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Motivation

Issue: Multi-agent LLMs are powerful but fragile

In the presence of “debate”, LLM agents are susceptible to
persuasive or deceptive inputs.
Result ⇒Pushing the team toward incorrect consensus, making it
unreliable.
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Motivation

Performance-aware design to stabilize multi-agent LLMs

Insight into each agent’s performance guides which topology to use
and how to structure and moderate debate.

Which debate architecture is better?
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Motivation

Potential Solution

Credit/penalty sharing tied to measurable contribution (e.g., via
Shapley values or LLM-as-Judge) not only reveals which agents
are truly helping or hurting, but also enables informed
architectural and aggregation decisions.

Existing Resolutions:

Shapley-style credit assignment: Removing an agent from the
discussion and repeating the iteration [2, 1].(computationally
expensive, memory leakage)

Importance Score and Weighting: Peer-evaluated contribution
signals and weighting outputs by past errors to give more influence
to historically accurate agents [4, 3].(Biased, limited to
final-output errors)

.
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Our Idea: Credibility Assignment

Credibility Assignment to Agents

Distinguish each agent’s contribution from its credibility.

Use credibility signals to perform informed aggregation and design
more robust architectures.

What does this mean in practice?

An agent can contribute a lot and still consistently push the group
toward wrong answers. Such agents should have high contribution
but low credibility.
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Design Goals

1 Model-agnostic: A ready-to-apply wrapper on top of any current
or future open/closed-source LLM

2 Topology- & model-agnostic: Drops into different settings without
modifying or removing agents.

3 No pre-training or fine-tuning

4 Effective even if more than half of the agents are low performance
or adversary.

5 Magnitude vs. direction: Separate how much an agent contributes
from which way it pushes

6 Peer effects: Score agents by their impact on other agents’
beliefs/messages, not just the final output (captures
persuasion/cascades)
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Methodology

1 Debate among agents in an stochastic architecture that changes
per query.

2 Informed aggregation using Credibility Scores of agents so far.
▶ an aggregation function or a coordinator agent.
▶ credibility scores in first round are equal ( 1

N ).

3 Contribution Score assignment by the Judge agent.
▶ in the absence of debate, this can be computed using Shapley Value.

4 Reward assignment by the Judge.

5 Update Credibility Scores.
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Stochastic Interaction Architecture (SIA)

Given a team of agent A = {a1, · · · , aN}, there are
(
N
2

)
possible

communication links between agents. For every query qt we randomly
choose m links from a uniform distribution with replacement. In our
experiments for n = 5, m = 6.

a1

a2

a3a4

a5

Selected m = 6 edges, with (a2, a3) selected twice.
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Contribution vs. Credibility Score (CSc vs. CrS)

Contribution Score (CSc)

Contribution quantifies direct performance and social impact.

Computed by the Judge.
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Contribution vs. Credibility Score (CSc vs. CrS)

Contribution Score (CSc):

Contribution quantifies direct performance and social impact.

Computed by the Judge.

Credibility Score(CrS):

Quantifies each agent’s net helpfulness based on how much they
contribute and whether it moves the group toward correct
outcomes.
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Credibility Score Formula

Given a team of agent A = {a1, · · · , aN}, for iteration t and query qt,
CrSi

t and CScit are the Credibility Score and Contribution Score
of ai in iteration t.

1
∑

iCSc
(i)
t = 1

2 rt is the reward assigned to the final output of the group
post-aggregation. η is a learning rate. In our experiments η = 0.1.

CrS
(i)
t = CrS

(i)
t−1

(
1 + η.CSct

(i) .rt
)
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After Debate

AGENT 1 RESPONSE, 
AGENT 2 RESPONSE,
AGENT 3 RESPONSE,
AGENT 4 RESPONSE,

Coordinator  Agent

Final Output

LLM Judge

Credibil ity Score 
Update
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System Architecture
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Highlighted Experiment Results
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(a) Qwen 2.5 on GSM8K
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(b) LLaMA 3.2 on ResearchQA

CrS convergence for an adversary-dominated team (3 adversarial, 2 faithful).
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Highlighted Experiment Results

Accuracy results for multi-agent LLMs. CrS indicates use of the
Credibility Scoring mechanism. (∆ = the accuracy gain over naive
coordination.)
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Highlighted Experiment Results
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Baseline accuracy for a five-agent chain (one faithful, four
adversarial). The chain is CrS ordered.
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Thank you!

InDeX Lab: cs.uic.edu/∼indexlab/

My Email: sebrah7@uic.edu
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