

# An Adversary-Resistant Multi-Agent LLM System via Credibility Scoring

Sana Ebrahimi, Mohsen Dehghankar, Abolfazl Asudeh

University of Illinois Chicago

International Joint Conference on Natural Language Processing &  
Asia-Pacific Chapter of the Association for Computational  
Linguistics (IJCNLP-AACL 2025)

Mumbai, India – December 2025



# Outline

1 Motivation

2 Methodology

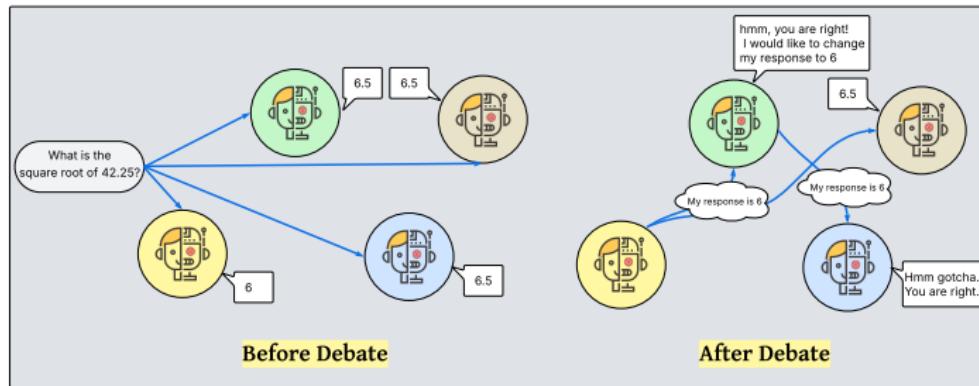
3 Highlighted Experiments

# Motivation

**Issue:** Multi-agent LLMs are powerful but fragile

- In the presence of “debate”, LLM agents are susceptible to persuasive or deceptive inputs.

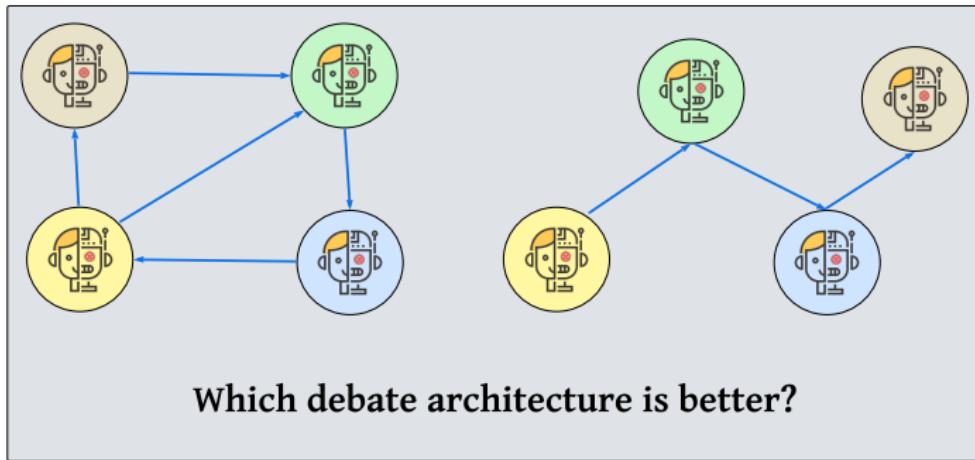
**Result** ⇒ Pushing the team toward incorrect consensus, making it unreliable.



# Motivation

## Performance-aware design to stabilize multi-agent LLMs

- Insight into each agent's performance guides which topology to use and how to structure and moderate debate.



# Motivation

## Potential Solution

- Credit/penalty sharing tied to measurable contribution (e.g., via Shapley values or LLM-as-Judge) not only reveals which agents are truly helping or hurting, but also enables informed architectural and aggregation decisions.

## Existing Resolutions:

- **Shapley-style credit assignment:** Removing an agent from the discussion and repeating the iteration [2, 1].(**computationally expensive, memory leakage**)
- **Importance Score and Weighting:** Peer-evaluated contribution signals and weighting outputs by past errors to give more influence to historically accurate agents [4, 3].(**Biased, limited to final-output errors**)

# Our Idea: Credibility Assignment

## Credibility Assignment to Agents

- Distinguish each agent's **contribution** from its **credibility**.
- Use credibility signals to perform **informed aggregation** and design more robust architectures.

## What does this mean in practice?

An agent can contribute a lot and still consistently push the group toward wrong answers. Such agents should have **high contribution** but **low credibility**.

# Outline

1 Motivation

2 Methodology

3 Highlighted Experiments

# Design Goals

- ① *Model-agnostic*: A **ready-to-apply** wrapper on top of any current or future open/closed-source LLM

# Design Goals

- ① *Model-agnostic*: A **ready-to-apply** wrapper on top of any current or future open/closed-source LLM
- ② *Topology- & model-agnostic*: Drops into different settings without modifying or removing agents.

# Design Goals

- ① *Model-agnostic*: A **ready-to-apply** wrapper on top of any current or future open/closed-source LLM
- ② *Topology- & model-agnostic*: Drops into different settings without modifying or removing agents.
- ③ No pre-training or fine-tuning

# Design Goals

- ① *Model-agnostic*: A **ready-to-apply** wrapper on top of any current or future open/closed-source LLM
- ② *Topology- & model-agnostic*: Drops into different settings without modifying or removing agents.
- ③ No pre-training or fine-tuning
- ④ Effective even if **more than half of the agents** are low performance or adversary.

# Design Goals

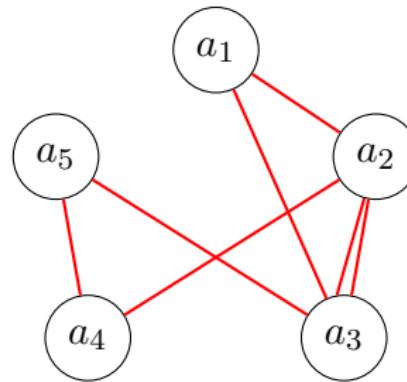
- ① *Model-agnostic*: A **ready-to-apply** wrapper on top of any current or future open/closed-source LLM
- ② *Topology- & model-agnostic*: Drops into different settings without modifying or removing agents.
- ③ No pre-training or fine-tuning
- ④ Effective even if **more than half of the agents** are low performance or adversary.
- ⑤ *Magnitude vs. direction*: Separate how much an agent contributes from which way it pushes
- ⑥ *Peer effects*: Score agents by their impact on other agents' beliefs/messages, not just the final output (captures persuasion/cascades)

# Methodology

- ① Debate among agents in an stochastic architecture that changes per query.
- ② Informed aggregation using Credibility Scores of agents so far.
  - ▶ an aggregation function or a coordinator agent.
  - ▶ credibility scores in first round are equal ( $\frac{1}{N}$ ).
- ③ Contribution Score assignment by the Judge agent.
  - ▶ in the absence of debate, this can be computed using Shapley Value.
- ④ Reward assignment by the Judge.
- ⑤ Update Credibility Scores.

# Stochastic Interaction Architecture (SIA)

Given a team of agent  $A = \{a_1, \dots, a_N\}$ , there are  $\binom{N}{2}$  possible communication links between agents. For every query  $q_t$  we randomly choose  $m$  links from a uniform distribution with replacement. In our experiments for  $n = 5$ ,  $m = 6$ .



Selected  $m = 6$  edges, with  $(a_2, a_3)$  selected twice.

# Contribution vs. Credibility Score (CSc vs. CrS)

## Contribution Score (CSc)

- Contribution quantifies direct performance and social impact.
- Computed by the Judge.

# Contribution vs. Credibility Score (CSc vs. CrS)

## Contribution Score (CSc):

- Contribution quantifies direct performance and social impact.
- Computed by the Judge.

## Credibility Score(CrS):

- Quantifies each agent's net helpfulness based on how much they contribute and whether it moves the group toward correct outcomes.

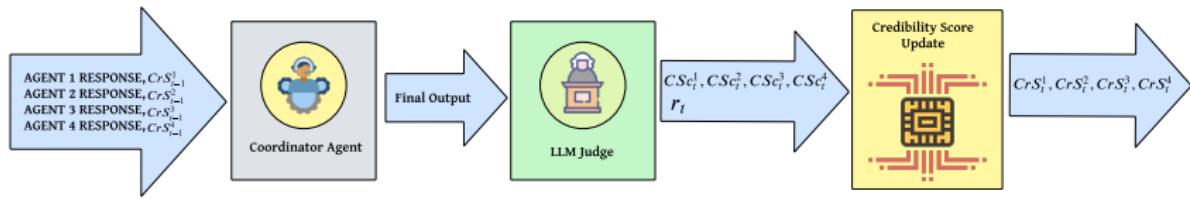
# Credibility Score Formula

Given a team of agent  $A = \{a_1, \dots, a_N\}$ , for iteration  $t$  and query  $q_t$ ,  $CrS_t^i$  and  $CSc_t^i$  are the **Credibility Score** and **Contribution Score** of  $a_i$  in iteration  $t$ .

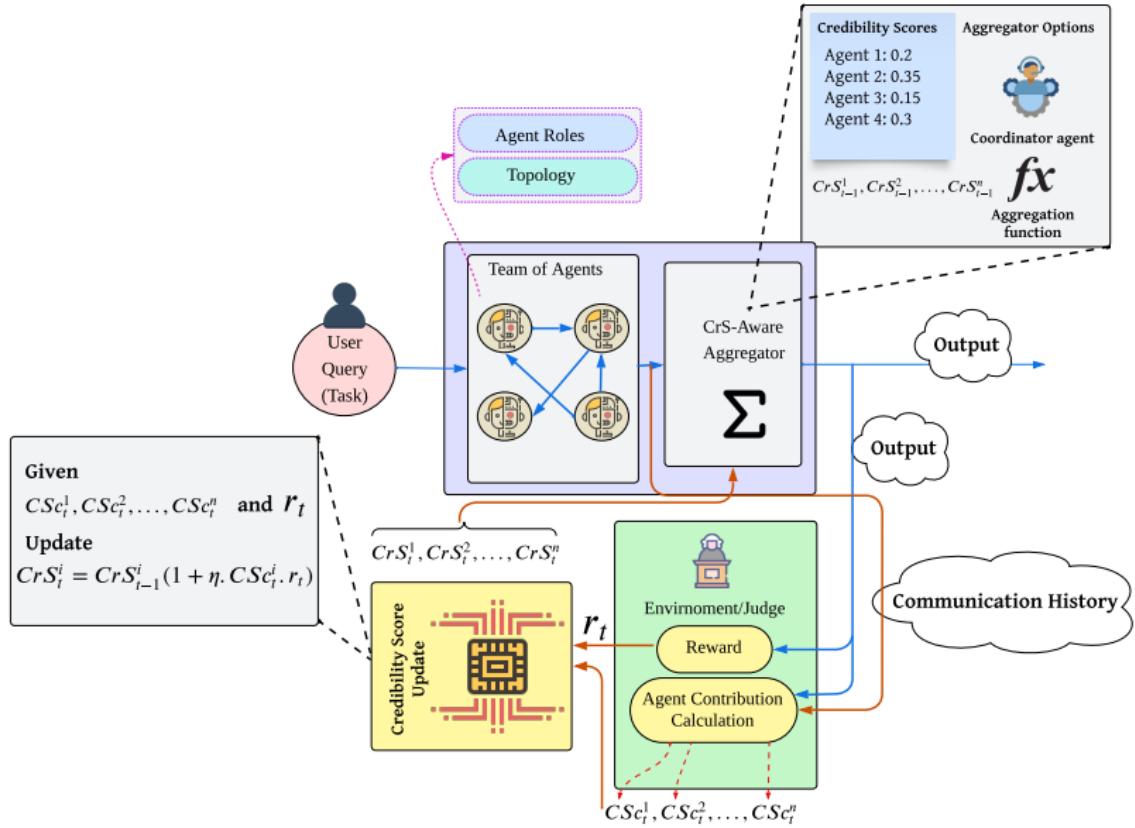
- ①  $\sum_i CSc_t^{(i)} = 1$
- ②  $r_t$  is the reward assigned to the final output of the group post-aggregation.  $\eta$  is a learning rate. In our experiments  $\eta = 0.1$ .

$$CrS_t^{(i)} = CrS_{t-1}^{(i)} (1 + \eta \cdot CSc_t^{(i)} \cdot r_t)$$

# After Debate



## System Architecture



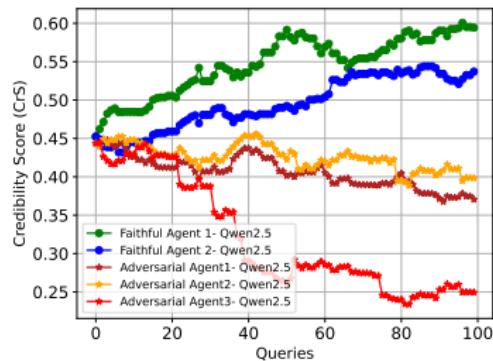
# Outline

1 Motivation

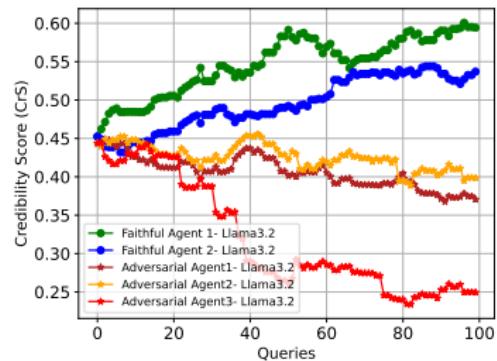
2 Methodology

3 Highlighted Experiments

# Highlighted Experiment Results



(a) Qwen 2.5 on GSM8K



(b) LLaMA 3.2 on ResearchQA

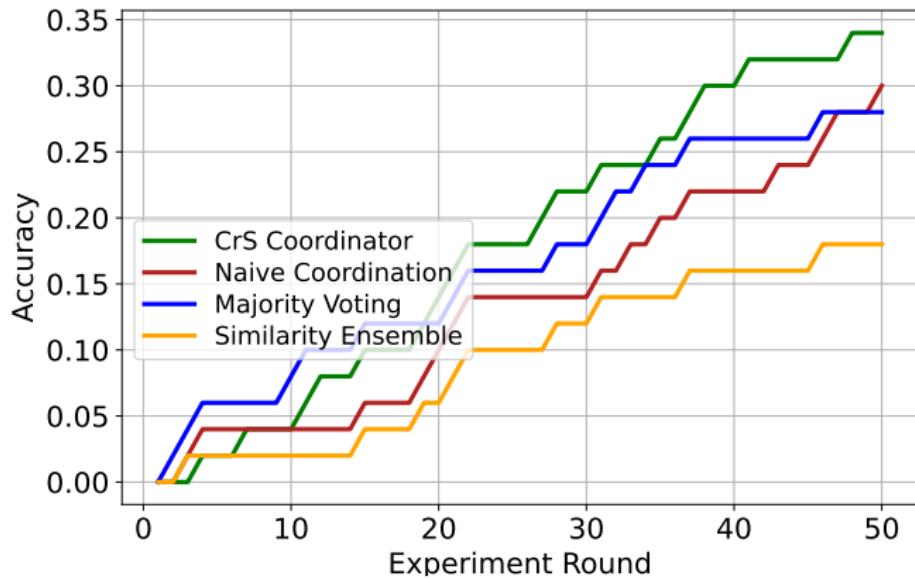
CrS convergence for an adversary-dominated team (3 adversarial, 2 faithful).

# Highlighted Experiment Results

Accuracy results for multi-agent LLMs. *CrS* indicates use of the Credibility Scoring mechanism. ( $\Delta$  = the accuracy gain over naive coordination.)

| <b>Backbone Model</b> | <b>Architecture</b> | <b>GSM8K</b> |          | <b>MMLU-MS</b> |          | <b>MATH</b> |          | <b>Research QA</b> |          |
|-----------------------|---------------------|--------------|----------|----------------|----------|-------------|----------|--------------------|----------|
|                       |                     | CrS          | $\Delta$ | CrS            | $\Delta$ | CrS         | $\Delta$ | CrS                | $\Delta$ |
| LLaMA 3.2(3B)         | SIA                 | 47.5         | +8%      | 35.5           | +15%     | 40.0        | +7%      | 52.0               | +51%     |
|                       | CrS-ordered Chain   | 43.0         | +20%     | 44.0           | +16%     | 32.0        | +15%     | 84.0               | +20%     |
| Mistral(7B)           | SIA                 | 12.0         | +6%      | 21.0           | +9%      | 11.5        | +5.5%    | 86.0               | +14%     |
|                       | CrS-ordered Chain   | 13.0         | +11%     | 32.0           | +6%      | 08.0        | +6%      | 77.0               | -7%      |
| Qwen2.5(7B)           | SIA                 | 75.5         | +10.5%   | 43.0           | +25.5%   | 65.0        | -        | 59.0               | +17%     |
|                       | CrS-ordered Chain   | 60.0         | +10%     | 52.0           | +10%     | 59.8        | +9%      | 90.0               | +5%      |

# Highlighted Experiment Results



Baseline accuracy for a five-agent chain (one faithful, four adversarial). The chain is CrS ordered.

# Thank you!

- InDeX Lab: [cs.uic.edu/~indexlab/](http://cs.uic.edu/~indexlab/)
- My Email: [sebrah7@uic.edu](mailto:sebrah7@uic.edu)

# References



X. Bo, Z. Zhang, Q. Dai, X. Feng, L. Wang, R. Li, X. Chen, and J.-R. Wen.  
Reflective multi-agent collaboration based on large language models.

In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 138595–138631. Curran Associates, Inc., 2024.



Y. Cui, L. Yao, Z. Li, Y. Li, B. Ding, and X. Zhou.

Efficient leave-one-out approximation in llm multi-agent debate based on introspection.

*arXiv preprint arXiv:2505.22192*, 2025.



Z. Liu, Y. Zhang, P. Li, Y. Liu, and D. Yang.

Dynamic llm-agent network: An llm-agent collaboration framework with agent team optimization.

*arXiv preprint arXiv:2310.02170*, 2023.



Y. Yang, Y. Ma, H. Feng, Y. Cheng, and Z. Han.

Minimizing hallucinations and communication costs: Adversarial debate and voting mechanisms in llm-based multi-agents.

*Applied Sciences*, 15:3676, 03 2025.