ICON: Incast Congestion Control using
Packet Pacing in Datacenter Networks

Hamed Rezaei, Muhammad Usama Chaudhry, Hamidreza Almasi, and Balajee Vamanan
{hrezae2, mchaud30, halmas3, bvamanan } @uic.edu

University of Illinois at Chicago

Abstract—Datacenters host a mix of applications which gener-
ate qualitatively distinct traffic patterns and impose varying net-
work objectives. Online, user-facing applications generate many-
to-one, incast traffic of mostly short flows, which are sensitive to
tail of Flow Completion Times (FCT). Data analytics applications
generate all-to-all traffic (e.g., Web search) of mostly short
flows that saturate network bisection and the job completions
require all flows to complete. Background applications (e.g., Map-
Reduce) generate large flows and are throughput sensitive due
to the sheer amount of data that they transfer over the network.
While datacenter fabric provides good bisection bandwidth to
handle all-to-all traffic, incast traffic is bottle-necked at edge
switches and causes queue buildup at the port connected to
the receiver. Because datacenter switches use shallow buffers to
reduce cost and latency, the queue buildup problem is further
exacerbated as the shallow buffers easily overflow causing packet
drops and expensive TCP timeouts. To address these issues we
propose ICON, a novel scheme which reduces incast-induced
packet loss by setting a fine-grained control over sending rate by
pacing traffic. We propose two variants: an application agnostic
version that simply paces packet smoothly over round trip time
(RTT) and an application aware version that paces packets
based on application knowledge (e.g., incast degree). Compared
to existing state-of-the-art congestion control schemes, ICON
achieves 77% lower 99*" percentile flow completion times for
short flows and 18% higher throughput for long flows on average.
Further, ICON drastically reduces 99" percentile packet drops
by a factor of about 3 on average.

I. INTRODUCTION

Today’s datacenters provide fast and reliable access to data
across the Internet. Datacenters have become the de facto
platform for storing and accessing vast amounts of Internet
data. Datacenters host a mix of applications: foreground ap-
plications, which mostly perform distributed lookup in order
to respond to user queries; and background applications,
which perform data replication, synchronization, and update.
Because foreground applications perform distributed look-ups,
the queries must wait for most responses (e.g., 99%) from
servers, and, therefore, their performance is sensitive to the
tail (i.e., 99" percentile) flow completion times [1]. While
foreground applications generate relatively short flows (e.g.,
16KB) and are sensitive to the tail flow completion times,
background applications generate long-lasting flows (e.g., VM
migrations) and require higher throughput.

Foreground applications perform online queries for mostly
small data items that are distributed across many servers, and
therefore, cause incast (i.e., many servers send their data to one

receiver which causes rapid queue buildup at the switch port
connected to the receiver). As today’s datacenters host many
incast-heavy applications (e.g., Web search, social networks),
incast-induced congestion is common and drastically affects
performance. Incast causes packet drops and costly timeouts,
resulting in longer tail flow completion times. Incast not only
affects flow completion times, but it also decreases throughput
as it builds up long queues at switch ports. Long queues
and timeouts affect throughput as well. Therefore, the key to
improving both flow completion times and throughput lies in
alleviating the congestion from incast.

Both load balancing and congestion control play a key
role in achieving network objectives. Perfect load balancing
is vital because poor load balancing would result in conges-
tion hotspots, which worsen tail flow completion times and
throughput due to excessive packet loss. Fortunately, recent
proposals achieve near-optimal load balancing [2—4]. On the
other hand, congestion control schemes strive to improve tail
flow completion by modulating the flow rate using active
queue management (AQM) signals such as explicit congestion
notification (ECN).

TCP uses packet loss as the main signal of congestion. TCP
relies on timeouts or duplicate ACKs to detect packet loss,
and, throttles its sending rate when a packet is lost. However,
packet loss is often a /ate signal of congestion as it triggers the
congestion control mechanism only after packets are already
dropped, which is very expensive. Recent congestion control
proposals [5-9] address this problem by leveraging ECN,
which informs senders about congestion before the buffers
overflow. ECN-enabled switches mark packets if their queue
lengths exceed a predefined threshold. In fact, many providers
have already deployed DCTCP [5] in their datacenters.

While AQM schemes drastically speed up congestion re-
sponse in the general case, they are still slow to respond to
incasts. For instance, we still incur packet drops with an incast-
heavy workload in our experiments. The buffers build-up at a
much faster rate during incasts than during other congestion
episodes. However, the ECN-based schemes require several
round-trip times ( RTT) to respond. Figure 1 shows the CDF
of the duration of incasts from our test run. Around 90% of
packet bursts (TCP incast) last only around 40 ps which is of
the same order as RTT in many production datacenters. The
short incast episodes are also reported by other studies [10].

Congestion control protocols that use ECN (e.g., DCTCP
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Fig. 1: Incast duration in web-search workload

) improve throughput of background flows as the flows are
long and can afford several RTTs for congestion response.
However, if packets of short, foreground flows are dropped, the
schemes do not improve flow completion times. Note that we
cannot solve the problem by aggressively cutting the sending
rate upon seeing an ECN mark; intermittent burstiness is
common in datacenters, so such an aggressive response would
degrade throughput. We cannot solve the problem by setting
a smaller ECN threshold as a smaller threshold would also
degrade throughput for the same aforementioned reason [11].

In this paper, we target incast congestion, which causes
most packet drops in datacenter networks; existing schemes
that rely on feedback from the receivers do not address incast
congestion. We observe that incast fills up a large fraction
of switches’ ports in a small amount of time (e.g., a few
milliseconds) and are incredibly hard to predict [12]. As our
results show, although feedback-based schemes can improve
the performance to some extent, they are far from achieving
optimal flow completion times. In contrast, we propose to
alleviate the incast via pro-active means: pacing the senders’
packets to smooth-out the bursts that arrive at the switch port
and leveraging application knowledge (i.e., incast degree) to
proactively control the rate. Thus, our proactive approach,
ICON, prevents congestion from happening in the first place,
as opposed to reacting to congestion in the aftermath.

We present ICON, which proactively alleviates the conges-
tion due to incasts, by pacing packets in a TCP window over
RTT, instead of bursting out the packets together, as is done
today. While ICON paces packets over RTT, we introduce
another optimization to further reduce congestion: we reduce
the rate as per the number of incast senders (i.e., incast degree)
before pacing the packets (i.e., if n is the incast degree, then
w?ﬁ;w = c‘”":f”y). We leverage the receiver (sink) server
to get information about the number of senders. Because the
receiver (sink server) is the initiator of the query, it knows
the incast degree and it can piggyback this information to all
senders. Fortunately, modern NICs include support for packet
pacing, which makes our idea attractive to datacenters [13, 14].

Our proposed scheme nearly eliminates incast-induced
packet drops by adding negligible complexity at the end hosts’
transport layer. Because incast traffic has an “ON-OFF” pattern

[15], ICON needs to remember the incast degree at the sender
side and not start with a full line rate at the beginning of “ON”
phase. We elaborate our design in III. ICON does not require
any support from switches and is readily deployable.

In summary, we make the following contributions:

« We propose an end-to-end congestion control scheme,
called ICON, that targets incast, which is common but
not efficiently handled by existing proposals.

+« We employ pacing to proactively handle incasts.

o Our application-aware optimization uses incast degree to
pace senders’ packets and nearly eliminates packet drops
from incast.

« Because packet pacing is widely supported in modern
NICs, our proposal is readily deployable in today’s data-
centers.

Through extensive simulations using ns-3 simulator [16],
we show that ICON achieves 77% (4.3x) reduction in 99"
percentile flow completion time compared to ICTCP, on aver-
age, for all loads. At higher loads (80%), ICON achieves up
to 7% and 80% reduction in median and 99" percentile flow
completion times, respectively. Further, ICON achieves 18%
higher throughput than ICTCP, on average, for all loads.

The rest of the paper organized as follows. We provide
background and motivation for our idea in section II. We
present design of ICON in section III. We discuss experimental
methodology and results in Sections IV and V, respectively.
Finally, we discuss related work in section VI and conclude
in section VIIL.

II. BACKGROUND AND MOTIVATION

TCP incast was introduced in [17] in the context of dis-
tributed storage. Similar to Web-search workload, incast is
common in distributed storage clusters when a server requests
files that are stored in multiple servers. Several previous papers
on congestion control and load balancing show that congestion
caused by incast is a major problem in datacenter networks.
Recent proposals [12, 18] make changes to transport protocol
stack to tackle incast. Because end-to-end designs are easier to
deploy than designs that require changes to the network (i.e.,
routers and switches), end-to-end solutions are the preferred
choice.

ICTCP [12] specifically targets incast problem in datacenter
networks. ICTCP-enabled end-hosts measure available band-
width and then set the appropriate receive window based on
the calculated throughput. The central idea is to measure
the difference between observed throughput and estimated
throughput and use the difference to affect the sender rate
via TCP receive window. ICTCP requires at least 2 RTTs to
adjust the window size which is indeed slow to respond to
incast. Also, if the initial congestion window is set to a large
value (e.g., 10 MSS or higher), ICTCP would still suffer from
excessive TCP timeouts as many packets get dropped during
the first RTT. Furthermore, while ICTCP performs well if the
initial congestion window is set to a small (e.g., 2 MSS in their
paper) value, a small congestion window hurts throughput, as
we later show in section V.



DCTCP [5] is a well-known congestion control scheme,
which makes the key insight that a proportional response to
congestion using ECN marks could improve both tail flow
completion times and throughput. DCTCP leverages 1-bit
ECN marks in packet headers at the end host to infer the
queue length at the bottleneck port. It uses this information to
modulate the sending window based on the number of marked
packets [5]. DCTCP works well for long, background flows.
However, if the incast degree (number of parallel senders) is
high and the flows are short, DCTCP performs poorly. We
compare ICON to DCTCP in section V.

The problem with both DCTCP and ICTCP is that queue
size would increase rapidly during incast, and therefore, it is
essential to slow down all senders in a sub-RTT scale. How-
ever, DCTCP’s proportional response would require several
RTTs for the senders to slow down and ICTCP requires at
least 2 RTTs to react. Therefore, both ICTCP and DCTCP
are not fast enough to react tackle incasts. There are other
proposals on congestion control [19-21], load balancing [2—
4] and packet scheduling [8, 22-24] that focus on minimizing
flow completion times and maximizing throughput. While
these proposals are effective against other general forms of
congestion, they do not handle incasts well. We argue that
incasts must be handled separately than other general forms
of congestion.

While rate control is one aspect of incast-induced con-
gestion, the burstiness of data transmission from senders
further worsen the congestion episodes. A TCP sender, without
pacing, causes burstiness at the switch output port. The lack of
pacing combined with synchronized sends from several servers
(i.e., a search query synchronizes the responses from several
servers that results in an incast) results in over-subscription
of switch port’s capacity. Therefore, pacing packets is a
straightforward way to alleviate incast congestion.

Because most incasts lasts shorter than a RTT [10] (see
figure 1), a congestion control scheme that handles incasts
must be proactive: the senders must set their correct rates
without relying on feedback from receivers. Prediction based
on past statistics is a possibility. Unfortunately, previous papers
have shown that incasts are notoriously unpredictable [12].
Therefore, we require hints from the application (e.g., incast
degree) to set the correct sending rates. Fortunately, the
software architecture of incast-heavy applications is such that
it is quite feasible to obtain incast degree for these applications.
For instance, incasts in Web Search application is caused when
responses to a query collide at a switch’s output port. Because
the (receiving) server already knows the incast degree when it
issued the query, it is only a matter of passing this information
to the senders along with the query so that senders can start at
the correct sending rate rather than having to learn the correct
rate iteratively over several RTTs.

II1. ICON

In this section, we present the technical details of
ICON, which specifically targets incast problem in datacenter
networks. Incast is predominately induced by a set of servers

(e.g., 32) that respond to a server’s query. For example,
in distributed storage clusters, a file may be divided into
multiple chunks that are stored on different servers across
the datacenter. In such a case, a single server, which is
responsible for retrieving and reassembling the whole file,
queries all the servers to retrieve the file. Such distributed
lookup results in incast. Incast causes many packet drops at
the edge switch connected to the retrieving (sink) server. As we
discussed in section I, incast is an important and critical issue
in datacenter networks, and incasts degrade the performance
of both foreground and background applications.

ICON’s incast control algorithm consists of two parts: (1)
end-to-end application level knowledge sharing about the num-
ber of concurrent senders (i.e., incast degree), and (2) pacing
TCP window over RTT proportional to the shared number.
We will discuss the application-level information sharing in
section III-A and the traffic pacing in section III-B.

A. Application-level knowledge sharing

We make the key observation that incast, which bottlenecks
the receiver (or the last switch’s output port that connects to the
receiver), it is inherently application-depended, and, therefore,
the incast problem could be solved at end hosts rather than
involving switches and routers.

The application layer of the sink server, which is responsible
for distributed lookup, knows the number of the servers that it
is going to the search query. Therefore, simply communicating
this incast degree to all those servers that are part of the
distributed lookup could go a long way in addressing incasts.
At the very beginning of the communication between all
senders and the sink server, this number will be piggybacked
by TCP packets from sink server to sender servers (during
TCP 3-way handshaking). At this point, all senders know how
many different servers will share a same route through the sink
server. Giving this prior knowledge to servers is key as it can
serve to right the correct sending rate at the sender. However,
there are a few challenges that we must solve to realize the
goal:

Communicating incast degree to senders. We can use
unused fields in IP or TCP header for this purpose. For
example, we can use “options” field in TCP header or "Type-
of-Service” (ToS) field in IP header but we chose the first one
as it does not affect the network functionality.

Handling persistent connections. We know the calculated
number of servers will be reported to sender servers only
during the TCP handshake. If the TCP connection between
end hosts is persistent, sender servers save the reported number
in their memory and use it unless a new information arrives
from the sink server. In the other words, the very first reported
number will be valid until a change happens in the number
of active servers. This number rarely changes because the
number of senders is usually fixed as they are chosen to hold
a particular piece of data. However, if this number changes,
the sink server notifies other servers through a small update
message. These update messages are designed to only convey
the number of parallel senders. As long as only one server
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Fig. 2: (a) Normal TCP vs (b) TCP with Pacing

will send these small update packets, bandwidth consumption
is almost negligible.

B. Traffic pacing

In this section, we cover details of traffic pacing at sender
NICs. Pacing and rate control are two different aspects of
congestion control. While rate control adjusts the sending rate
to avoid any long-term over-subscription of the bottleneck
link capacity, rate control alone is not sufficient to avoid
congestion. Pacing determines controls the rate at a much more
finer grain (e.g., how the packets are spaced within an RTT).
Two schemes with the same sending rate but different packet
pacing can lead to different queuing delays in the network. In
general, uniformly distributing the packets over the sending
“time period” can smooth out queue build-ups and reduce
congestion. Figure 2 shows the difference between Normal
TCP and the one which uses pacing.

ICON paces TCP window over RTT by providing a gap
(pause time) between packets. As we can see in the figure 2,
as TCP window grows, this gap becomes smaller because of
more packets that it needs to send. Since TCP normally sends
a window of packets as a bulk, it is more prone to cause packet
drops as more packets are likely to collide on the bottleneck
link. However, ICON paces packets over RTT to provide more
time for the switch port at the bottleneck link to drain packets.

C. Combination of pacing and application knowledge shar-
ing:

ICON uses a combination of application knowledge sharing
and traffic pacing in order to improve tail flow completion time
and throughput. Once the sender servers receive the number
of active senders from the sink server, they start to calculate
the pacing rate (i.e., the gap between each packet) using this
number. Equation 1 shows how ICON calculates the new
sending rate.

. TCP_window_size
Sending_rate =

RTT x number_of_parallel_senders

(D

As equation 1 implies, if TCP window grows up, the sending
rate will increase which might be problematic if the flow size
is very large. However, this is not a big issue in incast as incast

10 Spines

20 Leaves

20 Hosts
\ J
Y

400 Hosts
Fig. 3: Topology used in simulations

is mostly caused by short flows. The newly calculated sending
rate ensures that the sending rate of all senders is proportional
to the number of competing flows on the bottleneck link. This
technique guarantees that the bottlenecked switch port buffer
has enough space to absorb all packets heading to the sink
server. As an example, if TCP window is 10 MSS, RTT is
120 microseconds and we have only 1 sender, the new sending
rate requires 10.8 microseconds gap (pause time) between
sending each packet (assuming link speed is 10 Gbps). As
you can see, our new congestion control scheme requires only
a tiny modification over current transport protocols and is
implementation-friendly.

In the absence of application knowledge, we assume that
the “number_of_parallel_senders = 17 in the previous
equation. We show in section V that ICON outperforms other
schemes, even without application knowledge.

IV. EXPERIMENTAL METHODOLOGY

We use ns-3 [16] simulator to simulate a datacenter network
and evaluate ICON’s performance. In this section, we present
the details of our evaluation methodology including topology,
workload, simulation parameters, etc.

1) Topology: We use ns-3 to simulate a leaf-spine datacen-
ter topology as shown in Figure 3. Leaf-spine is a commonly
used topology in many datacenters [3]. In our topology, the
fabric interconnects 400 servers through 20 leaf switches and
10 spine switches. Our topology uses an over-subscription
factor of 2, which is typical. So, each of those leaf switches
has 20 ports connected to the servers and 10 ports connected
to upper spine switches. All the links from servers to leaf
switches, and from leaf switches to spine switches are 10 Gbps
links. The maximum unloaded round trip time (RTT) of our
network is 80 us.

2) Workload: We model our workloads based on the results
presented in [15]. Our workload has a mix of short and long
flows. The flow arrivals are based on a Poisson process and
source and destination servers are chosen uniformly randomly
for both short and long flows. We define incast flows as a
subset of short flows; the total load produced by short flows
is equally divided among incast flows and other normal short
flows (one-to-one short flows). Our workload model matches
the one used in [25]. Our short flow sizes are randomly
selected from a range of 8 KB to 32 KB and we set long



flow size at 1 M B. Our long flows contribute to 70% of
the overall network load, which matches previous work (e.g.,
pFabric [26]). We use a default incast degree of 26, but we
vary the incast degree and study our sensitivity in section V.
We evaluate ICON’s performance using both tail and median
flow completion times for short flows, and throughput for long
flows.

3) Compared schemes: We compare ICON to the following
schemes:

« DCTCP: We implemented DCTCP, matching all the
details from the original paper [5]. We set DCTCP to
be our baseline, as it is commonly used in today’s
datacenters.

e ICTCP: We implemented ICTCP based on their paper
and we set the parameters as suggested in the paper [12].
Our ICTCP implementation measures available band-
width at end hosts and sets the next receive window
according to the available bandwidth. In the other words,
the end host predicts the throughput and sets the re-
ceiver window based on the difference between expected
throughput and the observed throughput. The receive
window will be set to a smaller value if the difference is
large. However, if the measured difference is small, TCP
receive window is allowed to increase normally. ICTCP
is able to set the fair share rate when a lot of packets
arrive at a same time. ICTCP specifically targets incast.

« ICON: While ICON would work on top of any transport
protocol, we implement it on top of DCTCP [5] as it
is widely deployed in modern datacenters. Our proposed
scheme consists of two parts. First, each server which is
a part of TCP incast, paces its TCP window over RTT
by setting appropriate pause times between sending each
packet. Many modern NICs already support this feature
[14]. Second, to find the best sending rate and pause
duration for pacing, senders divide their sending rate by
the number of parallel senders which is provided by the
receiver (we describe the design in section III).

« Information-agnostic ICON (IA-ICON): We imple-
ment another version of ICON which does not rely on
information provided by receiver application (i.e., number
of parallel senders). Instead, IA-ICON paces the TCP
window over RTT. While this scheme will pace sender
data regardless of the number of senders, we include
this method for two reasons: (1) quantify the utility of
application knowledge and (2) isolate the effect of pacing
from rate control (i.e., IA-ICON does not start with the
correct sending rate but ICON does).

Finally, we would like to emphasize that we use identical
values for parameters that are common to DCTCP, ICTCP,
and ICON (e.g., ECN threshold, buffer size, RTT). While
there are a number of packet scheduling and load balancing
schemes in the last few years such as pFabric [26], PIAS [22],
CONGA [3], HULA [4], etc., we only compare ICON to
DCTCP and ICTCP as they target incasts. As such, ICON
can be implemented on top of most load balancing schemes.
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Fig. 5: Tail flow completion time

V. RESULTS

In this section, we evaluate performance of ICON and
compare its performance to other competing schemes. We
present the following comparisons:

o Tail (99*" percentile) and median (50*" percentile) flow

completion times

« Average throughput of long flows

o Number of dropped packets

« Sensitivity to different incast degrees

« Distribution of queue lengths in switches

A. Flow completion time

In this section, we show how ICON performs in terms
of median and tail flow completion times compared to other
schemes. The results for median and tail flow completion times
are shown in figure 4 and figure 5, respectively. In both of
these figures, X-axis shows the network load and Y-axis shows
flow completion times in milliseconds. As expected, both tail
and median flow completion times of all schemes increase
with increasing load. We also see 1-2 orders of magnitude
difference between median and tail flow completion times,
matching several reported results [5, 10, 12]. Also, we see
that tail rapidly increases at higher load values, which is also
expected.

While ICON slightly under-performs other schemes (i.e., by
about 13 %) in median flow completion times, it drastically
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outperforms (i.e., by about a factor of 7 — 8 or by about
80%) all other schemes in tail flow completion times. Because
most foreground applications are sensitive to tail, not median
flow completion times, ICON’s contribution is well-suited to
today’s datacenters. In other words, ICON closes the gap
between median and tail latencies, which reduces performance
variability in datacenters. Also, it is interesting to note that [A-
ICON performs quite close to ICTCP in tail flow completion
times. Because IA-ICON isolates pacing from rate control,
the fact that IA-ICON performs close to other complicated
rate control schemes shows that pacing is as important as rate
control in datacenter networks. The slightly worse median flow
completion times, however, do not affect ICON’s throughput,
as we show next.

B. Average Throughput

In this section, we compare the average throughput of long
flows for DCTCP, ICTCP, Information-Agnostic ICON, and
ICON. As we can see in figure 6, as the load increases, long
flow throughput decreases for all schemes due to congestion
in the network created by short, bursty flows; the queuing in
the network increases with load. ICTCP outperforms DCTCP,
specifically at higher loads. ICON significantly outperforms
all schemes across a range of loads. Because ICON leverages
application knowledge, ICON instantly converges to the cor-
rect sending rate; the other schemes require several RTTs to
converge to the correct fair-share sending rate. On average,
ICON achieves 18% higher throughput compared to ICTCP.
IA-ICON performs similar to ICTCP, albeit with a much lesser
complexity. Therefore, our throughput results also highlight
the importance of pacing.

C. Number of dropped packets

We dissect the bottomline performance of ICON by compar-
ing the number of dropped packets in all the schemes. Because
re-transmission of dropped packets directly influences tail flow
completion times, we compare the maximum number of packet
drops for different schemes. As the load increases, packet drop
rate for all schemes increases due to increased congestion. As
we see in figure 7, ICON substantially cuts the number of
packet drops. Since ICON sets the right sending rate and paces
the packets, ICON nearly eliminates packet drops.
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Fig. 8: Sensitivity to different incast degrees

D. Sensitivity to different incast degrees

We now study the sensitivity of ICON and other schemes
as we vary the incast degree of applications. While our default
incast degree value of 26 is typical for many datacenter
applications, there is, indeed, a wide range in the incast degrees
of various applications. In this experiment, we compare the tail
flow completion times of foreground flows at an incast degree
of 20 and 32 to those at an incast degree of 26, for varying
loads. As shown in figure 8, the tail increases with higher
incast degrees. Nevertheless, we see that ICON substantially
outperforms the competition, even for lower incast degrees.
Because the “real” incast degrees of commercial applications
are likely higher (e.g., NDP [21] uses incast degrees in the
order of a few hundred), ICON’s potential improvements are
likely to be even more impressive in production environments.

E. Queue length

Finally, we analyze the distribution of receiver switch’s
queue length for the three schemes. We sampled the queue
lengths in one of the leaf switches connected to a sink server
at 30% load, and we analyzed its cumulative distribution.

Figure 9 shows the CDF of DCTCP, ICTCP, and ICON.
We see a drastic difference between the CDFs of these three
schemes. While both DCTCP and ICTCP suffer from long
tails in queue lengths, which corresponds to their long tail
flow completion times, ICON’s CDF is much narrower than



1.0

0.8

0.6

CDF

0.4

w—— DCTCP
— |CTCP
= |CON

0.2

0.0

0 50000 100000 150000

Queue size (packets)
Fig. 9: Distribution of queue lengths in switches

200000

the other schemes. ICON reduces 99" percentile queue length
by a factor of 7.5 compared to ICTCP, closely matching
our improvement in tail flow completion times. This analysis
shows that both rate control and pacing play a key role in
reducing queuing in the network.

VI. RELATED WORK

Internet congestion control is a well-studied area for more
than two decades. Over the last several years, datacenter
congestion control has become a hot topic as datacenters are
more amenable for adding new functionality in the network
and datacenter workloads significantly differ from Internet
client-server applications. Datacenter traffic is more bursty and
less predictable than wide area network (WAN) and Internet
traffic.

We have already discussed DCTCP and ICTCP in previous
sections. Now we summarize other related work in this section.
[27] focus on reducing timeouts during incast and addresses
incast via techniques such as selective ACK (SACK) and
disabling TCP slow start. However, incasts last less than one
RTT and optimization do not effectively address congestion
during incast. Similarly, [25] proposes to decreases TCP’s re-
transmission timeout interval (R1'O,,;,) at the end hosts, to
reduce the duration of timeouts. While the proposal reduces
the cost of timeouts, it does not fundamentally reduce the num-
ber of TCP timeouts, which happen due to incast congestion.
In contrast, ICON reduces the number of such timeouts.

There are other proposals which argue for better adjusting
TCP’s congestion window, to reduce congestion during incasts.
While smaller congestion windows reduce incast congestion,
they also degrade throughput of long flows. In rate control
protocol (RCP) [19], the switches directly inform the senders
about their fair share rate by observing flows on the ingress
link. However, RCP requires expensive switch support. Fur-
ther, RCP also requires several RTTs to arrive at the right
sending rate. TIMELY [7] monitors RTT, similar to TCP
Vegas. However, unlike Vegas, TIMELY employs a gradient-
based approach to quickly arrive at the right sending rate. In
contrast to TIMELY, which also requires several rounds, ICON
uses application knowledge and employs pacing to reduce
incast congestion.

Similar to DCTCP, DCQCN [6] is a congestion control
method which leverages ECN for Remote Direct Memory
Access (RDMA) networks and performs rate-based congestion
control. Also, QCN [28] provides congestion control based
on network feedback (e.g., ECN) but operates at the layer-
2. Express-Pass [29] is one of the most recent proposals on
datacenter congestion control, which distributes end-to-end
credit packets to simulate a token bucket scheme. Express-
Pass improves tail flow completion times but requires support
at the switches and the implementation is significantly more
complex than ICON. A few other proposals [8, 23, 26, 30]
focus on datacenter flow scheduling, whereas our main goal
is to alleviate incast congestion.

VII. CONCLUSION

In this paper, we proposed ICON with a goal of improving
tail latency for foreground applications and throughput for
background applications, by avoiding queue buildups that
happen due to incast at edge switches. While there has been
a number of papers that show incast-induced congestion is
common in datacenters, the problem remains largely unsolved.
Incast is also inherently tied to the nature of many foreground
applications that perform distributed search of small objects in
large datasets. Incast cannot be fixed by having large buffers
as large buffers cause increased queuing delays and exacerbate
the problem even further.

We introduced ICON, which employs fine-grained traffic
pacing at the end host’s NIC. Fortunately, many vendors are
starting to introduce support for packet pacing in NICs, which
augurs well for our proposal. In addition to pacing, ICON
also leverages application knowledge to arrive at the right
sending rate, without having to continuously adjust the sending
rates over several RTTs. ICON reduces the tail percentile flow
completion times of short flows by up to 89% compared to
DCTCEP. It also improves the throughput of large flows by up
to 30% compared to DCTCP. As incast degrees of foreground
applications increase to cope up with the exponential growth
of data, schemes such as ICON would become attractive.
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