

- · Features of a Good / Bad Design
- Atomic Domains and First Normal Form (1NF)
- Decomposition as a tool to "fix" a bad design (resolve redundancies)
- Identifying bad designs based on (functional) dependencies between attributes
- Functional dependency theory and tool box
- Normal forms (disallowing redundancies)
 - 1NF, 2NF, 3NF, Boyce-Codd NF

Textbook

Textbook: Chapter 7

Bad Design - Redundancy

- · Suppose we combine instructor and department into inst_dept
- We saw before that this leads to redundancy (repeated information)

Why Redundancy is Bad

- · Update Physics department
- need to update multiple tuples
- inefficient and potential for errors (if only some copies are updated)
- · Delete Physics department
- need to update multiple tuples
- inefficient and potential for errors (if only some copies are updated)
- · Departments without instructors or instructors without a department
- Need dummy department and instructor
- Makes aggregation error-prone (dummies should not be counted)

Not All Combined Schemas are Bad!

- · Combining relations does not always lead to redundancy!
- · secclass (sec_id, building, room_number)
- · secinfo (course_id, sec_id, semester, year)
- · combined relation: section (course_id, sec_id, semester, year, building, room_number)

secclass

secinfo

What Leads to Redundancy?

What does redundancy mean?

- The values of some attributes of a relation are uniquely determined by the values of other attributes
- · instructor (id, salary, deptname, building, budget)
- · deptname determines the values of building and budget

What Leads to Redundancy?

- · Note that the above description sounds suspiciously like the definition of a key!
- But keys are needed to identify tuples and are in general unavoidable!
- The issue stems from attributes that are not a key determining other attributes that are not part of a key
 - deptname is not part of the key so
 - o there may be multiple tuples with the same department
 - these tuples will all have the same building and budget

· We need some generalization of keys to express that some attributes determine some, but not all other attributes of a relation: functional dependencies

- Decomposition splits a relation into multiple relations R by projecting on subsets of the attributes of R
 - Each resulting table is called a fragment
- · Decomposition can resolve redundancy

 $\pi_{id,salary,deptname}(instdept)$

 $\pi_{\textit{deptname},\textit{building},\textit{budget}}(\textit{instdept})$

· Decompositions can loose information, they may be lossy

 $\pi_{id,salary}(instdept)$

 $\pi_{deptname,building,budget}(instdept)$

inst ⋈ dept

Testing For Lossless-ness

- · How can we test whether a decomposition is lossless?
- · If we can reconstruct the original table from the decomposed fragments, the apparently we have not lost information!
 - Start with the original table, decompose it, join back the fragments
- If the result is the same as the original table, then the decomposition is lossless

- This needs to work for every valid instance though!
- · Need to determine this based on integrity constraints alone
- · Functional dependencies will allow us to formalize this

Goal - Devise A Theory of Normalization

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, ${\bf decompose}$ it into a set of relations $\{R_1, R_2, \dots, R_n\}$ such that

 - each relation is in good form
 the decomposition is a lossless decomposition
- · Our theory is based on:
 - Models of dependency between attribute values to determine whether decompositions are lossless
 - functional dependencies
 - multivalued dependencies 2. Concept of lossless decomposition
 - 3. Normal Forms Based On
 - Atomicity of values
 - Avoidance of redundancy

 - o Transformation into normal forms by lossless decomposition

Functional Dependency Theory

Functional Dependency Theory Functional Dependencies Inference & Closures Armstrong's Axioms Attribute Closures Canonical Cover

Agenda

- · Theory of dependencies
- · Lossless decompositions
 - Define lossless decompositions
- Check whether a decomposition will be lossless using dependency theory
- Normalforms & decomposition
- Define normal forms that avoid redundancies
- Devise algorithms for checking whether a schema is a normal form
- Devise algorithms to transform schema into a normal form using decomposition

Functional Dependency Theory

Functional Dependency Theory Functional Dependencies

Integrity Constraints

- Recall that an integrity constraint σ is a logical condition evaluated over a relational database instance D
 - If $D \models \sigma$ then D is said to **fulfill** the constraint
- If an integrity constraint σ is defined on a relational schema ${\bf D}$, then only instances D that fulfill the constraint are **valid** instances of the schema
- Integrity constraints restrict the valid instances of a schema
- · Integrity constraints we have seen so far:
- Keys (super keys, candidate keys)
- Foreign keys

Functional Dependencies

- A functional dependency (FD) $\alpha \to \beta$ checks whether for all tuples of a relation the values of a set of attributes α uniquely determine the values of attributes β
- · Functional dependencies are a generalization of keys
- Thus, every key is a functional dependency

Functional Dependencies

Definition (Fulfilling FDs)

Given a relational schema **R**, a **functional dependency** $\alpha \to \beta$ where $\alpha \subseteq \mathbf{R}$ and $\beta \subseteq \mathbf{R}$ holds on an instance R of R iff:

$$\forall t_1, t_2 \in R : t_1[\alpha] = t_2[\alpha] \rightarrow t_1[\beta] = t_2[\beta]$$

Α	В
1	4
1	5
3	7

- A → B does not hold
- $B \rightarrow A$ does hold

- K is a superkey for \mathbf{R} iff $K \to \mathbf{R}$
- K is a candidate key for R iff
 K → R
- $-K \rightarrow \mathbf{R}$ $- \exists \alpha \subset K : \alpha \rightarrow \mathbf{R}$
- · not all FDs are superkeys
- inst_dept (ID, name, salary, deptname, building, budget)
- · We may expect these FDs to hold:

 $\textit{deptname} \rightarrow \textit{building}$

 $\emph{ID} \rightarrow \emph{building}$

Using Functional Dependencies

- Test whether a relation is valid for a schema with FDs as integrity constraints
 - We say that R satisfies Σ
- · Test whether a join decomposition is lossless (later)
- · Specify in a schema what relations are valid

determine them from a single instance

We say that Σ hold on R

Warni

- If a specific instance R may satisfy an FD σ that does not mean that the FD holds on all instances of ${\bf R}$
- e.g., $\textit{name} \rightarrow \textit{ID}$ may hold for one instance of the instructor relation

Trivial Functional Dependencies

How To Determine FDs For a Schema?

Definition (Trivial ED

An FD σ is trivial if it holds on every possible instance of **R**

Proposition (Subset Condition for Triviality)

• An FD $\sigma: \alpha \to \beta$ is trivial iff $\beta \subseteq \alpha$

- As FDs have to hold on all instances of a relation, we can in principle not
- There are approaches that automate the discovery of FDs, but these are beyond the scope of this class
- For the purpose of this course, we will assume that FDs have been developed by a domain expert that can determine which constraints would be valid for the domain of interest we are designing a database schema for

19

Functional Dependency Theory

UIC

Implication of Dependencies

Functional Dependency Theory

Inference & Closures

rmstrong's Axioms

Attribute Closures

Definition (Implication)

Consider a set of functional dependencies Σ and single FD σ over the same schema **R**. We say that Σ implies σ written as $\Sigma \Rightarrow \sigma$ iff:

$$\forall D: D \models \Sigma \rightarrow D \models \sigma$$

We can extend this to sets of FDs as follows:

$$\Sigma_1 \Rightarrow \Sigma_2 \Leftrightarrow \forall \sigma \in \Sigma_2 : \Sigma_1 \Rightarrow \sigma$$

Implication Example

UIC

Equivalence

$\{A \rightarrow B, B \rightarrow C\}$ implies $A \rightarrow C$

Α	В	C	D
a1	b1	c1	d1
a1	b1	c1	d2
a2	b2	c2	d3
a2	b2	c2	d4
27	h2	c2	45

Definition (Equivalence)

Two sets of FDs Σ_1 and Σ_2 are equivalent ($\Sigma_1 \equiv \Sigma_2$) if they imply each other (they hold on exactly the same set of databases):

$$\Sigma_1 \equiv \Sigma_2 \Leftrightarrow \left(\Sigma_1 \Rightarrow \Sigma_2\right) \wedge \left(\Sigma_2 \Rightarrow \Sigma_1\right)$$

22

23

Closure

Definition (Closure)

The closure Σ^+ of a set of FDs Σ is the set of all FDs implied by Σ :

$$\Sigma^+ = \{\sigma \mid \Sigma \Rightarrow \sigma\}$$

Question

Can this be checked by looking only at the FDs or do we need to look at all infinitely many possible databases?

Theorem (Uniqueness)

If $\Sigma_1 \equiv \Sigma_2$ then ${\Sigma_1}^+ = \Sigma_2^+$

Properties of The Closure

- Note that the closure of Σ is exponential in the number of the attributes of R e.g., there are already an **exponential** number of **trivial** FDs
- The closure of Σ is always a superset of Σ (every FD trivially implies itself)

24

Armstrong's Axioms

Functional Dependency Theory

Armstrong's Axioms

Consider a schema R, Armstrong's axioms are

- Reflexivity:
 - Given β ⊆ α ⊆ \mathbf{R}
 - then $\alpha \rightarrow \beta$
- Augmentation:
- Given σ_1 : $\alpha → \beta$ and $\gamma ⊆ ℝ$
- then $\alpha \cup \gamma \rightarrow \beta \cup \gamma$ Transitivity
- Given $\sigma_1 : \alpha \rightarrow \beta$ and $\sigma_2 : \beta \rightarrow \gamma$

Inference with Armstrong's Axioms

Soundness and Completeness

Given a set of Σ ,

- we write $\Sigma \to_{\mathbb{A}} \sigma$ to denote that σ can be derived from Σ by a single application of one of Armstrong's axioms.
- we write $\Sigma \stackrel{*}{\to}_{\mathbb{A}} \sigma$ to denote that σ can be derived from Σ through some sequence of applications of Armstrong's axioms

We are also interested in the set of all FDs $\Sigma_{\mathbb{A}}$ that can be derived from Σ using Armstrong's axioms:

 $\Sigma_{\mathbb{A}} = \{\sigma \mid \Sigma \stackrel{*}{\rightarrow}_{\mathbb{A}} \sigma \}$

A set of inference rules is ...

- sound if all FDs derived by the rules are implied by $\boldsymbol{\Sigma}$
- complete if all FDs in $\sigma \in \Sigma^+$ can be inferred using the rules

Theorem (Amstrong's Axioms are Sound and Complete)

Definition (Amstrong's Axioms)

Armstrong's axioms are sound and complete:

 $\Sigma_A = \Sigma^+$

Applying Armstrong's Axioms

• $\mathbf{R} = (A, B, C, G, H, I)$

 $\Sigma = \{$ $A \rightarrow B$ $A \rightarrow C$

 $C, G \rightarrow I$ $B \rightarrow H$

- some members of Σ^+

- \circ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
- $-A,G \rightarrow I$
- augmenting A → C with G to get A, G → C, G transitivity with $C, G \rightarrow I$
- $C, G \rightarrow H$ $-C,G \rightarrow H,I$
 - ∘ augment $C, G \rightarrow I$ to get $C, G \rightarrow C, G, I$
 - augment C, G → H to get C, G, I → H, I
 - o transitivity

Deriving Additional Inference Rules

- · Based on the result from the previous slide Armstrong's axioms are sufficient for computing Σ^+
- · Prove additional rules that simplify the process (less inference steps)

Prove or disprove the following rules

- $A \rightarrow B$, C implies $A \rightarrow B$ And $A \rightarrow C$
- $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B$, C
- $A, B \rightarrow B, C$ implies $A \rightarrow C$

• $A \rightarrow B$ and $C \rightarrow D$ implies $A, C \rightarrow B, D$

UIC)

Deriving Additional Inference Rules - Results

- $A \rightarrow B$, C implies $A \rightarrow B$ And $A \rightarrow C$ (decomposition)
 - B, C → B (reflexivity)
- A → B (transitivity) symmetric proof for A → C
- $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B$, C (union)
- $-A \rightarrow A, B$ (augment $A \rightarrow B$ with A)
- $-A, B \rightarrow B, C$ (augment $A \rightarrow C$ with B)
- A → B, C (transitivity)
- $A, B \rightarrow B, C$ implies $A \rightarrow C$ (wrong), counterexample:

Deriving Additional Inference Rules - Results

- $A \rightarrow B$ and $C \rightarrow D$ implies $A, C \rightarrow B, D$ (composition)
 - $-A, C \rightarrow B, C \text{ (augment } A \rightarrow B \text{ with } C)$
 - = B, C → B, D (augment C → D with B) A, C → B, D (transitivity)

10 return Σ_{new}

Computing Closures

· We can use the following fix point process

Algorithm 1: Compute FD Closure Input : Set of FDs Σ , Schema R Output: The closure Σ^+ $\begin{array}{ll} 1 & \Sigma_{CU'} = \emptyset, \Sigma_{new} = \Sigma \\ 2 & \text{while } \Sigma_{CU'} \neq \Sigma_{new} \text{ do} \\ 3 & \Sigma_{CU'} \leftarrow \Sigma_{new} \\ 4 & \text{for } \alpha \subseteq \beta \subseteq \text{R do} \\ 5 & \sum_{new} \leftarrow \Sigma_{new} \cup \{\alpha \rightarrow \beta\} \end{array}$ /* until a fix point is reached */ /* reflexivity */ $\begin{array}{l} \text{for } \alpha \to \beta \in \Sigma_{\textit{cur}}, \gamma \subseteq \mathbf{R} \text{ do} \\ \sqsubseteq \Sigma_{\textit{new}} \leftarrow \Sigma_{\textit{new}} \cup \{\alpha \cup \gamma \to \beta \cup \gamma\} \end{array}$ /* augmentation */ for $\alpha \to \beta \in \Sigma_{cur} \land \beta \to \gamma \in \Sigma_{cur}$ do $\[\sum_{new} \leftarrow \Sigma_{new} \cup \{\alpha \to \gamma\} \]$

Computing Closures Computational Complexity

Exponential Complexity

- There are obvious ways to improve the algorithm such as computing trivial FDs
- However, the problem is the exponential output size
- no matter what great algorithm we come up with it has to enumerate exponentially many results!

/* transitivity */

Functional Dependency Theory

Attribute Closures

Definition (Attribute Closure)

Given Σ over **R** and $\alpha \subseteq \mathbf{R}$, the attribute closure α^+ of α wrt. Σ is the maximal subset of **R** implied by α :

- $\Sigma \Rightarrow \alpha \rightarrow \alpha^+$
- ∄γ ⊃ α⁺ : Σ ⇒ α → γ

Computing Attribute Closures

 $\begin{array}{ll} \textbf{Input} & : \mathsf{Set} \ \mathsf{of} \ \mathsf{FDs} \ \Sigma, \ \mathsf{Attributes} \ \alpha \subseteq \mathbf{R} \\ \mathbf{Output} : \ \mathsf{The} \ \mathsf{attribute} \ \mathsf{closure} \ \alpha^+ \end{array}$ 1 $\alpha_{cur} = \emptyset$, $\alpha_{new} = \alpha$ 2 while $\alpha_{cur} \neq \alpha_{new}$ do $\begin{array}{c} \alpha_{\mathit{cur}} \leftarrow \alpha_{\mathit{new}} \\ \text{for } \beta \rightarrow \gamma \in \Sigma \text{ do} \\ \mid \text{if } \beta \subseteq \alpha_{\mathit{new}} \text{ then} \end{array}$

Algorithm 2: Compute Attribute Closure

/* until a fix point is reached */

/* LHS is in α_{new} then add RHS */

7 return αα

• Let $n = |\mathbf{R}|$ and $m = |\Sigma|$

· Each each iteration of the outer loop we either add another attribute or stop — ⇒ we will do at most n iterations of the outer loop

Attribute Closures Computational Complexity

- · The inner loop always iterates exactly m times
- ⇒ the algorithm is O(n · m)
 - much faster than the closure algorithm!

Use Cases of Attribute Closure

- · Testing for a superkey
- If $\alpha^+ = \mathbf{R}$ then α is a super key
- · Testing functional dependencies
- If β ⊆ α⁺ then Σ \Rightarrow α \rightarrow β
- · Computing closures (still exponential so we will not use this)
- For each $\alpha \subseteq \mathbf{R}$ compute α^+ and for each subset $\beta \subseteq \alpha^+$ output $\alpha \to \beta$

Linear Time Attribute Closure Algorithm

- The attribute closure algorithm has two sources of inefficiency:
 - Functional dependencies that have "fired" in a previous iteration are tested again in all following iterations
 - No progress is monitored for "finding" attributes from the LHS of an FD
- The algorithm presented on the next slide from [1] addresses these shortcomings by tracking which attributes from the LHS of an FD have been found so far and which FDs' RHS have been added to the result so far

Linear Time Attribute Closure Algorithm - Data Structures

Data Structures

- Assign numeric identifiers to the FDs and attributes (starting from 0).
- int[] c: an integer array with one element per FD that is initialized to the size of the LHS of the FD.
- list<int>[] rhs: an array of lists with one element per FD. For each FD stores the numeric IDs of attributes from the FDs RHS.
- list<int>[] lhs: an array of lists of integers, one element per attribute. The element for each attribute stores the IDs of the FDs that have this attribute in its LHS.
- $-\ \mathtt{set} < \mathtt{int} > \ \mathtt{aplus};$ a set storing the attributes that we have determined to be in the result so far
- stack<int> todo: a stack of attributes to be processed

Linear Time Attribute Closure Algorithm

Algorithm 3: Compute Attribute Closure (linear time)

Input : Set of FDs Σ. Attributes α C. R. Output: The attribute closure α^{-1} 1 $todo = \alpha$, $aplus = \emptyset$ 2 **while** $\neg todo.isEmpty()$ **do** /* until todo is empty */ $curA \leftarrow todo.pop()$ aplus.add(curA)/* add curA to result */ /* update LHS attributes found so far */
/* found a LHS attr for fd */ for $fd \in lhs[curA]$ do c[fd] - -if c[fd] = 0 then :[fd] = 0 then :remove(lhs[curA], fd)for $newA \in rhs[fd]$ do $if \neg aplus[newA]$ then todo.push(newA)/* avoid firing twice */ /* add implied attributes */
/* if attribute is new add to todo */ aplus.add(newA)

Functional Dependency Theory

Functional Dependency Theory

Canonical Cover

UIC

Motivation

- · Sets of FDs may contain redundant dependencies that can be inferred from the remaining FDs
- $A \rightarrow C$ is redundant (transitivity) in $\{A \rightarrow B; B \rightarrow C; A \rightarrow C\}$
- · Some FDs may have attributes that can be removed without changing the semantics of the set of FDs
- $\{A \rightarrow B; B \rightarrow C; A \rightarrow C, D\}$ can simplified to $\{A \rightarrow B; B \rightarrow C; A \rightarrow D\}$
- $\{A \rightarrow B; B \rightarrow C; A, C \rightarrow D\}$ can simplified to $\{A \rightarrow B; B \rightarrow C; A \rightarrow D\}$

Extraneous Attributes Example

Definition (Extraneous Attributes)

- Consider a set of FDs Σ and $\sigma: \alpha \rightarrow \beta \in \Sigma$ — Attribute $A \in \alpha$ is extraneous in α if \circ $\Sigma \Rightarrow (\Sigma - \{\sigma\}) \cup \{(\alpha - \{A\}) \rightarrow \beta\}$ — Attribute $A \in \beta$ is extraneous in β if ∘ $(\Sigma - \{\sigma\}) \cup \{\alpha \rightarrow (\beta - \{A\})\} \Rightarrow \Sigma$
- · Technically we require logical equivalence, but the other direction is trivial as "stronger" FDs always imply "weaker" ones
- $\Sigma = \{A \rightarrow C; A, B \rightarrow C\}$
- B is extraneous in A, B → C because Σ implies A → C
- $\Sigma = \{A \rightarrow C; A, B \rightarrow C, D\}$
- C is extraneous in A, B → C, D since A, B → C can be inferred even after deleting C

Testing for Extraneous Attributes

- Testing if $A \in \alpha$ is extraneous in α — compute $(\alpha - \{A\})^+$ using Σ - if $\beta \subseteq (\alpha - \{A\})^+$ then A is extraneous in α
- Testing if $A \in \beta$ is extraneous in β
 - compute α^+ using $\Sigma' = (\Sigma \{\sigma\}) \cup \{\alpha \rightarrow (\beta \{A\})\}$
- if α^+ contains A then A is extraneous in β

Definition (Canonical Cover)

A set of FDs $\Sigma_{\mathcal{C}}$ is a canonical cover of a set of FDs Σ iff:

- Σ ≡ Σ_C
- No FD in $\Sigma_{\mathcal{C}}$ contains an extraneous attribute
- No two FDs in $\Sigma_{\mathcal{C}}$ share the same LHS

UIC)

Computing Canonical Covers

 $\mathbf{R} = (A, B, C)$

Computing Canonical Covers

 $\begin{array}{c} \textbf{Input} : \mathsf{Set} \ \mathsf{of} \ \mathsf{FDs} \ \Sigma \\ \textbf{Output} : \mathsf{A} \ \mathsf{Canonical} \ \mathsf{Cover} \ \Sigma_{\mathsf{C}} \end{array}$

 $\begin{array}{lll} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ for $\sigma: \alpha \to \beta \in \Sigma$ do if $A \in \alpha$ is extraneous then $\Sigma_{\text{new}} \leftarrow \Sigma_{\text{new}} - \{\sigma\} \cup \{(\alpha - \{A\}) \rightarrow \beta\}$ **continue** $\Sigma_{\text{new}} \leftarrow \Sigma_{\text{new}} - \{\sigma\} \cup \{\alpha \rightarrow (\beta - \{A\})\}\$ continue

Algorithm 4: Compute Canonical Cover

/* until a fix point is reached */ /* union RHS */

 $\Sigma = \{$ $A \rightarrow B, C$ $B \rightarrow C$ $A \rightarrow B$ $A, B \rightarrow C$

- **Union**: Combine $A \rightarrow B$, C and $A \rightarrow B$ into $A \rightarrow B$, C- Intermediate result {A → B, C; B → C; A, B → C}
 - Removing extraneous attributes: A is extraneous in A, B → C Check if after deleting A the FD is implied by Σ yes, B → C is in the set — Intermediate result {A → B, C; B → C}
 - Removing extraneous attributes: C is extraneous in A → B, C
 - Check if $A \rightarrow C$ is implied by $A \rightarrow B$ and the other dependencies \circ yes, using transitivity on $A \rightarrow B$ and $B \rightarrow C$
 - · The canonical cover is:

$$\Sigma_C = \{A \to B; B \to C\}$$

UIC

Decomposition & Dependency Preservation

Decomposition & Dependency Preser Lossless Join Decompositions Decomposition & FDs Dependency Preservation

Agenda

- · Theory of dependencies
- · Lossless decompositions
 - Define lossless decompositions
 - Check whether a decomposition will be lossless using dependency theory
- · Normalforms & decomposition
 - Define normal forms that avoid redundancies
- Devise algorithms for checking whether a schema is a normal form
- Devise algorithms to transform schema into a normal form using decomposition

Decomposition & Dependency Preservation

Lossless Join Decomposition

Decomposition & Dependency Preservation

Lossless Join Decompositions

Definition (Decomposition)

Given a relational schema $\mathbf{R}(A_1,\ldots,A_n)$ and an instance R over \mathbf{R} and sets of attributes $\mathbf{R_1}, \dots, \mathbf{R_m}$ such that $\forall i \in [1, m] : \mathbf{R_i} \subseteq \mathbf{R}$ is called a decomposition of \mathbf{R} . The decomposition of R wrt. R_1, \ldots, R_m is this set of instances:

 $\{R_i \mid R_i = \pi_{\mathbf{R_i}}(R)\}$

Definition (Lossless Join Decomposition)

Consider a decomposition $\mathbf{R_1}, \dots, \mathbf{R_m}$ of a schema $\mathbf{R}(A_1, \dots, A_n)$. We call $\mathbf{R_1}, \dots, \mathbf{R_m}$ a lossless join decomposition of **R** if for **every** instance *R* of **R** we have:

 $R = \pi_{R_1}(R) \bowtie ... \bowtie \pi_{R_m}(R)$

Decomposition & Dependency Preservation

Decomposition & FDs

Sufficient Condition for Lossless Join Decomposition

How does This Condition Work?

· How can we test whether a decomposition will be lossless?

Theorem (Sufficient Condition

Consider schema R with functional dependencies Σ . A decomposition R_1 and R_2 is lossless if at least one of the following FDs is in Σ^+ :

- $\bullet \ R_1 \cap R_2 \to R_1$
- $\bullet \ R_1 \cap R_2 \to R_2$

Why does this work?

- WLOG let us assume that $\textbf{R}_1 \cap \textbf{R}_2 \rightarrow \textbf{R}_2$ holds
- If the common attributes determine all attributes of R_2 , then $A = R_1 \cap R_2$ is a key
- Consider a tuple $t \in R_1$. Then the values of t.A determine all the values of a tuple in Ro
- $-\Rightarrow$ each tuple $t \in R_1$ will join with **exactly one** tuple in R_2
- \Rightarrow Consider a tuple $t \in R$ that was decomposed into $t_1 \in R_1$ and $t_2 \in R_2$. The natural

The Sufficient Condition in Action

- $\mathbf{R} = (A, B, C)$ with $\Sigma = \{A \rightarrow B; B \rightarrow C\}$
- Decomposition $R_1 = (A, B)$ and $R_2 = (B, C)$
- this is a **lossless join decomposition** $\mathbf{R_1} \cap \mathbf{R_2} = \{B\}$ and $B \to B$, $C \in \Sigma^+$

R	
---	--

Α	В	С
1	1	1
2	1	1
3	2	3
4	2	3

The Sufficient Condition in Action

- $\mathbf{R} = (A, B, C)$ with $\Sigma = \{A \rightarrow B; C \rightarrow B\}$
- Decomposition $\mathbf{R_1} = (\mathbf{A}, \mathbf{B})$ and $\mathbf{R_2} = (\mathbf{B}, \mathbf{C})$
- this is **not a lossless join decomposition**
- $R_1 \cap R_2 = \{B\}$ $B \rightarrow B, C \not\in \Sigma^+$
- and $B \rightarrow A$, $B \notin Σ$ ⁺

Decomposition & Dependency Preservation

Decomposition & Dependency Preservation

Dependency Preservation

Dependencies on Decomposed Relations

- What happens to dependencies under decompositions?
- We can only directly check dependencies $\alpha\to\beta$ where $\alpha\cup\beta$ is contained in at least one fragment Ri

Definition (Dependency Preservation)

For a decomposition R_1,\dots,R_n of R with FDs Σ we define:

$$\Sigma_{i} = \{\alpha \rightarrow \beta \mid \alpha \rightarrow \beta \in \Sigma^{+} \land (\alpha \cup \beta) \subseteq \mathbf{R_{i}}\}$$

The decomposition is dependency preserving if:

$$\left(\bigcup_{i} \Sigma_{i}\right)^{+} = \Sigma^{+}$$

Dependency Preservation

(UIC

Testing Dependency Preservation - Naive Algorithm

Caveat

• note that Σ_i is defined using the closure Σ^+ and, thus, may be exponentially large!

Why do we need the closure?

- $\Sigma = \{A \rightarrow B; B \rightarrow C\}$ over $\mathbf{R} = (A, B, C)$
- Consider decomposition R₁ = (AC) and R₂ = (AB)
- Σ_1 includes $A \to C$ as $A \to C$ is in Σ^+ and only uses attributes from \mathbf{R}_1
- However, $A \rightarrow C$ is not present in Σ

Algorithm 5: Test Dependency Preservation (naive)

Input : Set of FDs Σ , Decomposition $R_1, \dots R_n$ Output: True if the decomposition preserves \(\Sigma \)

- $\begin{array}{ll} {\bf 1} \ \ {\bf for} \ i \in [1,n] \ {\bf do} \\ {\bf 2} \ \ \bigsqcup \ \Sigma_i = \{\alpha \to \beta \mid \alpha \to \beta \in \Sigma^+ \land \big(\alpha \cup \beta\big) \subseteq {\bf R}_i\} \end{array}$
- з $\Sigma_{decomposed} = \bigcup_{i=1}^n \Sigma_i$
- 4 return $\Sigma_{decomposed}^{+} = \Sigma^{+}$

- Apply the PTIME procedure shown on the next slide to each $\sigma \in \Sigma$.
- If it returns **true** for each $\sigma \in \Sigma$, then the **decomposition is dependency** preserving.If it fails however, we have to fall back to the test using closures
- That is: returning **true** for all $\sigma \in \Sigma$ is a **sufficient**, but not **necessary** condition for dependency preservation

Algorithm 6: Test Dependency Preservation

 $\begin{array}{l} \mathbf{1} \ \ A_{cur} \leftarrow \emptyset \\ \mathbf{2} \ \ A_{new} \leftarrow \alpha \\ \mathbf{3} \ \ \mathbf{while} \ A_{cur} \neq A_{new} \ \mathbf{do} \end{array}$ $A_{cur} \leftarrow A_{new}$ for $i \in [1, n]$ do

s return $\beta \in A_{new}$

Why Does The Sufficient Condition Work

- 1. $\alpha \to \beta \in \Sigma$ is preserved in the decomposition if $\alpha^+ \supseteq \beta$ when α^+ is computed using $\Sigma_{decomposition} = \bigcup_{i=1}^{n} \Sigma_{i}$
 - the decomposition is dependency preserving if and only if all $\sigma \in \Sigma$ are preserved (as then we can infer any $\sigma \in \Sigma^+$ using Σ_{decon}
- 2. We still need to show that if the algorithm returns ${f true}$, then $lpha o eta \in \Sigma$ is preserved under the decomposition
 - for any $\gamma\subseteq\mathbf{R}_{i},$ $\gamma\to\gamma^{+}$ is an FD in Σ^{+} (follows from the definition of attribute closure)
 - then $\gamma \to \gamma^+ \cap \mathbf{R}_i$ will be an FD in $\Sigma_{decomposition}^+$ (based on the definition of
 - for any FD $\gamma \to \delta$ is in $\Sigma_i \subseteq \Sigma_{decomposition}$ if $\delta \subseteq \gamma^+ \cap \mathbf{R}_i$

Positive Example

• $\mathbf{R} = (A, B, C)$ with $\Sigma = \{A \rightarrow B, B \rightarrow C\}$

Normalforms & Decomposition

- Decomposition $R_1 = (A, B)$ and $R_2 = (B, C)$
- this lossless join decomposition is dependency preserving

	R	
Α	В	C
1	1	1
2	1	1
3	2	3
4	2	3

UIC

Algorithms

/* until a fix point is reached */

Negative Example

- $\mathbf{R} = (A, B, C)$ with $\Sigma = \{A \rightarrow B, B \rightarrow C\}$
- Decomposition $R_1 = (A, B)$ and $R_2 = (A, C)$
- this is a lossless join decomposition
- not dependency preserving (B → C is not preserved)

	R	
Α	В	C
1	1	1
2	1	1
3	2	3
4	2	3

Purpose of Normalization

· Theory of dependencies

Agenda

- Lossless decompositions Define lossless decompositions
 - Check whether a decomposition will be lossless using dependency theory
- · Normalforms & decomposition
- Define normal forms that avoid redundancies
- $-\hspace{0.1cm}$ Devise algorithms for checking whether a schema is a normal form
- Devise algorithms to transform schema into a normal form (normalize it) using

Normalforms & Decomposition Algo Normal Forms 1NF

- Consider relation \boldsymbol{R} with FDs $\boldsymbol{\Sigma}$
- Determine whether \boldsymbol{R} is prevents redundancy • If R does allow for certain types of redundancy then decompose it
- Each fragment is in the desired normal form
- The decomposition is lossless
- If possible, the decomposition should be dependency preserving

Normalforms & Decomposition Algorithms

Outline

Normalforms & Decomposition Algorithms

Normal Forms

- · We will cover several normal forms that are increasingly strict, but also form a
- hierarchy in terms of the types of redundancy they avoid - 1NF - attribute domains have to be atomic
- 2NF non-prime attributes do not depend on parts of a key
- 3NF no non-prime attribute depends transitively on a key
- BCNF every attribute only depends on a candidate key
- 4NF and 5NF (we will only briefly discuss these)

Normalforms & Decomposition Algorithms

1NF

Atomic Domains

- · An attribute domain is atomic if its values can be considered as indivisible
- not atomic: set-valued attributes, composite attributes
- atomic: numbers, strings (sometimes)

When Are Domains Atomic?

- Atomicity is not a precise formal concept
- rule of thumb: if we do not need to divide the value into smaller parts, then we can consider it to be atomic
- · Consider student ids that consists of a two characters for the major followed by a number. Is this atomic?
 - If we extract student majors from these ids then we should not consider them atomic
- If we only use the complete values then we can consider student ids to be atomic

First Normal Form (1NF)

Definition (First Normal Form (1NF))

A relation R is in 1NF if the domains of all attributes in R are atomic

Redundancy caused by non-atomic values

 ${\boldsymbol{\cdot}}$ Consider encoding Address information as a string in a set-valued attribute

Name	Address	
Peter	{ "456 Tyler St, Chicago", "3400 Michigan Ave, Chicago" }	
Alice	{ "456 Tyler St, Chicago" }	
Poh	("2400 Michigan Avo, Chicago")	

Normalforms & Decomposition Algorithms

Non-prime Attributes

Normalforms & Decomposition Algorithms

2NF

Definition (Non-prime Attributes)

- Let CandKeys(\mathbf{R}, Σ) denote the set of all candidate keys for \mathbf{R}
- An attribute A is non-prime if:

 $\not\exists K \in \mathsf{CandKeys}(\mathbf{R}, \Sigma) : A \in K$

• Let NonPrime (\mathbf{R}, Σ) denote the set of **non-prime** attributes of \mathbf{R}

Non-prime Attributes Example

Second Normal Form (2NF)

- $\mathbf{R}(A, B, C)$ with $\Sigma = \{A \rightarrow B; B \rightarrow C\}$
- CandKeys($\mathbf{R}, \Sigma) = \{\{\mathit{A}\}\}$, i.e., $\{\mathit{A}\}$ is the only candidate key
- ⇒ B and C are non-prime

Definition (Second Normal Form (2NF))

A relation is in second normal form (2NF) iff

- It is in 1NF
- · and no non-prime attribute depends on parts of a candidate key:

 $\forall A \in \mathsf{NonPrime}(\mathbf{R}, \Sigma) : \exists \alpha \subset K \in \mathsf{CandKeys}(\mathbf{R}, \Sigma) : \alpha \to A \in \Sigma^+$

R(A, B, C, D)

 $-A \rightarrow C$

 $-B \rightarrow D$

 $- \ A,B \to C,D$

2NF Example

• $K = \{A, B\}$ is the only candidate key

- R is not in 2NF
- A → C where A \subset K and C \in NonPrime(\mathbf{R} , Σ)
- For instance, a more concrete interpretation of **R** is Advisor(InstrSSN, StudentUIN, InstrName, StudentName)
- · This is an indication that we are putting stuff together that does not belong together

Why Is Non-2NF Bad?

- · Why is a dependency on parts of a candidate key bad?
- That is: Why is not being in 2NF bad?
- · Advisor (InstrSSN, StudentCWID, InstrName, StudentName)
- $\bullet \; \textit{StudentCWID} \to \textit{StudentName}$
- If a student has more than one adviser then the student's name will be repeated

- Some attributes are unrelated to parts of a candidate key
 Indication that we have put an **N-M** relationship into a table including the attributes
 - of the involved entities. We should decompose the relation.

- instructor (name, salary, depname, depbudget) = I(A, B, C, D)
- {Name} is the only candidate key
- · I is in 2NF
- Redundancy
- depbudget is repeated if there are more than one instructor in the same department

Normalforms & Decomposition Algorithms

3NF

Alternative Definition of 3NF

Definition (Third Normal Form (3NF))

A relation **R** with FDs Σ is in third normal form (3NF) if for all $\sigma: \alpha \to \beta \in \Sigma^+$ at least one of the following conditions holds:

1. $\alpha \rightarrow \beta$ is **trivial** ($\beta \subseteq \alpha$)

3NF Example

· {Name} is the only candidate key

- 2. α is a superkey
- 3. each attribute $A \in (\beta \alpha)$ is part of a some candidate key of \mathbf{R} :

• instructor (name, salary, depname, depbudget) = I(A, B, C, D)

 $\forall A \in (\beta - \alpha) : \exists K \in \mathsf{CandKeys}(\mathbf{R}, \Sigma) : A \in K$

In the 3rd condition each attribute A may belong to a different candidate key!

Testing for 3NF

- · Compute all candidate keys
- Compute Σ⁺
- For each $\sigma \in \Sigma$ check whether one of the three conditions holds

Optimizations

Naive Algorithm

Alternative Interpretation

Every non-prime attribute only depends directly on a candidate key

- It is sufficient to check the conditions of 3NF on FDs in Σ instead of Σ^+
- Use attribute closure to determine whether α is a superkey for each FD $\alpha \rightarrow \beta \in \Sigma$
- If α is not a superkey then we need to check whether each attribute $\beta-\alpha$ is part

· I is in 2NF

• I is not in 3NF

Testing for 3NF - Computational Complexity

UIC

Blind Decomposition

Computational Complexity

- Testing for 3NF is computationally hard (NP-hard)
- · Why? Computing candidate keys is hard

- Given the computational complexity, it is **not practical** to test whether relations with many attribute and / or many FDs are in 3NF
- · Should we just give up on 3NF?

The algorithm is in PTIME

properties — each R_i is in 3NF

· No! There exists a decomposition algorithm that takes a relation schema R and creates lossless join decomposition $R_1, ..., R_n$ of R such that every R_i is in 3NF

Properties of the Decomposition Algorithm

 ${\ \cdot\ }$ The decomposition R_1,\ldots,R_n computed by the algorithm has the following

UIC)

12 return result

 $\begin{array}{ll} \text{10} & \text{while } \exists R_j, R_k \in \textit{result} : R_j \subseteq R_k \, \text{do} \\ \text{11} & \bigsqcup \textit{result} \leftarrow \textit{result} - \{R_j\} \end{array}$

Decomposition Algorithm

Algorithm 7: 3NF 1 result $\leftarrow \emptyset$, $i \leftarrow 0$ 8 $i \leftarrow i + 1$ 9 $\mathbf{R_i} = K \text{ for some } K \in \text{CandKeys}(\mathbf{R}, \Sigma)$

Does the existence of a PTIME algorithm for decomposition contradict the hardness of the 3NF testing problem?

the decomposition is dependency preserving and lossless-join

- Why can't we apply the decomposition algorithm to ${\bf R}$ and if the algorithm does not decompose R then R was already in 3NF?
- We can reconcile these two results by observing that the algorithm may
- Thus, we cannot use it to test for 3NF

- sometimes further decompose a relation that is already in 3NF

/* remove redundant relations */

• cust_banker_branch (customer_id, employee_id, banch_name, type)

```
\sigma_1: \textit{customer\_id}, \textit{employer\_id} \rightarrow \textit{branch\_name}, \textit{type}
\sigma_2: employee_id \rightarrow branch_name
\sigma_3: customer_id, branch_name \rightarrow employee_id
```


- (1) Compute a canonical cover
- branch_name is extraneous in the RHS of σ₁
- no other attribute is extraneous, so:

```
\sigma_1': customer_id, employee_id \rightarrow type
\sigma_2: employee\_id \rightarrow branch\_name
\sigma_3: customer_id, branch_name \rightarrow employee_id
```

Redundancy in 3NF

• (2) Ensure that each FD's attributes appear together in one or more fragments

3NF Decomposition Example - Decomposition

- fragments created in this step
 - R₁(customer_id, employee_id, type)
 - R₂(customer_id, branch_name)
 R₃(customer_id, branch_name, employee_id)
- (3) Ensure that at least one fragment contains a candidate key
- R₁ contains the candidate key {customer_id, employee_id}
- no additional fragments have to be added in this step • (4) Remove contained fragments
- R₂ is contained in R₃, R₂ will be removed
- (5) Final result
- R₁(customer_id, employee_id, type)

Normalforms & Decomposition Algorithms

- Ra(customer id, branch name, employee id)

- R (S,I,D)
- $\Sigma = \{S, D \rightarrow I, I \rightarrow D\}$
- · dept advisor (studentid, instructorid, dept name) instructors work for one department only
- a student has a unique advisor from each
- department
- Candidate keys are {S,D} and {S,I}
- . This relation is in 3NF, but exhibits redundancy:
 - if an instructor appears in multiple tuples, then the department is repeated, e.g., (i_1, d_1)

Normalforms & Decomposition Algorithms

BCNF

Boyce-Codd Normal Form (BCNF)

Definition (Boyce-Codd Normal Form (BCNF))

A relation schema ${\bf R}$ with FDs Σ is in Boyce-Codd Normal Form if for every functional dependency $\sigma \in \Sigma^+$ at least one of the following conditions holds:

- $\alpha \to \beta$ is trivial
- α is a superkey for **R**, i.e., $\alpha \to \mathbf{R} \in \Sigma^+$
- inst_dept (ID, name, salary, dept_name, building, budget) - with σ : dept_name \rightarrow building, budget in Σ
- This relation is not in **BCNF** as $dept_name$ is not a superkey and the FD σ is not

Testing for BCNF

• For each FD $\sigma: \alpha \to \beta \in \Sigma^+$ check whether it fulfills one of the two conditions $-\beta \subseteq \alpha$

 $-\alpha^+ = \mathbf{R}$ (α is a superkey)

Optimizations

- It can be shown that it suffices to test only the FDs in Σ
- ullet \Rightarrow testing for BCNF is in PTIME

Testing for BCNF after Decomposition

- The optimization is only applicable on the original relation before
- Testing whether the dependencies are preserved is computationally hard!
- Consider **R** (A,B,C,D,E) with $\Sigma = \{A \rightarrow B, B, C \rightarrow D\}$
- Decompose **R** into $\mathbf{R_1}(A,B)$ and $\mathbf{R_2}(A,C,D,E)$ None of the original FDs contain only attributes from $\mathbf{R_2}$ so $\Sigma_2=\emptyset$
- o Applying the optimized test to R2 would mislead us to think that this fragment is in BCNF — However, $A, C \rightarrow D \in \Sigma^+$ based on which R_2 is not in BCNF

s return result

Decomposition Algorithm

Algorithm 8: BCNF Decomposition $\mathbf{1} \ \textit{result} \leftarrow \mathbf{R}, i \leftarrow 0, \textit{done} = \textit{false}$ 2 while ¬ done do if $\exists i : R_i$ not in BCNF then
Let $\sigma = \alpha \to \beta$ such that $\alpha \to R_i \notin \Sigma^+ \land \alpha \cap \beta = \emptyset$ result \leftarrow (result $-R_i$) \cup $\{(R_i - \beta), (\alpha \cup \beta)\}$ /* one fragment not in BCNF */

Properties of the Decomposition Algorithm

Runtime Complexity

- The algorithm is exponential time because of the potential need to compute Σ⁺
- There are PTIME algorithms for BCNF decomposition, but ...
- as for 3NF they may decompose more than necessary

Lossless Join Decomposition

- . The algorithm guarantees that the decomposition is lossless
- When we split a fragment we produce $\mathbf{R}_i = \mathbf{R}_i \beta$ and $\mathbf{R}_k = \alpha \cup \beta$ based on an FD
- As $\mathbf{R}_i \cap \mathbf{R}_k = \alpha$ the FD $\mathbf{R}_i \cap \mathbf{R}_k \to \mathbf{R}_k$ holds which means that the decomposition is

Theorem (Impossibility of Dependency Preservation)

There exists a schema ${\bf R}$ and set of FDs Σ such that there exists no BCNF decomposition of ${\bf R}$ that is dependency preserving

$$\mathbf{R} = (J, K, L)$$

$$\Sigma = \{ J, K \to L \\ L \to K \}$$

- Two candidate keys {J, K} and {J, L}
- Any decomposition of ${\bf R}$ that is in BCNF will fail to preserve: $J, K \rightarrow L$

Does BCNF Solve All of Our Problems with Redundancy?

- There are schemas in BCNF that still exhibit redundancy
- instructors can have multiple children and phone numbers
- · id 1 has children (Bob and Pete) and phone numbers (312-888-8888 and 312-777-5555)

InstrID	child	phone
1	Pete	312-888-8888
1	Pete	312-777-5555
1	Bob	312-888-8888
1	Bob	312-777-5555

- Only trivial functional dependencies hold on this relation
- · Redundancy stems from the independence of children and phone numbers
 - Adding another phone number we have to insert one tuple per child

Additional Normal Forms

The redundancy in this example can be solved using decomposition:

InstrID	child
1	Pete
1	Bob

InstrID	phone
1	312-888-8888
1	312-777-5555

- · Removing further redundancies requires more powerful types of constraints and
- multivalued dependencies and join dependencies
- 5NF or Project-join Normal Form
- Domain-key Normal Form (DKNF)

<u>Definition</u> (Multivalued Dependency)

The multivalued dependency (MVD) $\alpha \rightarrow \beta$ holds on R iff for any pair of tuples t_1 and t_2 with $t_1[\alpha] = t_2[\alpha]$ there exists two tuples t_3 and t_4 in R such that

$$\begin{split} t_1[\alpha] &= t_2[\alpha] = t_3[\alpha] = t_4[\alpha] \\ t_3[\beta] &= t_1[\beta] \\ t_3[\mathbf{R} - \beta] &= t_2[\mathbf{R} - \beta] \\ t_4[\beta] &= t_2[\beta] \\ t_3[\mathbf{R} - \beta] &= t_1[\mathbf{R} - \beta] \end{split}$$

FDs imply MVDs

Consider a schema \mathbf{R} and $\alpha \subseteq \mathbf{R}$ and $\beta \subseteq \mathbf{R}$, then

 $\alpha \rightarrow \beta \Rightarrow \alpha \twoheadrightarrow \beta$

Trivial MVDs

- An MVD σ is trivial if $\emptyset \Rightarrow \sigma$.
- An MVD $\alpha \twoheadrightarrow \beta$ is trivial if either:
- $\begin{array}{ll} & \beta \subseteq \alpha \\ & \mathbf{R} = \alpha \cup \beta \end{array}$

MVD Example

- · Let us revisit the the example in BCNF that still exhibited redundancy
- · instructors can have multiple children and phone numbers
- · id 1 has children (Bob and Pete) and phone numbers (312-888-8888 and 312-777-5555)

InstrID	child	phone
1	Pete	312-888-8888
1	Pete	312-777-5555
1	Bob	312-888-8888
1	Bob	312-777-5555

$$\Sigma = \{\textit{ID} \twoheadrightarrow \textit{child}; \textit{ID} \twoheadrightarrow \textit{phone}\}$$

- For any two tuples $t_1 = (i, c_1, p_1)$ and $t_2 = (i, c_2, p_2)$ there also
- $-t_3 = (i, c_1, p_2)$ and $t_4 = (i, c_2, p_1)$

Appendix

Appendix

Fourth Normal Form (4NF)

Fourth Normal Form (4NF)

A relation ${\bf R}$ with functional and multivalued dependencies Σ is in 4NF if for every multivalued dependency is one of the two conditions hold:

- 1. $\alpha \rightarrow \beta$ is a trivial multivalued dependency
- 2. α is a superkey of ${\bf R}$

- 4NF is stricter than BCNF
- Why? Because FDs imply MVDs but not necessarily vice versa

4NF and Redundancy

- A relation in 4NF may still exhibit redundancies that can be fixed through

agen	product	company
Bob	Laptop	ABM
Bob	Memory	ABM
John	Laptop	Pear
John	Memory	Pear
Pete	Disk	ABM
Pete	Disk	x
Pete	Laptop	ABM
Pete	Laptop	Pear

- · No non-trivial FDs and MVDs hold on this relation
- It is in 4NF
- · Note that R can be decomposed into
- R₁ = (agent, product) R₂ = (agent, company)
- R₃ = (product, company)

Appendix

Appendix

Join Dependencies

UIC

Definition (Join Dependency)

Consider a relation R with schema R and a decomposition R_1, \ldots, R_n . The relation fulfills the join dependency (JD) \bowtie ($\mathbf{R}_1, \dots, \mathbf{R}_n$) iff:

$$R = \pi_{\mathbf{R}_1}(R) \bowtie \ldots \bowtie \pi_{\mathbf{R}_n}(R)$$

- join dependencies are defined based on lossless join decomposition!
- join dependencies generalize MVDs as $\alpha woheadrightarrow \beta$ over $\mathbf{R} = \alpha \cup \beta \cup \gamma$ is equivalent to a binary join dependency $\bowtie (\alpha \cup \beta, \alpha \cup \gamma)$

- The inference problem for join dependencies is decidable
- However, there does not exist a sound and complete axiomatization for join dependencies

Appendix

Appendix

Fifth Normal Form (5NF)

Definition (5NF)

Let Σ be a set of FDs, MVDs, and JDs for a relation ${\bf R}$ and let Δ denote all the key dependencies of ${\bf R}$, i.e., FDs of the form $\alpha \to {\bf R}$ where α is a candidate key. ${\bf R}$ is in project-join normal form also called fifth normal form if for every join dependency σ

$$(\Delta\Rightarrow\sigma)\Leftrightarrow\sigma\in\Sigma^+$$

106