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Motivation

Little attention to fairness-aware data structures
Hashmaps are the founding block of many applications

o Bloom filter, Count sketches, Min-wise hashing, etc.

This paper:

@ Revisits hashmaps through the lens of group fairness
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Review: Traditional Hash Functions

Traditional k-wise independent hashing [Sie89]
e Randomly map a key to a random value in a specific output range

o Unlikely that independent random value assignment distribute
points uniformly in the buckets

o (Related topic: The Occupancy Problem [MR95])

20

Example

15

100 iid integers in range [0, 9]

10

@ Not uniformly distributed within the buckets

5
@ Number of collisions minimized when uniform
0

distribution is satisfied 0123465867829
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Review: Data-informed Hashmaps

Learn a hash function that uniformly distributes the data across
different buckets [KBC*18]!

e CDF of data is constructed

e Range of values are partitioned into equi-size buckets

15 ¢

Example 0
Data-informed Hashmap learned over 100
integers in range [0, 9] ®
@ Uniformly distributed within the buckets ol |
0123 456789

'We refer to [KBC*18] as CDF-based hashmap.
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Motivation at a Glance

Traditional hashmaps

Data-informed hashmaps
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Motivation at a Glance

Traditional hashmaps

Data-informed hashmaps
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Fairness Definitions

Given
@ A set P of n points in R?
» Each point belong to one of the & demographic groups

g:{gla'-'agk}
@ A hashmap H with

» m buckets, by, ..., b,
» a hash function h : R? — [1,m)]

that maps each point p € P to one of the m buckets.
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Fairness Definitions

Collision Probability
e V random pairs p € P,q € P:
Pr{h(p) = ha)] = &

m

Single fairness

e V random points p; € g;:
Prih(p;) = h(z)] = ... = Prlh(pr) = h(z)] = &

Pairwise fairness
e V random pairs p; € g; and ¢; € g;:
Prlh(p:) = Mai)] = ... = Pr[h(px) = h(a)] = 5
o The strongest notion of fairness: if satisfied, the other two are
also satisfied.
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(€, a)-hashmap

e-unfairness

A hashmap is e-unfair, if and only if

P
maxee6(Pre) (1 1 o) o max(Pry) <

1
1/m g€g E(l ) (1)

Q-mermory

A We say a hashmap with m buckets satisfies a-memory, if and only
if it stores at most a(m — 1) boundary points.

(¢, a)-hashmap

A hashmap that is e-unfair and satisfies a-memory.
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Comparisons

Query Collision Single | Pairwise
Hashmap Architecture time probability | fairness | fairness
traditional | data-independent 0(1) X X X
CDF-based | data-dependent | O(logm) v 4 X
FAIRHASH | data-dependent | O(logm) v v 4
Summary of algorithmic results
Assumptions Performance?
Algorithm No. No. (e, ®)-hashmap Query Pre-processing
Attributes | Groups time time
RANKING d>2 E>2 (er, 1) O(logm) O(n%logn)
SWEEP&CUT d>1 k>2 0, %) O(logn) O(nlogn)
NECKLACE2, d>1 2 (0,2) O(logm) O(nlogn)
NECKLACEp, d>1 k>2 (0, k(4 +1ogn)) | O(log(kmlogn)) |O(mk3logn + knm(n +m))

“The approximate collision results are provided in the paper [SSA24].
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Ranking-based Algorithms (g, 1)-hashmap

Observation: Only the ordering between the tuples specify the buckets
in the CDF-based hashmap.
Idea:

e Combine the attribute of a point p € P into a single score f(p),
using a (ranking) function f:RY — R
e Construct the hashmap on f(p).
@ Objective: Find the function f, according to which the unfairness
is minimized.
Algorithm Overview. Use computational geometry concepts and Linear
functions f(p) = w'p
e Consider points as hyperplanes in the dual space

@ Design a Ray-sweeping algorithm to efficiently find all possible
orderings — return a function that minimizes unfairness.
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Cut-based Algorithms

Observation: Buckets do not necessarily need to be continuous!

Idea:
e Partition the values into more than m “bins’.

e Many-to-one mapping: Several bins are assigned to each bucket.

Theorem

Independent of how the points are distributed and their orders, there
always exists a cut-based hashmap that is O-unfair.
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Cut-based Algorithms: SWEEP&CUT (0, *)-hashmap

Algorithm Overview. Make two sorted passes over P

@ First pass: (knowing the number of tuples each bucket should
contain from each group) For every tuple record the bucket it
should belong

@ Second pass: add a cut between each pair of points that belong to
different buckets.
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Cut-based Algorithms: NECKLACEy, (0, 2)-hashmap

Necklace Splitting Problem [AG21]
Divide a necklace of T beads of n’ types between k' agents, such that
Q all agents receive the same amount of beads from each type.

@ the number of splits to the necklace is minimized.

Reduction: points — beads; group — bead type; buckets — agents

Algorithm Overview (2-groups): Iterative Algorithm
e Consider sorted P as a circle (p, comes before p)

o Key idea: The circle always has at least one consecutive window of
size + that contains ‘g” points from g; (and hence & | 2| points
from gg)

e At each iteration, efficiently find such a window; carve it out of the
circle; connect the two ends to form the circle for the next iteration
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Highlighted Experiment Results
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Thank youl

Figure: Github Repository
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