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Motivation

Issue: Multi-agent LLMs are powerful but fragile

o In the presence of “debate”, LLM agents are susceptible to
persuasive or deceptive inputs.
Result =Pushing the team toward incorrect consensus, making it
unreliable.

hmm, you are right!
1 woud like to change
my response to 6

Before Debate After Debate
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Motivation

Performance-aware design to stabilize multi-agent LLMs

o Insight into each agent’s performance guides which topology to use
and how to structure and moderate debate.
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Which debate architecture is better?
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Motivation

Potential Solution
e Credit/penalty sharing tied to measurable contribution (e.g., via
Shapley values or LLM-as-Judge) not only reveals which agents
are truly helping or hurting, but also enables informed
architectural and aggregation decisions.

Existing Resolutions:

e Shapley-style credit assignment: Removing an agent from the
discussion and repeating the iteration [2, 1].(computationally
expensive, memory leakage)

e Importance Score and Weighting: Peer-evaluated contribution
signals and weighting outputs by past errors to give more influence
to historically accurate agents [4, 3].(Biased, limited to
final-output errors)

sebrah7@uic.edu (UIC) IJCNLP-AACL 2025 5/21



Our Idea: Credibility Assignment

Credibility Assignment to Agents
e Distinguish each agent’s contribution from its credibility.

o Use credibility signals to perform informed aggregation and design
more robust architectures.

What does this mean in practice?

An agent can contribute a lot and still consistently push the group

toward wrong answers. Such agents should have high contribution
but low credibility.
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Design Goals

@ Model-agnostic: A ready-to-apply wrapper on top of any current
or future open/closed-source LLM
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Design Goals

@ Model-agnostic: A ready-to-apply wrapper on top of any current
or future open/closed-source LLM

@ Topology- € model-agnostic: Drops into different settings without
modifying or removing agents.

@ No pre-training or fine-tuning

@ Effective even if more than half of the agents are low performance
or adversary.

@ Magnitude vs. direction: Separate how much an agent contributes
from which way it pushes

@ Peer effects: Score agents by their impact on other agents’
beliefs /messages, not just the final output (captures
persuasion/cascades)
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Methodology

@ Debate among agents in an stochastic architecture that changes
per query.
@ Informed aggregation using Credibility Scores of agents so far.

» an aggregation function or a coordinator agent.
» credibility scores in first round are equal (7).

@ Contribution Score assignment by the Judge agent.
» in the absence of debate, this can be computed using Shapley Value.

@ Reward assignment by the Judge.
@ Update Credibility Scores.
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Stochastic Interaction Architecture (SIA)

Given a team of agent A = {ay, -+ ,an}, there are (g) possible
communication links between agents. For every query ¢; we randomly
choose m links from a uniform distribution with replacement. In our

experiments for n =5, m = 6.

Selected m = 6 edges with (a2, a3) selected twice.
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Contribution vs. Credibility Score (CSc¢ vs. Cr5)

Contribution Score (CSc)

e Contribution quantifies direct performance and social impact.
e Computed by the Judge.
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Contribution vs. Credibility Score (CSc vs. Cr5)

Contribution Score (CSc):

e Contribution quantifies direct performance and social impact.

e Computed by the Judge.
Credibility Score(CrS):

e Quantifies each agent’s net helpfulness based on how much they
contribute and whether it moves the group toward correct
outcomes.
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Credibility Score Formula

Given a team of agent A = {a;,--- ,ay}, for iteration ¢ and query g,

CrS! and CSc! are the Credibility Score and Contribution Score
of a; in iteration t.

0 >, csc =1
@ 1, is the reward assigned to the final output of the group

post-aggregation. 7 is a learning rate. In our experiments 1 = 0.1.

arst” = st (14 n. CSe,@ ry)
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After Debate

AGENT 1 RESPONSE, CrS,.,
AGENT 2 RESPONSE, Crs?
AGENT 3 RESPONSE, 57,
AGENT 4 RESPONSE, Crs*

Coordinator Agent
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Aggregator Options

System Architecture
| credibility scores
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Highlighted Experiment Results
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(b) LLaMA 3.2 on ResearchQA

CrS convergence for an adversary-dominated team (3 adversarial, 2 faithful).
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Highlighted Experiment Results

Accuracy results for multi-agent LLMs. CrS indicates use of the
Credibility Scoring mechanism. (A = the accuracy gain over naive
coordination.)

| Backbone Model |  Architecture | GSMSK | MMLU-MS | MATH | Research QA |

| | | Cis A | CS A | CiS A | CS A
SIA 415 +8% | 355 +15% | 400 +7% | 520 +51%

‘ LLaMA3.2GB) | rS.ordered Chain | 430  +20% | 440  +16% | 320 +15% | 840 +20% ‘
Mistral(7B) SIA 120  +6% | 210  +9% | 115 +55% | 860 +14%
s CrS-ordered Chain | 13.0  +11% | 32.0 +6% 080 +6% | 770 —™%
Qwen2.5(7B) SIA 755 +10.5% | 43.0 +25.5% | 65.0 - 590 +17%
wens. CrS-ordered Chain | 60.0  +10% | 520  +10% | 598  +9% | 900 +5%
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Highlighted Experiment Results
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Experiment Round

Baseline accuracy for a five-agent chain (one faithful, four
adversarial). The chain is CrS ordered.
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Thank you!

e InDeX Lab: cs.uic.edu/~indexlab/
e My Email: sebrah7@uic.edu
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