t-BNE: Tensor-based Brain Network Embedding

Bokai Cao1, Lifang He2, Xiaokai Wei1, Mengqi Xing1, Philip S. Yu13, Heide Klumpp1 and Alex D. Leow1

1University of Illinois at Chicago
2Shenzhen University
3Tsinghua University
Brain Network

Neuroimaging

Brain network
Graph Classification

• Existing work
 • Computing graph-theoretical measures.
 • Extracting subgraph patterns.

• This work
 • Learning latent representations via tensor factorization.
 • Embedding the graph in addition to embedding nodes.
Problems & Solutions

- (P1) How can we preserve the graph property in the tensor factorization process?
Problems & Solutions

- (P2) How can we leverage the side information associated with brain networks?
(P3) How can we fuse the classifier training and the representation learning procedures?
Problems & Solutions

Partially coupled matrix and tensor factorization
Tensor-based Framework

(S1) Partially symmetric tensor factorization

\[
\min_{B, S, W} \left\| \mathcal{X} - C \times_1 B \times_2 B \times_3 S \right\|_F^2
\]

\[
\begin{align*}
&+ \alpha \text{tr}(S^T L Z S) \\
&+ \beta \|DSW - Y\|_F^2 \\
&+ \gamma \|W\|_F^2
\end{align*}
\]

(S2) Side information guidance

\[
S^TS = I
\]

orthogonality

(S3) Partially coupled matrix and tensor factorization

\[
(3.7)
\]
Optimization: ADMM

Algorithm 1 t-BNE

Input: $\mathcal{X}, Z, Y, \alpha, \beta, \gamma$

Output: B, S, W

1: Set $\mu_{max} = 10^6$, $\rho = 1.15$
2: Initialize $B, S, W \sim \mathcal{N}(0, 1)$, $U = 0$, $\mu = 10^{-6}$
3: repeat
4: Update B and P by Eq. (3.11) and Eq. (3.13)
5: Update U by Eq. (3.14)
6: Update μ by $\mu \leftarrow \min(\rho \mu, \mu_{max})$
7: Update S by Eq. (3.16) with the curvilinear search
8: Update W by Eq. (3.18)
9: until convergence

code available at: https://www.cs.uic.edu/~bcao1/code/t-BNE.zip
Experiments

Datasets: neutral, maintain, reappraise

37 patients with anxiety disorder (positive samples), and 32 healthy participants (negative samples)

n = 69 samples
m = 34 scalp channels
Classification Performance

<table>
<thead>
<tr>
<th>Methods</th>
<th>Neutral</th>
<th>Maintain</th>
<th>Reappraise</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-BNE</td>
<td>0.7833</td>
<td>0.7548</td>
<td>0.7524</td>
</tr>
<tr>
<td>CMTF</td>
<td>0.5810</td>
<td>0.7095</td>
<td>0.6381</td>
</tr>
<tr>
<td>Rubik</td>
<td>0.6405</td>
<td>0.6833</td>
<td>0.6667</td>
</tr>
<tr>
<td>ALS</td>
<td>0.6119</td>
<td>0.6667</td>
<td>0.6524</td>
</tr>
<tr>
<td>gMSV</td>
<td>0.6500</td>
<td>0.6548</td>
<td>0.5952</td>
</tr>
<tr>
<td>CC</td>
<td>0.5357</td>
<td>0.6667</td>
<td>0.5357</td>
</tr>
</tbody>
</table>

- t-BNE: The proposed tensor factorization model for brain network embedding.
- CMTF: Coupled matrix and tensor factorization where brain networks and side information are coupled in the subject mode.
- Rubik: Tensor factorization with orthogonality and sparsity constraints.
- ALS: Tensor factorization using alternating least squares without any constraint.
- gMSV: A discriminative subgraph selection approach using side information.
- CC: Extracting local clustering coefficients as features.
Parameter Sensitivity

![Graphs showing parameter sensitivity with different scales for k, γ, α, and β.](Image)
Factor Analysis

(a) **NEUTRAL.**

(b) **MAINTAIN.**

(c) **REAPPRAISE.**
Summary

• Preserved the symmetric graph property in tensor factorization

• Incorporated side information guidance and orthogonal constraint to obtain informative and distinct latent factors

• Fused the classifier learning procedure and tensor factorization

• Facilitated better understanding of brain mechanism with anxiety disorder under different emotion regulations
Extensions

• Guidance
 • Column-wise guidance from community information
• Supervision
 • Must-link, cannot-link, separability
• Multimodality
 • Joint tensor factorization to capture consensus information between fMRI and DTI
t-BNE: Tensor-based Brain Network Embedding

Q & A

Bokai Cao, Lifang He, Xiaokai Wei, Mengqi Xing, Philip S. Yu, Heide Klumpp and Alex D. Leow
caubokai@uic.edu