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Motivation

Little attention to fairness-aware data structures

Hashmaps are the founding block of many applications

Bloom filter, Count sketches, Min-wise hashing, etc.

This paper:

Revisits hashmaps through the lens of group fairness
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Review: Traditional Hash Functions

Traditional k-wise independent hashing [Sie89]

Randomly map a key to a random value in a specific output range

Unlikely that independent random value assignment distribute
points uniformly in the buckets

(Related topic: The Occupancy Problem [MR95])

Example

100 iid integers in range [0, 9]

Not uniformly distributed within the buckets

Number of collisions minimized when uniform
distribution is satisfied 0 1 2 3 4 5 6 7 8 9
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Review: Data-informed Hashmaps

Learn a hash function that uniformly distributes the data across
different buckets [KBC+18]1

CDF of data is constructed

Range of values are partitioned into equi-size buckets

Example

Data-informed Hashmap learned over 100
integers in range [0, 9]

Uniformly distributed within the buckets

1We refer to [KBC+18] as CDF-based hashmap.
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Motivation at a Glance

Traditional hashmaps Data-informed hashmaps
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Motivation at a Glance

Traditional hashmaps Data-informed hashmaps (0-unfair) FairHash
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Fairness Definitions

Given
1 A set P of n points in Rd

▶ Each point belong to one of the k demographic groups
G = {g1, . . . ,gk}

2 A hashmap H with
▶ m buckets, b1, . . . , bm
▶ a hash function h : Rd → [1,m]

that maps each point p ∈ P to one of the m buckets.
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Fairness Definitions

Collision Probability

∀ random pairs p ∈ P, q ∈ P :
▶ Pr[h(p) = h(q)] = 1

m

Single fairness

∀ random points pi ∈ gi:
▶ Pr[h(pi) = h(x)] = . . . = Pr[h(pk) = h(x)] = 1

m

Pairwise fairness

∀ random pairs pi ∈ gi and qi ∈ gi:
▶ Pr[h(pi) = h(qi)] = . . . = Pr[h(pk) = h(qk)] =

1
m

The strongest notion of fairness: if satisfied, the other two are
also satisfied.
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(ε, α)-hashmap

ε-unfairness

A hashmap is ε-unfair, if and only if

maxg∈G(Prg)

1/m
≤ (1 + ε) ⇒ max

g∈G
(Prg) ≤

1

m
(1 + ε) (1)

α-mermory

A We say a hashmap with m buckets satisfies α-memory, if and only
if it stores at most α(m− 1) boundary points.

(ε, α)-hashmap

A hashmap that is ε-unfair and satisfies α-memory.
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Comparisons

Query Collision Single Pairwise
Hashmap Architecture time probability fairness fairness

traditional data-independent O(1) ✗ ✗ ✗

CDF-based data-dependent O(logm) ✓ ✓ ✗

FairHash data-dependent O(logm) ✓ ✓ ✓

Summary of algorithmic results

Assumptions Performancea

Algorithm No. No. (ε, α)-hashmap Query Pre-processing
Attributes Groups time time

Ranking d ≥ 2 k ≥ 2 (εR, 1) O(logm) O(nd log n)

Sweep&Cut d ≥ 1 k ≥ 2 (0, n
m) O(log n) O(n log n)

Necklace2g d ≥ 1 2 (0, 2) O(logm) O(n log n)

Necklacekg d ≥ 1 k > 2 (0, k(4 + log n)) O(log(km log n)) O(mk3 log n+ knm(n+m))

aThe approximate collision results are provided in the paper [SSA24].
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Ranking-based Algorithms (εR, 1)-hashmap

Observation: Only the ordering between the tuples specify the buckets
in the CDF-based hashmap.

Idea:

Combine the attribute of a point p ∈ P into a single score f(p),
using a (ranking) function f : Rd → R
Construct the hashmap on f(p).

Objective: Find the function f , according to which the unfairness
is minimized.

Algorithm Overview. Use computational geometry concepts and Linear
functions f(p) = w⊤p

Consider points as hyperplanes in the dual space

Design a Ray-sweeping algorithm to efficiently find all possible
orderings → return a function that minimizes unfairness.
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Cut-based Algorithms

Observation: Buckets do not necessarily need to be continuous!

Idea:

Partition the values into more than m “bins”.

Many-to-one mapping: Several bins are assigned to each bucket.

Theorem

Independent of how the points are distributed and their orders, there
always exists a cut-based hashmap that is 0-unfair.
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Cut-based Algorithms: Sweep&Cut (0, n
m)-hashmap

Algorithm Overview. Make two sorted passes over P

1 First pass: (knowing the number of tuples each bucket should
contain from each group) For every tuple record the bucket it
should belong

2 Second pass: add a cut between each pair of points that belong to
different buckets.
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Cut-based Algorithms: Necklace2g (0, 2)-hashmap

Necklace Splitting Problem [AG21]

Divide a necklace of T beads of n′ types between k′ agents, such that

1 all agents receive the same amount of beads from each type.

2 the number of splits to the necklace is minimized.

Reduction: points → beads; group → bead type; buckets → agents

Algorithm Overview (2-groups): Iterative Algorithm

Consider sorted P as a circle (pn comes before p1)

Key idea: The circle always has at least one consecutive window of
size n

m that contains |g1|
m points from g1 (and hence |g2|

m points
from g2).

At each iteration, efficiently find such a window; carve it out of the
circle; connect the two ends to form the circle for the next iteration
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Highlighted Experiment Results
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Thank you!

Figure: Github Repository
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