
CS480
Database Systems
4 - SQL
� Course webpage
� Boris Glavic
bglavic@uic.edu

1

SQL

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

SQL Overview

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

SQL Overview
Placeholder

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

2

Textbook
Placeholder

Textbook: Chapter 3

2

History
Placeholder

• IBM Sequel language developed as part of the System R project at IBM Research
• Renamed Structured Query Language (SQL)
• ANSI and ISO standard SQL

— SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2008, SQL:2011, SQL:2016,SQL:2019-2020, SQL:2023
• Advanced systems implement all (most of) SQL-92 and selected features from
later standards

• Many systems use non-standard syntax for some language features / implement
their own proprietary features

3

Language Structure
Placeholder

DDL
• The Data Definition Language (DDL) part of the language is for managing the
schema of a database

DML
• The Data Manipulation Language (DML) part of the language is for changing and
querying the database instance

4

Bag vs. Set Semantics
Placeholder

Set semantics
• The formal relational model is typically defined using relations that are sets (set
semantics)

Bag semantics
• SQL uses a model of relations called bag semantics where relations are bags(multisets) of tuples

— we allow duplicates

5

Bag vs. Set Semantics Example
Placeholder

Set Semantics
Orders

Item Quantity
Lawnmower 3
Lawnmower 2
Shovel 1

Bag Semantics
Orders

Item Quantity
Lawnmower 3
Lawnmower 3
Lawnmower 2
Shovel 1
Shovel 1
Shovel 1

6

SQL Overview
Placeholder

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

7

Queries
Placeholder

SELECT-FROM-WHERE
• SQL queries are structured into blocks
• The clauses of a block are identified through English language keywords (e.g.,
WHERE)

7

Queries Example
Placeholder

Find names of students majoring in CS
SELECT name

FROM student
WHERE deptname = 'Comp. Sci.';

name
Zhang
Shankar
Williams
Brown
X Y
Lazy Bert

8

SQL Overview
Placeholder

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

9

DDL
Placeholder

• New tables are created using the CREATE TABLE statement
CREATE TABLE instructor (

ID char(5) PRIMARY KEY,
name VARCHAR(40) NOT NULL,
deptname VARCHAR(20),
salary NUMERIC(8,2),

);

9

DML
Placeholder

Insert
• add new rows into a table

Update
• modify rows that fulfill a condition (WHERE)

Delete
• delete rows that fulfill a condition (WHERE)

10

DML Examples
Placeholder

Insert
INSERT INTO instructor
VALUES (333,'Peter Petersen', 'Comp. Sci.', 40000);

Update
UPDATE student SET deptname = 'CS'
WHERE deptname = 'Computer Science';

Delete
DELETE FROM instructor WHERE name = 'Peter Petersen';

11

SQL Overview
Placeholder

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

12

Type System
Placeholder

Domain Types
• int - integer (size is machine / system dependent)
• char(n) - fixed length character string (exactly n characters)
• varchar(n) - variable length string (up to n characters)
• date - a date
• numeric(p,d)

— - fixed point number with up to p digits and d digits precision (after the dot)— /e.g., numeric(7,4) can encode 100.0005, but not 1000.003 or 100.00005 /

12

Strict Typing
Placeholder

• SQL employs a strict type systems
• Functions and operators have fixed input types and return a fixed output type
• Functions overloaded is supported (same name, different types)

— e.g., + for integers and + for floats

1 + 1 -- returns int
1.0 + 1.0 -- return float

13

Manual Casting
Placeholder

CAST
• CAST (expr AS type)

CAST (1 AS NUMERIC(3,2))

Postgres Casting Syntax
• expr::type (postgres specific casting syntax)

1::float

14

Automatic Casting
Placeholder

• If the user applies a function or operator to input types for which no version of the
function exists, then most databases try to cast the input tuples such that an
existing function can be used

SELECT pg_typeof(1) AS typ1,
pg_typeof(1.0) AS type10,
pg_typeof(1::int + 1.0::float) AS typeplus;

typ1 type10 typeplus
integer numeric double precision

15

SQL Overview
Placeholder

SQL Overview
Overview
Queries
DDL and DML
Type System
Postgres Documentation

16

Postgres Documentation
Placeholder

• We can only cover a small (but important) part of SQL in this course
• To lookup all the details about a language construct, you can use the excellentPostgres documentation:

— https://www.postgresql.org/docs/16/sql.html

16

Queries

SQL Overview
Queries

Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

17

Query Blocks
Placeholder

• Queries are organized into blocks
• Blocks are in turn divided into clauses
• The order of clauses within a block is fixed
• Many clauses are optional
• Clauses typically start with a descriptive English keyword, e.g., WHERE

17

Query Block Structure
Placeholder

SELECT [DISTINCT] <expression_list>
[FROM <relation / subquery list>]
[WHERE <condition>]
[GROUP BY <expression_list>]
[HAVING <condition>]
[ORDER BY <expression list + directions>]
[LIMIT <n>] [OFFSET <n>]

18

Execution Order
Placeholder

• FROM - compute cross product of from clause items
• WHERE - filter rows based on condition
• GROUP BY - group on expressions
• HAVING - if present filter aggregation results
• SELECT - for each remaining row compute expressions (generalized projection)
• DISTINCT - remove duplicate rows
• ORDER-BY - sort on the result of a list of expressions
• LIMIT / OFFSET - keep LIMIT rows after skipping OFFSET rows

19

Execution Order
Placeholder

Remark
• The execution order is important for understanding the semantics of SQL, but
database optimizers will often choose alternative equivalent execution orders if
they are estimated to be faster.

20

FROM
Placeholder

• the FROM clauses determines which tables are accessed by the query
SELECT *
FROM student
LIMIT 3;

id name deptname totcred
00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80

21

FROM Example - Multiple tables
Placeholder

• if multiple tables are listed, then this is treated like a cross product
SELECT *
FROM instructor, department
LIMIT 4;

id name deptname salary deptname building budget
10101 Srinivasan Comp. Sci. 65000.00 Biology Watson 90000.00
10101 Srinivasan Comp. Sci. 65000.00 Comp. Sci. Taylor 100000.00
10101 Srinivasan Comp. Sci. 65000.00 Elec. Eng. Taylor 85000.00
10101 Srinivasan Comp. Sci. 65000.00 Finance Painter 120000.00

22

FROM Alias
Placeholder

• Each table can be assigned an alias in the FROM clause
• Tables may appear more than once (with different aliases)

SELECT * FROM student s, instructor i;
SELECT * FROM student s1, student s2, instructor i;

Alias with / without AS
• in some systems you can also alias with AS

SELECT * FROM student AS s;

23

FROM Alias
Placeholder

• Aliases in FROM also allow for renaming of attributes
SELECT * FROM department d(name,build,moneystuff)
LIMIT 1;

name build moneystuff
Biology Watson 90000.00

24

Attribute References
Placeholder

• Attributes are referenced by name, e.g., deptname
• Optionally quantified by alias / table name, e.g., student.name

SELECT s.name
FROM student s LIMIT 1;

name
Zhang

25

Joins
Placeholder

• SQL supports multiple types of joins:
— CROSS JOIN - cross product— [INNER] JOIN - a theta join

◦ join condition ON: boolean condition
◦ join condition USING: specify common columns to join on equality

— NATURAL JOIN— LEFT / RIGHT / FULL OUTER JOIN

26

Joins Example
Placeholder

SELECT s.name, s.deptname, t.courseid, t.secid
FROM student s JOIN takes t ON (s.id = t.id)
LIMIT 3;

name deptname courseid secid
Zhang Comp. Sci. CS-101 1
Zhang Comp. Sci. CS-347 1
Shankar Comp. Sci. CS-101 1

27

Joins Example
Placeholder

SELECT s.name, s.deptname, t.courseid, t.secid
FROM student s NATURAL JOIN takes t
LIMIT 3;

name deptname courseid secid
Zhang Comp. Sci. CS-101 1
Zhang Comp. Sci. CS-347 1
Shankar Comp. Sci. CS-101 1

28

Joins Example
Placeholder

SELECT s.name, s.deptname, t.courseid, t.secid
FROM student s JOIN takes t USING (id)
LIMIT 3;

name deptname courseid secid
Zhang Comp. Sci. CS-101 1
Zhang Comp. Sci. CS-347 1
Shankar Comp. Sci. CS-101 1

29

Outer Joins Example
Placeholder

SELECT s.name, s.deptname, t.courseid, t.secid, s.totcred
FROM student s LEFT OUTER JOIN takes t ON (s.id = t.id)
ORDER BY totcred ASC LIMIT 3;

name deptname courseid secid totcred
Snow Physics 0
X Y Comp. Sci. 0
Lazy Bert Comp. Sci. 0

30

SELECT
Placeholder

• the SELECT clause consists of a list of projection expressions and optional
renaming (AS)

• determines what will be returned by the query
• also handles aggregation (more on that later)

SELECT name AS n, age / 10 AS decades, ...

31

SELECT Example
Placeholder

SELECT name
FROM student

LIMIT 3;

name
Zhang
Shankar
Brandt

32

SELECT Example
Placeholder

SELECT credits * 12 AS morecred, title
FROM course

LIMIT 3;

morecred title
48 Intro. to Biology
48 Genetics
36 Computational Biology

33

DISTINCT
Placeholder

• if DISTINCT is specified in the SELECT clause, then duplicate results are eliminated
SELECT DISTINCT deptname FROM student;

deptname
Physics
Biology
Elec. Eng.
Finance
Comp. Sci.
History
Music

34

WHERE
Placeholder

• the WHERE clause specifies a selection condition
• as in relational algebra selection is an expression consisting of . . .

— logical connectives AND, OR, NOT— comparisons, e.g., <, =, <=, >=, . . .— references to attributes and constants
• final result of a WHERE clause condition has to be Boolean

35

WHERE Example
Placeholder

SELECT * FROM student
WHERE deptname = 'Comp. Sci.' OR deptname = 'Music';

id name deptname totcred
00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
54321 Williams Comp. Sci. 54
55739 Sanchez Music 38
76543 Brown Comp. Sci. 58
00000 X Y Comp. Sci. 0
99999 Lazy Bert Comp. Sci. 0

36

GROUP BY + Aggregation
Placeholder

• The GROUP BY clause specifies which expressions to group on
Restrictions

• If a query block contains a GROUP BY clause, then only group-by expressions and
aggregation functions can be used in the SELECT clause

• If the SELECT clause mentions an aggregation function, but there is no GROUP BY
clause then no non-aggregated attribute references are allowed

37

SQL Aggregation Functions
Placeholder

• count

• sum

• min

• max

• avg

• and several more

38

Aggregation Example
Placeholder

SELECT count(*) FROM student;

count
15

39

GROUP BY + Aggregation Example
Placeholder

SELECT deptname, count(*)
FROM student

GROUP BY deptname
LIMIT 3;

deptname count
Physics 3
Biology 1
Elec. Eng. 2

40

GROUP BY + Aggregation Example
Placeholder

• group-by on expressions is allowed
SELECT count(*),

(((end_hr * 60) + end_min) - (start_hr * 60 + start_min)) AS
length↪→

FROM time_slot
GROUP BY (((end_hr * 60) + end_min) - (start_hr * 60 + start_min));

count length
4 75
15 50
1 150

41

HAVING
Placeholder

• the HAVING clause specifies a selection condition over group-by and aggregationresults
— not all HAVING aggregation functions have to occur in the SELECT clause

SELECT deptname
FROM student
GROUP BY deptname
HAVING count(*) > 3;

deptname
Comp. Sci.

42

ORDER BY
Placeholder

• the ORDER BY clause specifies a sort order for the results
• list of order-by expressions each optionally with a sort direction (ASC, DESC)

Remark
• For most parts, SQL treats relations as bags

— ORDER BY introduces an ordering over the elements in a bag
• If two rows are incomparable wrt. the sort order, their order in the result is
implementation / data dependent

43

ORDER BY Example
Placeholder

SELECT *
FROM student
WHERE deptname = 'Biology' OR deptname = 'Comp. Sci.'
ORDER BY deptname ASC, name DESC;

id name deptname totcred
98988 Tanaka Biology 120
00128 Zhang Comp. Sci. 102
00000 X Y Comp. Sci. 0
54321 Williams Comp. Sci. 54
12345 Shankar Comp. Sci. 32
99999 Lazy Bert Comp. Sci. 0
76543 Brown Comp. Sci. 58

44

ORDER BY Example (non deterministic)
Placeholder

SELECT *
FROM student
WHERE deptname = 'Biology' OR deptname = 'Comp. Sci.'
ORDER BY deptname ASC;

id name deptname totcred
98988 Tanaka Biology 120
12345 Shankar Comp. Sci. 32
54321 Williams Comp. Sci. 54
00128 Zhang Comp. Sci. 102
00000 X Y Comp. Sci. 0
99999 Lazy Bert Comp. Sci. 0
76543 Brown Comp. Sci. 58

45

LIMIT / OFFSET
Placeholder

• OFFSET specifies a number of rows to skip
• LIMIT specifies a maximal number of rows to return

— if the query returns less rows, then only these are returned
Ordering and LIMIT / OFFSET

• If no ORDER BY clause is specified, then it is implementation / data dependent
what rows are returned!

• If ORDER BY is specified, then rows are first sorted before computing LIMIT
— top-k queries

46

LIMIT / OFFSET Examples
Placeholder

3 Departments with the most students
SELECT deptname, count(*) AS headcnt
FROM student
GROUP BY deptname ORDER BY headcnt DESC
LIMIT 3;

deptname headcnt
Comp. Sci. 6
Physics 3
Elec. Eng. 2

47

LIMIT / OFFSET Examples
Placeholder

Department with the 2nd most number of students
SELECT deptname, count(*) AS headcnt
FROM student
GROUP BY deptname ORDER BY headcnt DESC
OFFSET 1 LIMIT 1;

deptname headcnt
Physics 3

48

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

49

Set Operations in SQL
Placeholder

Sets vs. Bags
• In SQL each set operation comes in a set and a bag flavor:

— A version that treats that inputs as sets— A version that treats the inputs as bags (indicated by appending ALL to the operation)
• SQL set operations are applied to two query blocks (or results of other set
operations)

Supported operations
• UNION [ALL] - union
• EXCEPT [ALL] - set difference
• INTERSECT [ALL] - intersection

49

UNION Examples
Placeholder

Set union
(SELECT name FROM student
WHERE deptname = 'Biology')
UNION

(SELECT name FROM student
WHERE deptname = 'Biology');

name
Tanaka

Bag union
(SELECT name FROM student
WHERE deptname = 'Biology')
UNION ALL

(SELECT name FROM student
WHERE deptname = 'Biology');

name
Tanaka
Tanaka

50

UNION (set) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

Set union
(SELECT * FROM u)
UNION
(SELECT * FROM v);

a
1
4
2
3

51

UNION (bag) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

bag union
(SELECT * FROM u WHERE a =

2)↪→

UNION ALL
(SELECT * FROM v);

a
2
1
2
2
3
3

52

INTERSECT (set) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

Set intersection
(SELECT * FROM u)
INTERSECT
(SELECT * FROM v);

a
1
3
2

53

INTERSECT (bag) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

bag intersection
(SELECT * FROM u)
INTERSECT ALL
(SELECT * FROM v);

a
1
3
3
2

54

EXCEPT (set) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

Set difference
(SELECT * FROM u)
EXCEPT
(SELECT * FROM v);

a
4

55

EXCEPT (bag) Example
Placeholder

Tables

SELECT * FROM u;

a
1
1
1
2
3
3
3
4

SELECT * FROM v;

b
1
2
2
3
3

bag difference
(SELECT * FROM u)
EXCEPT ALL
(SELECT * FROM v);

a
1
1
3
4

56

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

57

Queries with Multiple Blocks
Placeholder

• Subqueries allow us to use query blocks inside the FROM clause
• Subqueries always have to have an alias

Semantics
• The database evaluates queries bottom-up
• Once the result of a subquery has been evaluated, we can (conceptually) treat it
just like a table in the database

57

Subquery Example
Placeholder

Number of departments with a certain number of students
SELECT count(*) AS numdep, numst
FROM (SELECT count(*) AS numst, deptname

FROM student
GROUP BY deptname) AS ns

GROUP BY numst;

numdep numst
1 6
4 1
1 3
1 2

58

Subquery Example
Placeholder

Number of students and other information for departments
SELECT d.deptname, numst, building, budget
FROM (SELECT count(*) AS numst, deptname

FROM student
GROUP BY deptname) AS ns,

department d
WHERE ns.deptname = d.deptname

deptname numst building budget
Biology 1 Watson 90000.00
Comp. Sci. 6 Taylor 100000.00
Elec. Eng. 2 Taylor 85000.00
Finance 1 Painter 120000.00
History 1 Painter 50000.00
Music 1 Packard 80000.00
Physics 3 Watson 70000.00

59

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

60

What Are Nested Subqueries?
Placeholder

Nested subqueries
• Nested subqueries allow queries to be nested inside scalar expressions

— e.g., inside a WHERE clause condition or SELECT clause expression— The most common use is in WHERE clause conditions

60

Types of Subqueries - Scalar Subqueries
Placeholder

Scalar subqueries
• The query is required to return a single row

Note!
• returning more than one row is a runtime error!

Semantics
• The result of the subquery is substituted into the expression
• Then the expression is evaluated as usual

SELECT *
FROM student

WHERE totcred = (SELECT max(totcred) FROM student);

id name deptname totcred
98988 Tanaka Biology 120

61

Correlations
Placeholder

What are correlated attributes
• Referencing attributes from the outer query within the subquery

Semantics of correlated references
• For each row returned by the FROM clause of the outer query:

— Substitute correlated attribute reference with values from that row— Evaluate the subquery

62

Correlation Example
Placeholder

SELECT name, deptname
FROM student s
WHERE totcred = (SELECT max(totcred)

FROM student o
WHERE s.deptname = o.deptname)

LIMIT 3;

name deptname
Zhang Comp. Sci.
Brandt History
Chavez Finance

63

Correlation Example
Placeholder

SELECT name, deptname
FROM student s
WHERE totcred = (SELECT max(totcred)

FROM student o
WHERE s.deptname

= o.deptname)
LIMIT 3;

replace s.deptname with ’Comp. Sci.’

(SELECT max(totcred)
FROM student o

WHERE 'Comp. Sci.' = o.deptname)

id} name deptname totcred
. . . Zhang Comp. Sci. . . .
. . . Shankar Comp. Sci. . . .
. . . Brandt History . . .
.

64

EXISTS Subquery
Placeholder

Exists subqueries
• EXISTS q for a query q

Semantics
• Returns true if the query returns a non-empty result

65

EXISTS Subquery Example
Placeholder

SELECT *
FROM student s

WHERE EXISTS (SELECT * FROM takes t WHERE t.id = s.id)
LIMIT 5;

id name deptname totcred
00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80
23121 Chavez Finance 110
44553 Peltier Physics 56

66

IN Subqueries
Placeholder

IN subqueries
• e in q for a query q that returns a single column and expression e

Semantics
• returns true if any of the answers of q is equal to e

67

IN Subquery Example
Placeholder

SELECT *
FROM student s

WHERE s.id IN (SELECT id FROM takes)
LIMIT 3;

id name deptname totcred
00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
19991 Brandt History 80

68

ANY / ALL Subqueries
Placeholder

ANY / ALL subqueries
• e ANY/ALL op q where

— q is a query returning a single column— e is an expression— op is a comparison operator, e.g., <
Semantics

• ANY returns true if the comparison evaluates to true for at least one result of q
— IN is equivalent to = ANY

• ALL returns true if the comparison evaluates to true for all results of q

69

ANY / ALL handling null values
Placeholder

• for ALL
— if at least one comparison returns false, the result if false— if all comparisons return true, the result is true— otherwise (all null or some true and some null) the result is null

70

Where Can We Use Nested Subqueries?
Placeholder

• subqueries can be used anywhere an expression is allowed
SELECT EXISTS(SELECT * FROM student);

exists
t

SELECT count(*) FROM student s1
GROUP BY (SELECT count(*)

FROM student s2
WHERE s1.deptname = s2.deptname);

count
6
4
3
2

71

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

72

What Are Window Functions?
Placeholder

Window functions
• window functions are aggregation functions that are applied to subsets of table
called windows

• in contrast to "regular" aggregation, one result is returned for each FROM clause
tuple

• the OVER clause specifies which tuples belong to a window
Semantics

• for each row r from the FROM clause determine the subset of the FROM clause
tuples that belong r’s window

• calculate the aggregation function over the window
72

Window Function Example
Placeholder

SELECT name,
count(*) OVER (PARTITION BY deptname) AS depheadcnt

FROM student
LIMIT 4;

name depheadcnt
Tanaka 1
Shankar 6
Zhang 6
Williams 6

73

OVER Clause - Syntax
Placeholder

Syntax
OVER ([PARTITION BY attrs] [ORDER BY orderexprs] [windowspec])

74

OVER Clause - Semantics
Placeholder

Semantics
• PARTITION BY works like GROUP BY for regular aggregation

— the window is restricted to rows with the same PARTITION BY values as the currentrow
• ORDER BY sorts the rows

— if no windowspec is provided then all rows <= the current row are included in thewindow
• windowspec determines which rows to included based on their sort order position
(based on ORDER BY) relative to the current row

75

Window Specification
Placeholder

ROWS BETWEEN lower bound AND upper bound
• provides a number of rows smaller than (lower bound) and larger than (upper
bound) the current row to include in the window

• keywords UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING are used to include
all smaller / larger rows

RANGE BETWEEN lower bound AND upper bound
• provides a range of values to include in the window
• all rows that have values within the range are included

76

Window Specification
Placeholder

GROUPS BETWEEN lower bound AND upper bound
• provides a number of values to include in the window
• all rows that have values within the range are included

77

Window Function Examples
Placeholder

SELECT name, count(*) OVER (PARTITION BY deptname)
FROM student
LIMIT 3;

name count
Tanaka 1
Shankar 6
Zhang 6

78

Window Function Examples
Placeholder

SELECT name, count(*) OVER (ORDER BY name)
FROM student
LIMIT 3;

name count
Aoi 1
Bourikas 2
Brandt 3

79

Window Function Examples
Placeholder

SELECT name, deptname, count(*) OVER
(PARTITION BY deptname ORDER BY name)

FROM student
ORDER BY deptname LIMIT 3;

name deptname count
Tanaka Biology 1
Brown Comp. Sci. 1
Lazy Bert Comp. Sci. 2

80

Window Function Examples
Placeholder

SELECT name, count(*) OVER
(ORDER BY name
ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING) AS cnt

FROM student
ORDER BY cnt DESC LIMIT 4;

name cnt
Bourikas 15
Aoi 15
Brandt 14
Brown 13

81

Window Function Examples
Placeholder

SELECT day, starthr, startmin, count(*) OVER
(ORDER BY "day", starthr, startmin
ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS cnt

FROM timeslot
ORDER BY day, starthr, startmin LIMIT 4;

day starthr startmin cnt
F 8 0 0
F 9 0 1
F 11 0 2
F 13 0 3

82

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

83

Common Table Expressions
Placeholder

• A Common Table Expression (CTE) assigns a name to a query using the WITH
clause

WITH query1 AS [query],
query2 AS [query],
...
queryn AS [query]

SELECT ...

Caveats
• In contrast to views, CTEs are only valid within the scope of a query
• Query Qi can refer to any query Qj for j < i
• The final SELECT statement can refer to any Qi

83

CTE Example
Placeholder

WITH numst AS
(SELECT count(*) AS nums, deptname

FROM student GROUP BY deptname)
SELECT * FROM numst WHERE nums = (SELECT max(nums) FROM numst);

nums deptname
6 Comp. Sci.

84

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

85

What are views?
Placeholder

• Views enable us to assign a name to a query
• Views can be referenced in queries just like tables
• Views can be . . .

— non-materialized or virtual: the database does not store the result of the query,but only the definition of the view— materialized: the database stores the result of the query

85

Non-materialized Views
Placeholder

How do non-materialized views work?
• The DBMS just stores the definition (the query) in its catalog
• Whenever the view is referenced in a query, we replace it with its definition

Advantages
• We do not need to keep the query result up to date

Disadvantages
• Whenever we reference the view in a query it has to be computed from scratch

86

Non-materialized Views Example
Placeholder

SELECT * FROM numstud;

deptname numst
Physics 3
Biology 1
Elec. Eng. 2
Finance 1
Comp. Sci. 6
History 1
Music 1

87

Non-materialized Views Example
Placeholder

EXPLAIN SELECT * FROM numstud;

QUERY PLAN
HashAggregate (cost=1.23..1.30 rows=7 width=17)

Group Key: student.deptname
-> Seq Scan on student (cost=0.00..1.15 rows=15 width=9)

88

Materialized Views
Placeholder

How do materialized views work?
When the view is defined, the database system evaluates the query and stores the
query result in the database as a table

Advantages
• The database can read the stored query results instead of having to reevaluate
the query

89

Materialized Views
Placeholder

Disadvantages
• When the tables accessed by the view are updated, then the stored query resultbecomes stale

— The stored result is no longer the same as evaluating the view’s query over thecurrent state of the database
• Materialized views have to be refreshed manually by running

REFRESH MATERIALIZED VIEW viewname;

90

Materialized Views Example
Placeholder

CREATE MATERIALIZED VIEW numst AS
(SELECT deptname, count(*) AS numst FROM student GROUP BY deptname);

91

Materialized Views Example
Placeholder

SELECT * FROM numst WHERE deptname = 'Comp. Sci.';

deptname numst
Comp. Sci. 6

INSERT INTO student
VALUES ('55555', 'Peter Petersen', 'Comp. Sci.', 45);

SELECT * FROM numst WHERE deptname = 'Comp. Sci.';

deptname numst
Comp. Sci. 6

92

Materialized Views Example
Placeholder

REFRESH MATERIALIZED VIEW numst;

SELECT * FROM numst WHERE deptname = 'Comp. Sci.';

deptname numst
Comp. Sci. 7

93

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

94

What are Recursive Queries?
Placeholder

• Recursive queriesallows us to express recursive computations in SQL
• Recursive queries consist of:

— a initialization part that returns the initial state of the query result table— a recursive step that takes as input the state of the query result table computed inthe previous iteration and computes new tuples to be added to the query result

94

Syntax
Placeholder

• Recursive queries are defined as common table expressions
WITH RECURSIVE myrec AS (

[q-init] -- intialization query
UNION [ALL]
[q-recursive-step] -- recursive step
)

...

95

Fix Points
Placeholder

Definition (Fix point)
Consider a function f : D → D from some domain D to itself. We call x ∈ D a fix point
for f iff:

x = f(x)

96

Fix Point Iteration
Placeholder

Definition (Fix point iteration)
Consider an initial state x0 and function f we define the following iteration
sequence for n > 0:

xn = f(xn−1)

If this sequence has a fix point, i.e., xn+1 = xn for some n ≥ 0, then we call x∗ = xn thefix point of the iteration.

97

Existence Of Fix Points
Placeholder

Existence of fix points
• Some sequences do not have fix points
• Some sequences take infinitelymany steps to reach a fix point

Diverging sequence

x0 = 1
f(x) = x + 1

• diverges (no fix point)
[1, 2, 3, 4, 5, 6, 7]

98

Existence Of Fix Points
Placeholder

Infinite convergence

x0 = 1
g(x) = 1− x

2

• reaches fix point after infinitely many
steps

[1, 0.5, 0.75, 0.625, 0.6875, 0.65625,
0.671875]

99

Existence Of Fix Points
Placeholder

Periodic

x0 = 1
h(x) = 1− x

• periodic (no fix point)
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

100

Recursive Queries Semantics
Placeholder

Fix point iteration
• Database D, initialization query Qinit , recursive step query Qrec

D0 = Qinit(D) (1)
Dn = Qrec(Dn−1) ∪ Dn−1 (2)

101

Recursive Query Example
Placeholder

Indirect Prerequisites
WITH RECURSIVE inpre AS (

(SELECT * FROM prereq) -- direct prereqs
UNION
(SELECT i.courseid, p.prereqid -- recursive step

FROM inpre i, -- reference to previous iteration result
prereq p WHERE i.prereqid = p.courseid))

SELECT * FROM inpre;

courseid prereqid
BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

102

Recursive Query Restrictions
Placeholder

Linear Queries
• In Qrec the result from the previous iteration can only be referenced once!
• This is called linear recursion

WITH RECURSIVE q AS (
SELECT ... -- init
UNION
(SELECT ... FROM q q1, q q2 -- not allowed!

WHERE ...))
SELECT * FROM q;

103

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

104

Common Functions
Placeholder

String concatenation
• || concatenates two strings

SELECT 'a' || 'b' AS str;

str
ab

104

Conditions with CASE
Placeholder

• return THEN expression result for first WHEN that evaluates to true
• if none evaluate to true, then return the ELSE expression result (or NULL if ELSE is
omitted)

SELECT CASE WHEN (1 < 1) THEN 1
WHEN (2 < 3) THEN 2
ELSE 3

END;

case
2

105

CASE Examples
Placeholder

SELECT name,
CASE WHEN totcred > 100 THEN 'ready'

ELSE 'notready'
END AS cangraduate

FROM student
LIMIT 3;

name cangraduate
Zhang ready
Shankar notready
Brandt notready

106

IN with constant
Placeholder

• check whether value appears in a list of values
SELECT 2 IN (1,2,5,6) AS havetwo;

havetwo
t

107

Queries
Placeholder

Queries
Query Blocks (SELECT-FROM-WHERE)
Set Operations
Subqueries
Nested Subqueries
Window Functions
Common Table Expressions
Views
Recursive Queries
Scalar Language Constructs
Revisiting Null Values

108

Nulls In Expression
Placeholder

• scalar operations and comparisons with NULL return NULL

SELECT 1 + NULL AS x;

x

108

Operations Targeting Nulls
Placeholder

COALESCE
• COALESCE returns the first non-null input (or null if all inputs are null)

SELECT COALESCE(NULL,3,NULL) AS firstnonnull;

firstnonnull
3

109

Operations Targeting Nulls
Placeholder

IS NULL
• IS NULL returns true if its input is null

SELECT (1 + NULL) IS NULL AS isnull;

isnull
t

110

Nulls In WHERE / HAVING and Other Condition
Placeholder

WHERE / HAVING
• if the condition evaluates to NULL or false the tuple is removed

CASE
• the same applies to the condition of the CASE construct

111

Nulls And Aggregation
Placeholder

Aggregation Functions
• NULL values are ignored

Group-by values
• NULL is treated as a regular value

112

DDL

SQL Overview
Queries
DDL

Creating Tables
Altering Tables

DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

DDL
Placeholder

DDL
Creating Tables
Altering Tables

113

CREATE TABLE statement
Placeholder

• the CREATE TABLE statement creates a new table
create_table := CREATE TABLE <table_name> (

<table_item>+
);

table_item := <column_def> | <constraint>

column_def :- <name> <data_type> [<constraints>]
constraint := NOT NULL | UNIQUE | PRIMARY KEY | CHECK <cond> | DEFAULT <value>

113

Creating Tables - Example
Placeholder

• REFERENCES defines a single column FOREIGN KEY

• CHECK defines a boolean condition over values of a single row that has to be
fulfilled

• NOT NULL disallows NULL values in a column
CREATE TABLE courserating (

studentid VARCHAR(5) NOT NULL REFERENCES student,
courseid VARCHAR(8) NOT NULL REFERENCES course,
rating NUMERIC(2,1) CHECK (rating BETWEEN 0.0 AND 5.0),
PRIMARY KEY(courseid, studentid)

);

114

DDL
Placeholder

DDL
Creating Tables
Altering Tables

115

ALTER TABLE statement
Placeholder

• the ALTER TABLE statement changes the definition of a table
• many different changes are possible
• here we just review a few
• https://www.postgresql.org/docs/current/sql-altertable.html

115

Altering Columns
Placeholder

Adding / deleting columns
• newly added columns will be populated with NULL values or the DEFAULT value of
the new column if specified

ALTER TABLE student ADD COLUMN age INT;
ALTER TABLE student DROP COLUMN age;

116

Altering Columns
Placeholder

Renaming columns
• Changing the name of a column

ALTER TABLE student RENAME COLUMN name TO fullname;

SELECT * FROM student LIMIT 1;

id fullname deptname totcred
00128 Zhang Comp. Sci. 102

117

Altering Constraints
Placeholder

Dropping Constraints
• drop a constraint by name (have to lookup system-generated names if need be)

ALTER TABLE courserating
DROP CONSTRAINT courserating_pkey;

118

Altering Constraints
Placeholder

Adding Constraints
• add a new named constraint

ALTER TABLE courserating
ADD CONSTRAINT courserating_key
PRIMARY KEY (courseid, studentid);

119

DML

SQL Overview
Queries
DDL
DML

DML Operations
Insert
Deletion
Update

Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

DML
Placeholder

DML
DML Operations
Insert
Deletion
Update

120

The Data Manipulation Language (DML) part of SQL provides language constructs for
inserting, deleting, and updating rows of a table.

120

DML
Placeholder

DML
DML Operations
Insert
Deletion
Update

121

Insert With VALUES
Placeholder

Inserting Rows
• In this form of the INSERT statement, one or more rows are provided to be
inserted into the table

INSERT INTO <table_name> VALUES <row_list>;

INSERT INTO courserating
VALUES
('00128', 'BIO-101', 3.5),
('00128', 'BIO-301', 3.7);

121

Insert Query Results
Placeholder

Inserting Query Results
• In this form of the INSERT statement, the result of a query is inserted into a table
• The query has to return the same number of columns as the table and data types
have to be compatible

INSERT INTO courserating
(SELECT s.id, c.courseid, 2.0 AS rating

FROM student s, course c
WHERE s.deptname = c.deptname AND s.deptname = 'Comp. Sci.');

122

DML
Placeholder

DML
DML Operations
Insert
Deletion
Update

123

DELETE Statement
Placeholder

Deletion
• The DELETE statement removes all rows that fulfill the WHERE clause condition of
the statement

DELETE FROM courserating
WHERE courseid = 'CS-101';

123

Nested subqueries
Placeholder

DELETE statements can use nested subqueries in the WHERE clause
DELETE FROM courserating
WHERE studentid IN (SELECT id FROM student WHERE deptname = 'Comp.

Sci');↪→

124

DML
Placeholder

DML
DML Operations
Insert
Deletion
Update

125

UPDATE Statement
Placeholder

• The UPDATE statement modifies the values of all rows for which the WHERE clause
evaluates to true

• The SET specifies how to update rows using a list of statements of the form:
attr = expr

• expr is an expression over the attributes of the table and is evaluated using the
values of the current row

• Nested subqueries can be used in both the SET and WHERE clause

125

Update Examples
Placeholder

UPDATE courserating
SET rating = CASE WHEN rating < 3.0

THEN rating + 1.0
ELSE 4.0

END
WHERE courseid = 'CS-101';

126

Database Catalog

SQL Overview
Queries
DDL
DML
Database Catalog

Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

Database Catalog
Placeholder

Database Catalog
Database Catalog

127

What is the database catalog?
Placeholder

• The DBMS stores schema information in the database catalog
• Most DBMS make the catalog available for querying as tables (or views)
• In postgres, every database has the information_schema and the pg_catalogschemata

— The default schema is public

127

Querying the catalog
Placeholder

SELECT * FROM pg_tables WHERE tablename = 'student';

schemaname tablename tableowner tablespace hasindexes hasrules hastriggers rowsecurity
public student postgres t f t f

128

Querying the catalog
Placeholder

SELECT table_schema AS schema,
table_name AS tablename,
table_type AS ttype

FROM information_schema.tables LIMIT 3;

schema tablename ttype
public x BASE TABLE
public department BASE TABLE
public course BASE TABLE

129

Further Reading
Placeholder

• catalog tables: https://www.postgresql.org/docs/16/catalogs.html
• catalog views: https://www.postgresql.org/docs/16/views.html

130

Query Execution, Optimization &
Explain

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain

Query Execution
Query Optimization
Index Structures
Explain & Statistics

Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

Query Execution, Optimization & Explain
Placeholder

Query Execution, Optimization & Explain
Query Execution
Query Optimization
Index Structures
Explain & Statistics

131

What is Query Execution?
Placeholder

• The DBMS features multiple implementations for each relational algebra operator
— these differ in resource requirements (memory, I/O cost, CPU cost)— may only be applicable under certain conditions

• The execution engine takes a plan (a tree of operators that implement a query)
and evaluates the plan to produce query results

131

Query Execution, Optimization & Explain
Placeholder

Query Execution, Optimization & Explain
Query Execution
Query Optimization
Index Structures
Explain & Statistics

132

Some Important Operator Implementations
Placeholder

• table access
— sequential scan - scan through all rows of the table— index scan - retrieve rows from a table fulfilling a condition using an available index

• joins
— nested loop join - for each row from the left table scan through all rows of the righttable— hash join - for an equality join, build a hash table over one of the tables (with joinattributes as key) and for each row of the other table probe the hash table to findmatches— merge join - sort both input tables on the join attributes and then simultaneouslyscan through the table

132

Some Important Operator Implementations
Placeholder

• aggregation
— group-by with hashing - store partial results for each group in a hashtable indexedby group. For each row update the group’s aggregation result in the hash table (orcreate a new one if we do not have an entry for the group yet)— group-by with sorting - sort the input table on the group-by attributes, then scanthrough the input table once maintaining a partial aggregation result for the currentgroup. Once we observe a new group, output the result for the current group andreinitialize the aggregation result for the next group.

133

What is Query Optimization?
Placeholder

• As mentioned before, the database optimizer . . .
— generates multiple plans for a query— estimates the execution cost for each plan— selects the plan with the lowest estimated cost

• query optimization 101
— The database translates the query into relational algebra (or something every similar)— For each logical operator in a query we choose an implementation (a physicaloperator)— The database also applies equivalence preserving transformations to transform thequery into equivalent query with a different operator tree

134

Query Execution, Optimization & Explain
Placeholder

Query Execution, Optimization & Explain
Query Execution
Query Optimization
Index Structures
Explain & Statistics

135

What Is an Index?
Placeholder

Indexes
• An index is a data structure that enables fast access to the rows of a table based
on the values of the rows in one or more attributes

• Index structures in databases are:
— disk-based: the index is materialized on disk and can be larger than available mainmemory— optimized to minimize I/O: data structures are designed to reduce the amount ofI/O needed to access data

In-memory Index Structures
You probably already know several in-memory index structures:

• Balanced search trees (e.g., red-black tree, AVL-tree)
• Hash tables (e.g., Python dictionary)

135

Common Disk-based Index Structures
Placeholder

• B-tree
— a balanced search tree with large fan out and nodes sized to be a multiple of diskpage size

• Extensible hashing
— hash tables with buckets that are multiple of the disk page size large and can growwithout full reorganization

136

Index Trade-offs
Placeholder

Faster Access
• In terms of O-notation:

— tree-based indexes are have logarithmic look-up runtime (O(log n))— hash-based indexes have expected constant time look-up (O(1))
• Without an index we have to scan through the whole table (O(n))

Overhead For updates
• When we modify the database, then indexes have to be updated too

— This slows down updates
Storage overhead

• Indexes take up extra storage on disk and in memory
137

Index Trade-offs
Placeholder

Supported predicates
• Not all conditions can be checked using index structures
• B-tree: order-based and equality comparisons (<, <, =, >, >)
• Hash-index: equality comparisons

Higher Constant Factors
• The cost per row we are accessing (the constant factor) is significantly higher for
indexes than for just scanning through a table

• Details depend on machine / DBMS / size of rows / . . .
— realistic numbers: if the query needs more than 0.1% of the table, then the indexwould be slower

138

Index Definition in SQL
Placeholder

Defining & Dropping Indexes
• CREATE INDEX .. and DROP INDEX ...

• Postgres documentation:
https://www.postgresql.org/docs/current/sql-createindex.html

CREATE INDEX <name> ON <table> (<col_or_expr_list>);

CREATE INDEX student_name ON student (name);

139

Query Execution, Optimization & Explain
Placeholder

Query Execution, Optimization & Explain
Query Execution
Query Optimization
Index Structures
Explain & Statistics

140

What is EXPLAIN?
Placeholder

• Postgres allows us to inspect which execution plan its optimizer selected for a
query from within SQL using the EXPLAIN statement

EXPLAIN SELECT * FROM student;

QUERY PLAN
Seq Scan on student (cost=0.00..1.15 rows=15 width=25)

EXPLAIN SELECT * FROM largestudent WHERE id = '00128';

QUERY PLAN
Index Scan using largestudent_pkey on largestudent (cost=0.42..8.44 rows=1 width=38)

Index Cond: (id = '00128'::text)

140

EXPLAIN Examples
Placeholder

EXPLAIN SELECT * FROM student s, takes t WHERE s.id = t.id;

QUERY PLAN
Hash Join (cost=1.34..2.63 rows=22 width=53)

Hash Cond: ((t.id)::text = (s.id)::text)
-> Seq Scan on takes t (cost=0.00..1.22 rows=22 width=28)
-> Hash (cost=1.15..1.15 rows=15 width=25)

-> Seq Scan on student s (cost=0.00..1.15 rows=15 width=25)

141

EXPLAIN Examples
Placeholder

EXPLAIN SELECT courseid, count(*) numreg FROM student s, takes t
WHERE s.id = t.id GROUP BY courseid;

QUERY PLAN
HashAggregate (cost=2.74..2.86 rows=12 width=15)

Group Key: t.courseid
-> Hash Join (cost=1.34..2.63 rows=22 width=7)

Hash Cond: ((t.id)::text = (s.id)::text)
-> Seq Scan on takes t (cost=0.00..1.22 rows=22 width=13)
-> Hash (cost=1.15..1.15 rows=15 width=6)

-> Seq Scan on student s (cost=0.00..1.15 rows=15 width=6)

142

Maintaining Statistics
Placeholder

• The optimizer relies on statistics about the number of rows and value
distributions of attributes in a table

• You can force postgres to update its statistics using the ANALYZE statement
ANALYZE;

143

EXPLAIN ANALYZE
Placeholder

Issues with EXPLAIN
• EXPLAIN does not execute the query

— if the optimizer’s estimations are off, you will not know!
EXPLAIN ANALYZE

• The EXPLAIN ANALYZE version of EXPLAIN executes the query and shows actual
numbers in addition to the estimates

144

EXPLAIN ANALYZE Examples
Placeholder

EXPLAIN ANALYZE SELECT * FROM student;

QUERY PLAN
Seq Scan on student (cost=0.00..1.15 rows=15 width=25) (actual time=0.005..0.007 rows=15 loops=1)
Planning Time: 0.622 ms
Execution Time: 0.047 ms

EXPLAIN ANALYZE SELECT * FROM student WHERE id = '00128';

QUERY PLAN
Seq Scan on student (cost=0.00..1.19 rows=1 width=25) (actual time=0.007..0.010 rows=1 loops=1)

Filter: ((id)::text = '00128'::text)
Rows Removed by Filter: 14

Planning Time: 0.582 ms
Execution Time: 0.037 ms

145

EXPLAIN ANALYZE Examples
Placeholder

EXPLAIN ANALYZE SELECT * FROM student s, takes t WHERE s.id = t.id;

QUERY PLAN
Hash Join (cost=1.34..2.63 rows=22 width=53) (actual time=0.037..0.048 rows=22 loops=1)

Hash Cond: ((t.id)::text = (s.id)::text)
-> Seq Scan on takes t (cost=0.00..1.22 rows=22 width=28) (actual time=0.003..0.005 rows=22 loops=1)
-> Hash (cost=1.15..1.15 rows=15 width=25) (actual time=0.016..0.016 rows=15 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on student s (cost=0.00..1.15 rows=15 width=25) (actual time=0.005..0.007 rows=15 loops=1)

Planning Time: 1.612 ms
Execution Time: 0.087 ms

146

EXPLAIN ANALYZE Examples
Placeholder

EXPLAIN ANALYZE SELECT courseid, count(*) numreg
FROM student s, takes t
WHERE s.id = t.id GROUP BY courseid;

QUERY PLAN
HashAggregate (cost=2.74..2.86 rows=12 width=15) (actual time=0.050..0.054 rows=12 loops=1)

Group Key: t.courseid
Batches: 1 Memory Usage: 24kB
-> Hash Join (cost=1.34..2.63 rows=22 width=7) (actual time=0.029..0.039 rows=22 loops=1)

Hash Cond: ((t.id)::text = (s.id)::text)
-> Seq Scan on takes t (cost=0.00..1.22 rows=22 width=13) (actual time=0.003..0.005 rows=22 loops=1)
-> Hash (cost=1.15..1.15 rows=15 width=6) (actual time=0.011..0.012 rows=15 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on student s (cost=0.00..1.15 rows=15 width=6) (actual time=0.003..0.005 rows=15 loops=1)

Planning Time: 1.730 ms
Execution Time: 0.120 ms

147

Access Control

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control

Access Control
GRANT And REVOKE
Users & Roles
Revoking Indirect Privileges

Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

Access Control
Placeholder

Access Control
Access Control
GRANT And REVOKE
Users & Roles
Revoking Indirect Privileges

148

Textbook
Placeholder

Textbook: Chapter 4.6 (authorization)

148

Why Access Control?
Placeholder

• Most organizations store several types of data
• Not all users of the database should . . .

— get access to all data— should be allow to update data— should be allowed to change the database’s schema
• The solution is access control (part of the SQL standard)

149

Access Control Permissions
Placeholder

Common permissions
• select - query (read) the data (no modifications)
• insert - insert new data (no delete or update)
• update - updates, but no deletion of data
• delete - delete data
• all priviledges - all applicable privileges

150

Access Control
Placeholder

Access Control
Access Control
GRANT And REVOKE
Users & Roles
Revoking Indirect Privileges

151

Grant
Placeholder

• grant gives privileges to users (or roles as described later).
GRANT <priviledges> ON <database_object> TO <user/role_list>;

CREATE USER hrstaff_peter;
CREATE USER hrstaff_bob;
GRANT select, update ON student TO hrstaff_peter, hrstaff_bob;

151

Grant with Grant Option
Placeholder

• A user having role X for object O can grant this to any user U
— This does not give U the privilege to grant X on O to user users

• To allow U to bestow this priviledge to other users, we have to use specify this
explicitly using WITH GRANT OPTION

GRANT select ON student TO testuser WITH GRANT OPTION;

152

Revoke
Placeholder

• revoke removes privileges
REVOKE <priviledge_list> ON <database_object> FROM <user/role_list>;

CREATE USER testuser;
GRANT select ON student TO testuser;
REVOKE select ON student FROM testuser;

153

Access Control
Placeholder

Access Control
Access Control
GRANT And REVOKE
Users & Roles
Revoking Indirect Privileges

154

Users and Permissions
Placeholder

Users
• Most DBMS allow users to be defined (typically independent of OS users)
• Creating users:
https://www.postgresql.org/docs/current/sql-createuser.html

CREATE USER name WITH <options>

options := PASSWORD <password> | SUPERUSER | ...

Superusers
• In Postgres, any users created with SUPERUSER has all permissions!
• In real production environments use this with extreme care
• . . . but quite useful for our purpose

154

Roles
Placeholder

Role
• roles allow priviledges to be grouped

— grant privileges to a role— grant role to a user

155

Role Example
Placeholder

• Graduate affairs (GA) personal should have update access to student and
enrollment information and read access to courses

• instead of giving these privileges to each individual HR use, grant them to an HR
role and then just grant the role to the user

CREATE USER peter;
CREATE USER bob;
CREATE USER alice;
CREATE ROLE GA;
GRANT GA TO peter, bob, alice;
GRANT all privileges ON student, takes TO GA;
GRANT select ON course TO GA;

156

Access Control
Placeholder

Access Control
Access Control
GRANT And REVOKE
Users & Roles
Revoking Indirect Privileges

157

Modeling Indirect Privileges As Graphs
Placeholder

• Alice grants a right to Peter with the grant option
• Alice grants the same right to Bob
• Peter also grants the right to Bob

Alice

Peter

Bob

grant option

157

RESTRICT and CASCADE
Placeholder

• Indirect privileges are handled by REVOKE based on whether RESTRICT or CASCADEis used
— RESTRICT - if indirect privileges would be affected, the database rejects thestatement— CASCADE - if indirect privileges are affected, then they are revoked too

REVOKE select ON student FROM testuser RESTRICT;
REVOKE select ON student FROM testuser CASCADE;

158

Example RESTRICT and CASCADE
Placeholder

• Alice revokes the privilege from Peter
• This cascades to Bob if the CASCADE option is used for
REVOKE (RESTRICT would fail instead)

• Bob still retains the right as it was also directly granted
by Alice

Alice

Peter

Bob

159

Triggers, Procedural Extensions, and
UDFs

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs

Overview & Functions in SQL
PL/pgSQL
Functions in External Languages
Triggers

PL Access to SQL
Recap

Triggers, Procedural Extensions, and UDFs
Placeholder

Triggers, Procedural Extensions, and UDFs
Overview & Functions in SQL
PL/pgSQL
Functions in External Languages
Triggers

160

Overview
Placeholder

Issues & Inconveniences in SQL Queries
• Nomodularity apart from views

— but views do not have parameters→ they are inflexible
• No state and procedural constructs (looping, conditional execution)

160

SQL Procedures & Functions
Placeholder

Basic Syntax
• functions

CREATE FUNCTION <func_name>(<arg_list>)
RETURNS <return_type> AS <code> LANGUAGE SQL;

• procedures
CREATE FUNCTION <func_name>(<arg_list>)
AS <code> LANGUAGE SQL;

161

SQL Procedures & Functions
Placeholder

Remarks
• the function’s code has to be provided as a string

— to avoid having to heavily escape the code, Postgres supports and alternative stringsyntax: $somestring$ code $somestring$ where somestring should be a stringthat is unlikely to appear in the code

162

SQL Function Example
Placeholder

CREATE FUNCTION one() RETURNS INTEGER AS
$$

SELECT 1;
$$
LANGUAGE SQL;

SELECT one();

one
1

163

SQL Function Example
Placeholder

CREATE FUNCTION myadd(a int, b int) RETURNS INTEGER AS
$$

SELECT a + b;
$$
LANGUAGE SQL;

SELECT myadd(10,11);

myadd
21

164

SQL Function Example
Placeholder

CREATE FUNCTION insertstud(id CHAR(5),
name VARCHAR(20),
deptname VARCHAR(20))

RETURNS CHAR(5) AS
$$

INSERT INTO student VALUES (id,name,deptname,0);
SELECT id;

$$
LANGUAGE SQL;

165

SQL Function Example
Placeholder

SELECT insertstud('00000', 'X Y', 'Comp. Sci.');

SELECT * FROM student WHERE name = 'X Y';

id name deptname totcred
00000 X Y Comp. Sci. 0

166

Table-valued Functions
Placeholder

What are table-valued functions
• SQL functions can return tables
• Such functions are called in the FROM clause
• If the function takes input parameters then they may come from prior FROM clause
items

• In Postgres the return type of these functions is
— SET OF RECORD or— <tablename>: if the function returns rows with the same schema as table

tablename

167

Table-valued Functions Example
Placeholder

CREATE FUNCTION csstud() RETURNS SETOF student AS
$$

SELECT * FROM student WHERE deptname = 'Comp. Sci.';
$$
LANGUAGE SQL;

SELECT * FROM csstud();

id name deptname totcred
00128 Zhang Comp. Sci. 102
12345 Shankar Comp. Sci. 32
54321 Williams Comp. Sci. 54
76543 Brown Comp. Sci. 58
00000 X Y Comp. Sci. 0
99999 Lazy Bert Comp. Sci. 0 168

Triggers, Procedural Extensions, and UDFs
Placeholder

Triggers, Procedural Extensions, and UDFs
Overview & Functions in SQL
PL/pgSQL
Functions in External Languages
Triggers

169

What is PL/pgSQL?
Placeholder

• PL/pgSQL is Postgres’s procedural language embedding SQL
— https://www.postgresql.org/docs/current/plpgsql.html

• Standard imperative language constructs
— Variables and assignment (using :=)

◦ Can assign the results of queries to variables
— Looping constructs— Function calls— Cursors allow looping through query results— Blocks - enclosed by BEGIN and END

169

Anatomy Of A PL/pgSQL Function
Placeholder

CREATE FUNCTION <name> (<parameters>) AS $$
[DECLARE

<declaration_list>
]
BEGIN
<statement_list>
END;
$$ LANGUAGE plpgsql;

170

Basic Function Example
Placeholder

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN

tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

SELECT sales_tax(100.0) AS salestax;

salestax
6

171

Assignments & Variables
Placeholder

172

Assignment Examples
Placeholder

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int)
AS $$↪→

BEGIN
sum := x + y;
prod := x * y;

END;
$$ LANGUAGE plpgsql;

SELECT * FROM sum_n_product(2, 4);

sum prod
6 8

173

Assignment Examples With Queries
Placeholder

CREATE FUNCTION query_f(dept VARCHAR, OUT cnt INT) AS $$
BEGIN

cnt := (SELECT count(*) FROM student WHERE deptname = dept);
END;
$$ LANGUAGE plpgsql;

SELECT * FROM query_f('Comp. Sci.');

cnt
6

174

Conditional Execution (If Statement)
Placeholder

• If statements allow conditional execution as in imperative programming languages
IF <condition>
THEN

<code>
[ELSIF <condition>
THEN

<code>
]+
[ELSE

<code>
]
END IF

175

If Statement Examples
Placeholder

CREATE FUNCTION opt_sales_tax(subtotal real, OUT tax real) AS $$
BEGIN

IF subtotal > 100.0 THEN
tax := subtotal * 0.06;

ELSE
tax := 0;

END IF;
END;
$$ LANGUAGE plpgsql;
SELECT opt_sales_tax(50.0) AS opttax;

opttax
0

176

Looping Constructs - While
Placeholder

• The while loop iterates as long as its condition evaluates to true
WHILE <condition> LOOP

<code>
END LOOP;

177

While Example
Placeholder

CREATE FUNCTION mypower(n int, m int) RETURNS INT AS
$$
DECLARE

result integer := 1;
BEGIN

WHILE m > 0 LOOP
result := result * n;
m := m - 1;

END LOOP;
RETURN result;

END;
$$ LANGUAGE plpgsql;

178

While Example
Placeholder

SELECT mypower(10,3);

mypower
1000

179

Looping Constructs - For
Placeholder

• The for loop iterates over a set of results assigning each result to <varname>
• Iterating over query results: the variable has to be of type RECORD

FOR <varname> IN <expression> LOOP
<code>

END LOOP;

180

For Example
Placeholder

CREATE FUNCTION totstud_cred()
RETURNS INT AS

$$
DECLARE

totalcredits integer := 0;
credrec RECORD;

BEGIN
FOR credrec IN (SELECT totcred FROM student) LOOP

totalcredits := totalcredits + credrec.totcred;
END LOOP;
RETURN totalcredits;

END;
$$ LANGUAGE plpgsql;

181

For Example
Placeholder

SELECT totstud_cred() AS total;

total
854

182

Triggers, Procedural Extensions, and UDFs
Placeholder

Triggers, Procedural Extensions, and UDFs
Overview & Functions in SQL
PL/pgSQL
Functions in External Languages
Triggers

183

External Functions
Placeholder

Functions in C
• Postgres has build in support for functions written in C

• Functions have to be compiled into a dynamically linked library
• Postgres has to be instructed to load such a library before the function can be
used

Other Procedural Languages
• Postgres supports a larger number of procedural languages
• Some come with the base distributions and other require building extensions

— https://wiki.postgresql.org/wiki/PL_Matrix

183

Triggers, Procedural Extensions, and UDFs
Placeholder

Triggers, Procedural Extensions, and UDFs
Overview & Functions in SQL
PL/pgSQL
Functions in External Languages
Triggers

184

What is a Trigger?
Placeholder

• Triggers are functions that are executed when a table is accessed
• For DML statements, triggers may change the result of DML statements
• Triggers have conditions that determines when they fire (the trigger’s function is
called)

• Trigger functions are executed either BEFORE, AFTER, or INSTEAD OF the
statement that triggers them

• Triggers can be executed once per statement or for every row
• https://www.postgresql.org/docs/16/triggers.html

184

Trigger Syntax
Placeholder

• https://www.postgresql.org/docs/16/sql-createtrigger.html

CREATE TRIGGER <name> <when_executed> <event> ON <table>
<alias_rows_table>
<per_row_or_statement>
[WHEN <condition>]
EXECUTE { FUNCTION | PROCEDURE } <func_name> (<arguments>)

when_executed := BEFORE | AFTER | INSTEAD OF
event := INSERT | UPDATE | DELETE
per_row_or_statement := FOR EACH ROW | FOR EACH STATEMENT
alias_rows_table :=

185

Trigger Functions in PL/pgSQL
Placeholder

• Trigger functions in PL/pgSQL have to return trigger

• The old and new row / table is available as variables OLD and NEW
• The return value is the updated row / table

186

PL/pgSQL Example
Placeholder

Disallow Updates to Student ID
CREATE FUNCTION lockid() RETURNS trigger AS
$$

BEGIN
IF OLD.id != NEW.id THEN

RAISE EXCEPTION 'cannot modify student ids';
END IF;
RETURN NEW;

END;
$$ LANGUAGE plpgsql;

187

PL/pgSQL Example
Placeholder

Disallow Updates to Student ID
CREATE TRIGGER lockid BEFORE UPDATE ON student

FOR EACH ROW
EXECUTE FUNCTION lockid();

UPDATE student SET id = '11111';

:2: ERROR: cannot modify student ids
CONTEXT: PL/pgSQL function lockid() line 4 at RAISE

188

PL Access to SQL

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL

Overview
Java
Python

Recap

PL Access to SQL
Placeholder

PL Access to SQL
Overview
Java
Python

189

Database architectures
Placeholder

• Server-based: clients connect to the database over a network protocol
• Embedded: the database is embedded into the application and accessed through
an API from the programming language

189

Postgres
Placeholder

• Postgres is server-based system
• Client libraries exist for many programming languages that implement the
Postgres network protocol

• https://wiki.postgresql.org/wiki/Client_Libraries

• https:
//www.postgresql.org/download/products/2-drivers-and-interfaces/

• We will look at two common examples (Java and Python)
— example code for Java, Python, and JS is available in the git repos:

https://github.com/lordpretzel/cs480

190

PL Access to SQL
Placeholder

PL Access to SQL
Overview
Java
Python

191

JDBC
Placeholder

• JDBC is a Java SPI for communicating with SQL databases
• Different DBMS are supported through drivers (Java libraries)
• Provides a standardized interface for all supported databases

191

Import Relevant Classes
Placeholder

• Import relevant JDBC classes
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.Connection;

192

Loading the Driver
Placeholder

• To connect to a database you need to have the jar file for the driver for yourDBMS
— the jar has to be in your class path

• You need to load the driver using the classloader
String JDBC_DRIVER = "org.postgresql.Driver";

// load the driver based on the drivers class name
Class.forName(JDBC_DRIVER);

193

Connections & Statements
Placeholder

• Connection represent network connections to the database
• Statement objects are used to execute SQL
• ResultSet objects are handles to query results and can be used to iterate over
query results

194

Opening & Closing Connections
Placeholder

public static final String JDBC_DB = "university";
public static final String JDBC_PORT = "5450";
public static final String JDBC_HOST = "127.0.0.1";
public static final String JDBC_URL = "jdbc:postgresql://" + JDBC_HOST

+ ":" + JDBC_PORT + "/" + JDBC_DB;↪→

public static final String DBUSER = "postgres";
public static final String DBPASSWD = "test";

Connection c = DriverManager.getConnection(JDBC_URL, DBUSER,
DBPASSWD);↪→

c.close();

195

Creating & Closing Statements
Placeholder

• Statement objects are used to execute SQL statements
— Inspite of the name

Statement s = c.createStatement();
s.close();

196

Executing Queries and Processing Results
Placeholder

• The Statement classes executeQuerymethod runs a query and returns a
ResultSet object

• The ResultSet object is used to iterate over result rows and retrieve attribute
values of the current row as Java objects

r = s.executeQuery("SELECT id, tot_cred, name FROM student ORDER BY
name ASC;");↪→

while(r.next()) {
String id = r.getString("id");
String name = r.getString("name");
int tot_cred = r.getInt("tot_cred");
System.out.println(id + "," + name + "," + tot_cred);

}
r.close();

197

SQL Injection
Placeholder

• SQL passed as a string to the execute methods
• If such a string is dynamically constructed from user input, then this represents a
security thread

• Attackers may craft responses that change the executed SQL code’s semantics to. . .
— Retrieve data they should not have access to— Modify the database

198

SQL Injection Example
Placeholder

• Consider a web form where the user inputs a student UIN and gets back student
information

• This web interface may construct a query like this where uin is the UIN submitted
by the user through the webform

sql = "SELECT * FROM student WHERE id = '" + uin + "';";

• Now an attacker can craft a uin value that includes quotes to change the
statements where condition

111111' OR 'a' = 'a

• Substituting this value the resulting query is (which returns all students)
SELECT * FROM student WHERE id = '111111' OR 'a' = 'a';

199

SQL Injection
Placeholder

• We cannot cover SQL injection in depth here. Here are some resources if you wantto know more:
— https://portswigger.net/web-security/sql-injection— https://owasp.org/www-project-mutillidae-ii/

200

Prepared Statements
Placeholder

• Prepared statements are statements with parameters
— The statement is created once— The statement can be executed many times with different parameters

Preventing SQL Injection
Prepared statements prevent SQL injection as the user input is only assigned to
parameters and there is no way to change what statement is executed

201

Prepared Statements in JDBC
Placeholder

Creating Prepared Statements
• Prepared statements are regular SQL statements that can contain parameters
(represented using ?)

• In JDBC prepared statements are created by calling the prepareStatement
method of the Connection class

PreparedStatement p = conn.prepareStatement("SELECT * FROM student
WHERE id = ?");↪→

202

Prepared Statements in JDBC
Placeholder

Executing Prepared Statements
• First set values for the parameters using the type-specific setmethods of
PreparedStatement

• Then call executeUpdate or executeQuery
p.setString(1,"11111"); // set first parameter to value "11111"
ResultSet rs = p.executeQuery();

203

Advantages of Prepared Statements
Placeholder

• Typically the database only optimizes the query / update once if it is a prepared
statement
— sophisticated systems may generate multiple plans for different selectivity (causedby the choice of parameter values), but still will not parse and optimize the preparedstatement every time it is executed

• This is useful for fast queries where query optimization can become a bottleneck
— e.g., simple updates

204

Cleanup
Placeholder

• Note that Connection, Statement, and ResultSet objects need to be explicitly
closed to release resources

resultsset.close();
statement.close();
connection.close();

205

Metadata Access
Placeholder

• JDBC provides an API for accessing the database catalog in a system-independent
way

• You get a DatabaseMetaData object by calling the Connection classes
getMetaData()method

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

and Column-Pattern↪→

// Returns: One row for each column
while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME"));

}

206

PL Access to SQL
Placeholder

PL Access to SQL
Overview
Java
Python

207

psycopg library
Placeholder

• Most common (but not only) Python library
• Wraps Postgre’s C library (can lead to installation problems)

207

Connections
Placeholder

• To communicate with the database you first have to open a connection
import psycopg2

define connection parameters
connection = { 'dbname': 'cs480_slides',

'user': 'postgres',
'host': '127.0.0.1',
'password': 'test',
'port': 5450 }

open connection
conn = psycopg2.connect(**connection)
print(conn)

<connection object at 0x1099a8c10; dsn: 'user=postgres password=xxx dbname=cs480_slides host=127.0.0.1 port=5450', closed: 0>

None
208

Cursor
Placeholder

• Cursors allow execution of SQL code
cur = conn.cursor()

run query
cur.execute("SELECT name, deptname FROM student")

fetch all results into a list of tuples
rows = cur.fetchall()
print(rows[0])

('Zhang', 'Comp. Sci.')

209

Cleanup
Placeholder

• After being done with a cursor / connection, you should close them to release
resources

cur.close()
conn.close()

210

Recap

SQL Overview
Queries
DDL
DML
Database Catalog
Query Execution, Optimization & Explain
Access Control
Triggers, Procedural Extensions, and UDFs
PL Access to SQL
Recap

Recap
Placeholder

• DDL - Data definition language
— Create & modify the database schema

• DML - Updates & Queries
— Inserts, updates, and deletes— Query blocks— (Nested) Subqueries— Window functions— Views and CTEs— Recursive queries

• Database Catalog
— stores schema information accessible as tables / views

• Access Control
211

Recap
Placeholder

• Triggers and Procedural Extensions
— triggers are function that are executed conditional on DML operations on tables

• SQL from a Programming Language
— access SQL using client libraries for a PL— JDBC and ODBC

212

