. IEEE Transactions
on Very Large Scale Integration Systems, 7(1):69–79, 1999.

[19] JI Hidalgo, J. Lanchares, and R. Hermida. Partitioning and Placement
for Multi-FPGA Systems Using Genetic Algorithms. Euromicro Con-
ference, 2000. Proceedings of the 26th, 1, 2000.

[20] Juan de Vicente, Juan Lanchares, and Román Hermida. Placement
Optimization Based on Global Routing Updating for System Partitioning
onto Multi-FPGA Mesh Topologies. In FPL ’99: Proceedings of the 9th
International Workshop on Field-Programmable Logic and Applications,
pages 91–100, London, UK, 1999. Springer-Verlag.

[21] Dirk Behrens, Klaus Harbich, and Erich Barke. Hierarchical partitioning.
In ICCAD ’96: Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design, pages 470–477, Washington, DC,
USA, 1996. IEEE Computer Society.

[22] Wen-Jong Fang and Allen C.-H. Wu. Multiway FPGA partitioning by
fully exploiting design hierarchy. ACM Trans. Des. Autom. Electron.
Syst., 5(1):34–50, 2000.

