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Relational Database Design
Placeholder

• Features of a Good / Bad Design
• Atomic Domains and First Normal Form (1NF)
• Decomposition as a tool to "fix" a bad design (resolve redundancies)
• Identifying bad designs based on (functional) dependencies between attributes

— Functional dependency theory and tool box
• Normal forms (disallowing redundancies)

— 1NF, 2NF, 3NF, Boyce-Codd NF

2

Textbook
Placeholder

Textbook: Chapter 7
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Bad Design - Redundancy
Placeholder

• Suppose we combine instructor and department into inst_dept
• We saw before that this leads to redundancy (repeated information)

4

Why Redundancy is Bad
Placeholder

• Update Physics department
— need to update multiple tuples— inefficient and potential for errors (if onlysome copies are updated)

• Delete Physics department
— need to update multiple tuples— inefficient and potential for errors (if onlysome copies are updated)

• Departments without instructors or
instructors without a department
— Need dummy department and instructor— Makes aggregation error-prone (dummiesshould not be counted)
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Not All Combined Schemas are Bad!
Placeholder

• Combining relations does not always lead to redundancy!
• secclass (sec_id, building, room_number)
• secinfo (course_id, sec_id, semester, year)
• combined relation: section (course_id, sec_id, semester, year, building,
room_number)

section

secclass secinfo
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What Leads to Redundancy?
Placeholder

What does redundancy mean?
• The values of some attributes of a relation are uniquely determined by the values
of other attributes

• instructor (id, salary, deptname, building, budget)
• deptname determines the values of building and budget
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What Leads to Redundancy?
Placeholder

What about keys?
• Note that the above description sounds suspiciously like the definition of a key!
• But keys are needed to identify tuples and are in general unavoidable!
• The issue stems from attributes that are not a key determining other
attributes that are not part of a key
— deptname is not part of the key so

◦ there may be multiple tuples with the same department
◦ these tuples will all have the same building and budget

Functional dependencies
• We need some generalization of keys to express that some attributes determine
some, but not all other attributes of a relation: functional dependencies
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Fixing Redundancy - Decomposition
Placeholder

• Decomposition splits a relation into multiple relations R by projecting on subsetsof the attributes of R
— Each resulting table is called a fragment

• Decomposition can resolve redundancy

πid,salary,deptname(instdept) πdeptname,building,budget(instdept)
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Lossy Decompositions
Placeholder

• Decompositions can loose information, they may be lossy

πid,salary(instdept) πdeptname,building,budget(instdept)

inst ▷◁ dept
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Testing For Lossless-ness
Placeholder

• How can we test whether a decomposition is lossless?
• If we can reconstruct the original table from the decomposed fragments, theapparently we have not lost information!

— Start with the original table, decompose it, join back the fragments— If the result is the same as the original table, then the decomposition is lossless
Remark

• This needs to work for every valid instance though!
• Need to determine this based on integrity constraints alone
• Functional dependencies will allow us to formalize this
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Goal - Devise A Theory of Normalization
Placeholder

• Decide whether a particular relation R is in "good” form.• In the case that a relation R is not in "good” form, decompose it into a set ofrelations {R1, R2, . . . , Rn} such that— each relation is in good form— the decomposition is a lossless decomposition• Our theory is based on:1. Models of dependency between attribute values to determine whetherdecompositions are lossless
◦ functional dependencies
◦ multivalued dependencies

2. Concept of lossless decomposition3. Normal Forms Based On
◦ Atomicity of values
◦ Avoidance of redundancy
◦ Transformation into normal forms by lossless decomposition
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Agenda
Placeholder

• Theory of dependencies
• Lossless decompositions

— Define lossless decompositions— Check whether a decomposition will be lossless using dependency theory
• Normalforms & decomposition

— Define normal forms that avoid redundancies— Devise algorithms for checking whether a schema is a normal form— Devise algorithms to transform schema into a normal form using decomposition
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Placeholder
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Integrity Constraints
Placeholder

• Recall that an integrity constraint σ is a logical condition evaluated over arelational database instance D
— If D |= σ then D is said to fulfill the constraint

• If an integrity constraint σ is defined on a relational schema D, then only instances
D that fulfill the constraint are valid instances of the schema
— Integrity constraints restrict the valid instances of a schema

• Integrity constraints we have seen so far:
— Keys (super keys, candidate keys)— Foreign keys
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Functional Dependencies
Placeholder

• A functional dependency (FD) α → β checks whether for all tuples of a relation the
values of a set of attributes α uniquely determine the values of attributes β

• Functional dependencies are a generalization of keys
— Thus, every key is a functional dependency
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Functional Dependencies
Placeholder

Definition (Fulfilling FDs)

Given a relational schema R, a functional dependency α → β where α ⊆ R and β ⊆ R
holds on an instance R of R iff:

∀t1, t2 ∈ R : t1[α] = t2[α] → t1[β] = t2[β]

A B
1 4
1 5
3 7

• A → B does not hold
• B → A does hold
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Functional Dependencies and Keys
Placeholder

• K is a superkey for R iff K → R
• K is a candidate key for R iff

— K → R— ̸ ∃α ⊂ K : α → R

• not all FDs are superkeys
• inst_dept ( ID, name, salary, deptname, building, budget)
• We may expect these FDs to hold:

deptname → building
ID → building
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Using Functional Dependencies
Placeholder

• Test whether a relation is valid for a schema with FDs as integrity
constraints
— We say that R satifies Σ

• Test whether a join decomposition is lossless (later)
• Specify in a schema what relations are valid

— We say that Σ hold on R
Warning

• If a specific instance Rmay satisfy an FD σ that does not mean that the FD holdson all instances of R
— e.g., name → IDmay hold for one instance of the instructor relation
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Trivial Functional Dependencies
Placeholder

Definition (Trivial FD)

An FD σ is trivial if it holds on every possible instance of R
Proposition (Subset Condition for Triviality)

• An FD σ : α → β is trivial iff β ⊆ α
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How To Determine FDs For a Schema?
Placeholder

• As FDs have to hold on all instances of a relation, we can in principle not
determine them from a single instance

• There are approaches that automate the discovery of FDs, but these are beyond
the scope of this class

• For the purpose of this course, we will assume that FDs have been developed by a
domain expert that can determine which constraints would be valid for the
domain of interest we are designing a database schema for
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Implication of Dependencies
Placeholder

Definition (Implication)

Consider a set of functional dependencies Σ and single FD σ over the same schema R.
We say that Σ implies σ written as Σ ⇒ σ iff:

∀D : D |= Σ → D |= σ

We can extend this to sets of FDs as follows:
Σ1 ⇒ Σ2 ⇔ ∀σ ∈ Σ2 : Σ1 ⇒ σ
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Implication Example
Placeholder

{A → B, B → C} implies A → C

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a2 b2 c2 d3
a2 b2 c2 d4
a2 b2 c2 d5
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Equivalence
Placeholder

Definition (Equivalence)

Two sets of FDs Σ1 and Σ2 are equivalent (Σ1 ≡ Σ2) if they imply each other (they hold
on exactly the same set of databases):

Σ1 ≡ Σ2 ⇔ (Σ1 ⇒ Σ2) ∧ (Σ2 ⇒ Σ1)
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Closure
Placeholder

Definition (Closure)

The closure Σ+ of a set of FDs Σ is the set of all FDs implied by Σ:
Σ+ = {σ | Σ ⇒ σ}

Question
Can this be checked by looking only at the FDs or do we need to look at all infinitely
many possible databases?

Theorem (Uniqueness)

If Σ1 ≡ Σ2 then Σ1+ = Σ2+
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Properties of The Closure
Placeholder

• Note that the closure of Σ is exponential in the number of the attributes of R
— e.g., there are already an exponential number of trivial FDs

• The closure of Σ is always a superset of Σ (every FD trivially implies itself)
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Placeholder
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Armstrong’s Axioms
Placeholder

Definition (Amstrong’s Axioms)

Consider a schema R, Armstrong’s axioms are
• Reflexivity:

— Given β ⊆ α ⊆ R— then α → β

• Augmentation:
— Given σ1 : α → β and γ ⊆ R— then α ∪ γ → β ∪ γ

• Transitivity
— Given σ1 : α → β and σ2 : β → γ— then α → γ
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Inference with Armstrong’s Axioms
Placeholder

Inference
Given a set of Σ,

• we write Σ →A σ to denote that σ can be derived from Σ by a single application of
one of Armstrong’s axioms.

• we write Σ ∗→A σ to denote that σ can be derived from Σ through some sequence
of applications of Armstrong’s axioms

We are also interested in the set of all FDs ΣA that can be derived from Σ using
Armstrong’s axioms:

ΣA = {σ | Σ ∗→A σ}
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Soundness and Completeness
Placeholder

A set of inference rules is . . .
• sound if all FDs derived by the rules are implied by Σ
• complete if all FDs in σ ∈ Σ+ can be inferred using the rules

Theorem (Amstrong’s Axioms are Sound and Complete)

Armstrong’s axioms are sound and complete:

ΣA = Σ+
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Applying Armstrong’s Axioms
Placeholder

• R = (A, B, C,G,H, I)

Σ = {
A → B
A → C
C,G → H
C,G → I
B → H
}

• some members of Σ+

— A → H
◦ by transitivity from A → B and B → H

— A,G → I
◦ augmenting A → C with G to get A,G → C,G
◦ transitivity with C,G → I

— C,G → H, I
◦ augment C,G → I to get C,G → C,G, I
◦ augment C,G → H to get C,G, I → H, I
◦ transitivity
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Deriving Additional Inference Rules
Placeholder

• Based on the result from the previous slide Armstrong’s axioms are sufficient for
computing Σ+

• Prove additional rules that simplify the process (less inference steps)
Prove or disprove the following rules

• A → B, C implies A → B And A → C
• A → B and A → C implies A → B, C
• A, B → B, C implies A → C
• A → B and C → D implies A, C → B,D
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Deriving Additional Inference Rules - Results
Placeholder

• A → B, C implies A → B And A → C (decomposition)
— B, C → B (reflexivity)— A → B (transitivity)— symmetric proof for A → C

• A → B and A → C implies A → B, C (union)
— A → A, B (augment A → B with A)— A, B → B, C (augment A → C with B)— A → B, C (transitivity)

• A, B → B, C implies A → C (wrong), counterexample:
A B C
a1 b1 c1
a1 b2 c2
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Deriving Additional Inference Rules - Results
Placeholder

• A → B and C → D implies A, C → B,D (composition)
— A, C → B, C (augment A → B with C)— B, C → B,D (augment C → D with B)— A, C → B,D (transitivity)
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Computing Closures
Placeholder

• We can use the following fix point process
Algorithm 1: Compute FD Closure
Input : Set of FDs Σ, Schema R
Output: The closure Σ+

1 Σcur = ∅, Σnew = Σ
2 while Σcur ̸= Σnew do /* until a fix point is reached */
3 Σcur ← Σnew
4 for α ⊆ β ⊆ R do /* reflexivity */
5 Σnew ← Σnew ∪ {α→ β}
6 for α→ β ∈ Σcur, γ ⊆ R do /* augmentation */
7 Σnew ← Σnew ∪ {α ∪ γ → β ∪ γ}
8 for α→ β ∈ Σcur ∧ β → γ ∈ Σcur do /* transitivity */
9 Σnew ← Σnew ∪ {α→ γ}

10 return Σnew
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Computing Closures Computational Complexity
Placeholder

Exponential Complexity
• There are obvious ways to improve the algorithm such as computing trivial FDs
upfront

• However, the problem is the exponential output size
— no matter what great algorithm we come up with it has to enumerate exponentiallymany results!

34



Functional Dependency Theory
Placeholder

Functional Dependency Theory
Functional Dependencies
Inference & Closures
Armstrong’s Axioms
Attribute Closures
Canonical Cover

35

Attribute Closure
Placeholder

Definition (Attribute Closure)

Given Σ over R and α ⊆ R, the attribute closure α+ of α wrt. Σ is the maximal subset
of R implied by α:

• Σ ⇒ α → α+

• ̸ ∃γ ⊃ α+ : Σ ⇒ α → γ
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Computing Attribute Closures
Placeholder

Algorithm 2: Compute Attribute Closure
Input : Set of FDs Σ, Attributes α ⊆ R
Output: The attribute closure α+

1 αcur = ∅, αnew = α
2 while αcur ̸= αnew do /* until a fix point is reached */
3 αcur ← αnew
4 for β → γ ∈ Σ do
5 if β ⊆ αnew then /* LHS is in αnew then add RHS */
6 αnew ← αnew ∪ γ

7 return αnew
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Attribute Closures Computational Complexity
Placeholder

• Let n =| R | andm =| Σ |
• Each each iteration of the outer loop we either add another attribute or stop

— ⇒ we will do at most n iterations of the outer loop
• The inner loop always iterates exactlym times
• ⇒ the algorithm is O(n ·m)

— much faster than the closure algorithm!
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Use Cases of Attribute Closure
Placeholder

• Testing for a superkey
— If α+ = R then α is a super key

• Testing functional dependencies
— If β ⊆ α+ then Σ ⇒ α → β

• Computing closures (still exponential so we will not use this)
— For each α ⊆ R compute α+ and for each subset β ⊆ α+ output α → β
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Linear Time Attribute Closure Algorithm
Placeholder

• The attribute closure algorithm has two sources of inefficiency:
— Functional dependencies that have "fired" in a previous iteration are tested again inall following iterations— No progress is monitored for "finding" attributes from the LHS of an FD

• The algorithm presented on the next slide from [1] addresses these shortcomings
by tracking which attributes from the LHS of an FD have been found so far and
which FDs’ RHS have been added to the result so far
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Linear Time Attribute Closure Algorithm - Data
Structures
Placeholder

• Data Structures
— Assign numeric identifiers to the FDs and attributes (starting from 0).— int[] c: an integer array with one element per FD that is initialized to the size ofthe LHS of the FD.— list<int>[] rhs: an array of lists with one element per FD. For each FD stores thenumeric IDs of attributes from the FDs RHS.— list<int>[] lhs: an array of lists of integers, one element per attribute. Theelement for each attribute stores the IDs of the FDs that have this attribute in its LHS.— set<int> aplus: a set storing the attributes that we have determined to be in theresult so far— stack<int> todo: a stack of attributes to be processed
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Linear Time Attribute Closure Algorithm
Placeholder

Algorithm 3: Compute Attribute Closure (linear time)
Input : Set of FDs Σ, Attributes α ⊆ R
Output: The attribute closure α+

1 todo = α, aplus = ∅
2 while ¬ todo.isEmpty() do /* until todo is empty */
3 curA← todo.pop()
4 aplus.add(curA) /* add curA to result */
5 for fd ∈ lhs[curA] do /* update LHS attributes found so far */
6 c[fd]−− /* found a LHS attr for fd */
7 if c[fd] = 0 then
8 remove(lhs[curA], fd) /* avoid firing twice */
9 for newA ∈ rhs[fd] do /* add implied attributes */
10 if ¬ aplus[newA] then /* if attribute is new add to todo */
11 todo.push(newA)

12 aplus.add(newA)

13 return aplus
41
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Motivation
Placeholder

• Sets of FDs may contain redundant dependencies that can be inferred from the
remaining FDs

• A → C is redundant (transitivity) in {A → B; B → C; A → C}

• Some FDs may have attributes that can be removed without changing the
semantics of the set of FDs

• {A → B; B → C; A → C,D} can simplified to {A → B; B → C; A → D}
• {A → B; B → C; A, C → D} can simplified to {A → B; B → C; A → D}

42



Extraneous Attributes
Placeholder

Definition (Extraneous Attributes)

• Consider a set of FDs Σ and σ : α → β ∈ Σ
— Attribute A ∈ α is extraneous in α if

◦ Σ ⇒ (Σ− {σ}) ∪ {(α− {A}) → β}
— Attribute A ∈ β is extraneous in β if

◦ (Σ− {σ}) ∪ {α → (β − {A})} ⇒ Σ

• Technically we require logical equivalence, but the other direction is trivial as
"stronger" FDs always imply "weaker" ones
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Extraneous Attributes Example
Placeholder

• Σ = {A → C; A, B → C}
— B is extraneous in A, B → C because Σ implies A → C

• Σ = {A → C; A, B → C,D}
— C is extraneous in A, B → C,D since A, B → C can be inferred even after deleting C
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Testing for Extraneous Attributes
Placeholder

• Consider σ : α → β such that σ ∈ Σ

• Testing if A ∈ α is extraneous in α

— compute (α− {A})+ using Σ— if β ⊆ (α− {A})+ then A is extraneous in α

• Testing if A ∈ β is extraneous in β

— compute α+ using Σ′ = (Σ− {σ}) ∪ {α → (β − {A})}— if α+ contains A then A is extraneous in β
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Canonical Cover
Placeholder

Definition (Canonical Cover)

A set of FDs ΣC is a canonical cover of a set of FDs Σ iff:
• Σ ≡ ΣC

• No FD in ΣC contains an extraneous attribute
• No two FDs in ΣC share the same LHS
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Computing Canonical Covers
Placeholder

Algorithm 4: Compute Canonical Cover
Input : Set of FDs Σ
Output: A Canonical Cover ΣC

1 Σcur = ∅, Σnew = Σ
2 while Σcur ̸= Σnew do /* until a fix point is reached */
3 Σcur ← Σnew
4 for σ1 : α→ β1, σ2 : α→ β2 ∈ Σ do /* union RHS */
5 Σnew ← Σnew − {σ1, σ2} ∪ {α→ β1 ∪ β2}
6 for σ : α→ β ∈ Σ do
7 if A ∈ α is extraneous then
8 Σnew ← Σnew − {σ} ∪ {(α− {A})→ β}
9 continue

10 if A ∈ β is extraneous then
11 Σnew ← Σnew − {σ} ∪ {α→ (β − {A})}
12 continue

13 return Σnew 47

Computing Canonical Covers
Placeholder

R = (A, B, C)

Σ = {
A → B, C
B → C
A → B
A, B → C

}

• Union: Combine A → B, C and A → B into A → B, C
— Intermediate result {A → B, C; B → C; A, B → C}

• Removing extraneous attributes: A is extraneous in A, B → C
— Check if after deleting A the FD is implied by Σ

◦ yes, B → C is in the set
— Intermediate result {A → B, C; B → C}

• Removing extraneous attributes: C is extraneous in A → B, C
— Check if A → C is implied by A → B and the other dependencies

◦ yes, using transitivity on A → B and B → C

• The canonical cover is:
ΣC = {A → B; B → C}
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Agenda
Placeholder

• Theory of dependencies
• Lossless decompositions

— Define lossless decompositions— Check whether a decomposition will be lossless using dependency theory
• Normalforms & decomposition

— Define normal forms that avoid redundancies— Devise algorithms for checking whether a schema is a normal form— Devise algorithms to transform schema into a normal form using decomposition
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Lossless Join Decomposition
Placeholder

Definition (Decomposition)

Given a relational schema R(A1, . . . , An) and an instance R over R and sets of attributes
R1, . . . ,Rm such that ∀i ∈ [1,m] : Ri ⊆ R is called a decomposition of R.
The decomposition of R wrt. R1, . . . ,Rm is this set of instances:

{Ri | Ri = πRi(R)}
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Lossless Join Decomposition
Placeholder

Definition (Lossless Join Decomposition)

Consider a decomposition R1, . . . ,Rm of a schema R(A1, . . . , An). We call R1, . . . ,Rm a
lossless join decomposition of R if for every instance R of R we have:

R = πR1(R) ▷◁ . . . ▷◁ πRm(R)
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Decomposition & Dependency Preservation
Placeholder
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Sufficient Condition for Lossless Join Decomposition
Placeholder

• How can we test whether a decomposition will be lossless?
Theorem (Sufficient Condition)

Consider schema R with functional dependencies Σ. A decomposition R1 and R2 is lossless if
at least one of the following FDs is in Σ+:

• R1 ∩ R2 → R1
• R1 ∩ R2 → R2
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How does This Condition Work?
Placeholder

Why does this work?
• WLOG let us assume that R1 ∩ R2 → R2 holds
• If the common attributes determine all attributes of R2, then A = R1 ∩ R2 is a keyfor R2
• Consider a tuple t ∈ R1. Then the values of t.A determine all the values of a tuplein R2

— ⇒ each tuple t ∈ R1 will join with exactly one tuple in R2— ⇒ Consider a tuple t ∈ R that was decomposed into t1 ∈ R1 and t2 ∈ R2. The naturaljoin of R1 ▷◁ R2 will reconstruct t
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The Sufficient Condition in Action
Placeholder

• R = (A, B, C) with Σ = {A → B; B → C}
• Decomposition R1 = (A, B) and R2 = (B, C)

— this is a lossless join decomposition— R1 ∩ R2 = {B} and B → B, C ∈ Σ+

R

A B C
1 1 1
2 1 1
3 2 3
4 2 3

R1
A B
1 1
2 1
2 2
4 2

R2
B C
1 1
2 3

R1 ▷◁ R2
A B C
1 1 1
2 1 1
3 2 3
4 2 3
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The Sufficient Condition in Action
Placeholder

• R = (A, B, C) with Σ = {A → B; C → B}
• Decomposition R1 = (A, B) and R2 = (B, C)

— this is not a lossless join decomposition— R1 ∩ R2 = {B}— B → B, C ̸∈ Σ+

— and B → A, B ̸∈ Σ+

R

A B C
1 1 1
2 1 3

R1
A B
1 1
2 1

R2
B C
1 1
1 3

R1 ▷◁ R2
A B C
1 1 1
2 1 1
1 1 3
2 1 3
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Dependencies on Decomposed Relations
Placeholder

• What happens to dependencies under decompositions?
• We can only directly check dependencies α → β where α ∪ β is contained in at
least one fragment Ri

Definition (Dependency Preservation)

For a decomposition R1, . . . ,Rn of R with FDs Σ we define:
Σi = {α → β | α → β ∈ Σ+ ∧ (α ∪ β) ⊆ Ri}

The decomposition is dependency preserving if:
(⋃

i

Σi

)+

= Σ+
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Dependency Preservation
Placeholder

Caveat
• note that Σi is defined using the closure Σ+ and, thus, may be exponentially large!

Why do we need the closure?
• Σ = {A → B; B → C} over R = (A, B, C)
• Consider decomposition R1 = (AC) and R2 = (AB)
• Σ1 includes A → C as A → C is in Σ+ and only uses attributes from R1
• However, A → C is not present in Σ

57

Testing Dependency Preservation - Naive Algorithm
Placeholder

Algorithm 5: Test Dependency Preservation (naive)
Input : Set of FDs Σ, Decomposition R1, . . .Rn
Output: True if the decomposition preserves Σ

1 for i ∈ [1, n] do
2 Σi = {α→ β | α→ β ∈ Σ+ ∧ (α ∪ β) ⊆ Ri}
3 Σdecomposed =

⋃n
i=1 Σi

4 return Σdecomposed
+ = Σ+
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Testing Dependency Preservation
Placeholder

• Apply the PTIME procedure shown on the next slide to each σ ∈ Σ.
— If it returns true for each σ ∈ Σ, then the decomposition is dependency

preserving.— If it fails however, we have to fall back to the test using closures
• That is: returning true for all σ ∈ Σ is a sufficient, but not necessary condition
for dependency preservation
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Sufficient Test for Dependency Preservation
Placeholder

Algorithm 6: Test Dependency Preservation
Input : Set of FDs Σ and σ : α→ β ∈ Σ, Decomposition R1, . . .Rn
Output: True if the decomposition preserves σ

1 Acur ← ∅
2 Anew ← α
3 while Acur ̸= Anew do /* until a fix point is reached */
4 Acur ← Anew
5 for i ∈ [1, n] do
6 Aadd ← (Anew ∩ Ri)+ ∩ Ri
7 Anew ← Anew ∪ Aadd

8 return β ∈ Anew

60

Why Does The Sufficient Condition Work
Placeholder

1. α → β ∈ Σ is preserved in the decomposition if α+ ⊇ β when α+ is computedusing Σdecomposition =
⋃n

i=1Σi
— the decomposition is dependency preserving if and only if all σ ∈ Σ are preserved(as then we can infer any σ ∈ Σ+ using Σdecomposition)

2. We still need to show that if the algorithm returns true, then α → β ∈ Σ ispreserved under the decomposition
— for any γ ⊆ Ri, γ → γ+ is an FD in Σ+ (follows from the definition of attributeclosure)— then γ → γ+ ∩ Ri will be an FD in Σdecomposition

+ (based on the definition of
Σdecomposition— for any FD γ → δ is in Σi ⊆ Σdecomposition if δ ⊆ γ+ ∩ Ri

61

Positive Example
Placeholder

• R = (A, B, C) with Σ = {A → B, B → C}
• Decomposition R1 = (A, B) and R2 = (B, C)

— this lossless join decomposition is dependency preserving
R

A B C
1 1 1
2 1 1
3 2 3
4 2 3

R1
A B
1 1
2 1
3 2
4 2

R2
B C
1 1
2 3

R1 ▷◁ R2
A B C
1 1 1
2 1 1
3 2 3
4 2 3
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Negative Example
Placeholder

• R = (A, B, C) with Σ = {A → B, B → C}
• Decomposition R1 = (A, B) and R2 = (A, C)

— this is a lossless join decomposition— not dependency preserving (B → C is not preserved)
R

A B C
1 1 1
2 1 1
3 2 3
4 2 3

R1
A B
1 1
2 1
2 2
4 2

R2
A C
1 1
2 1
3 3
4 3

R1 ▷◁ R2
A B C
1 1 1
2 1 1
3 2 3
4 2 3
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Agenda
Placeholder

• Theory of dependencies
• Lossless decompositions

— Define lossless decompositions— Check whether a decomposition will be lossless using dependency theory
• Normalforms & decomposition

— Define normal forms that avoid redundancies— Devise algorithms for checking whether a schema is a normal form— Devise algorithms to transform schema into a normal form (normalize it) using
decomposition
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Purpose of Normalization
Placeholder

• Consider relation R with FDs Σ
• Determine whether R is prevents redundancy
• If R does allow for certain types of redundancy then decompose it

— Each fragment is in the desired normal form— The decomposition is lossless— If possible, the decomposition should be dependency preserving
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Normalforms & Decomposition Algorithms
Placeholder

Normalforms & Decomposition Algorithms
Normal Forms
1NF
2NF
3NF
BCNF
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Outline
Placeholder

• We will cover several normal forms that are increasingly strict, but also form ahierarchy in terms of the types of redundancy they avoid
— 1NF - attribute domains have to be atomic— 2NF - non-prime attributes do not depend on parts of a key— 3NF - no non-prime attribute depends transitively on a key— BCNF - every attribute only depends on a candidate key— 4NF and 5NF (we will only briefly discuss these)
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Normalforms & Decomposition Algorithms
Placeholder

Normalforms & Decomposition Algorithms
Normal Forms
1NF
2NF
3NF
BCNF
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Atomic Domains
Placeholder

Atomic Domains
• An attribute domain is atomic if its values can be considered as indivisible

— not atomic: set-valued attributes, composite attributes— atomic: numbers, strings (sometimes)
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When Are Domains Atomic?
Placeholder

Remark
• Atomicity is not a precise formal concept
• rule of thumb: if we do not need to divide the value into smaller parts, then we
can consider it to be atomic

• Consider student ids that consists of a two characters for the major followed by anumber. Is this atomic?
— If we extract student majors from these ids then we should not consider them atomic— If we only use the complete values then we can consider student ids to be atomic
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First Normal Form (1NF)
Placeholder

Definition (First Normal Form (1NF))

A relation R is in 1NF if the domains of all attributes in R are atomic
Redundancy caused by non-atomic values

• Consider encoding Address information as a string in a set-valued attribute
Name Address
Peter { "456 Tyler St, Chicago", "3400 Michigan Ave, Chicago" }
Alice { "456 Tyler St, Chicago" }
Bob { "3400 Michigan Ave, Chicago" }

69

Normalforms & Decomposition Algorithms
Placeholder

Normalforms & Decomposition Algorithms
Normal Forms
1NF
2NF
3NF
BCNF
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Non-prime Attributes
Placeholder

Definition (Non-prime Attributes)

• Let CandKeys(R,Σ) denote the set of all candidate keys for R
• An attribute A is non-prime if:

̸ ∃K ∈ CandKeys(R,Σ) : A ∈ K

• Let NonPrime(R,Σ) denote the set of non-prime attributes of R
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Non-prime Attributes Example
Placeholder

Example

• R(A, B, C) with Σ = {A → B; B → C}
• CandKeys(R,Σ) = {{A}}, i.e., {A} is the only candidate key
• ⇒ B and C are non-prime
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Second Normal Form (2NF)
Placeholder

Definition (Second Normal Form (2NF))

A relation is in second normal form (2NF) iff
• It is in 1NF
• and no non-prime attribute depends on parts of a candidate key:

∀A ∈ NonPrime(R,Σ) :̸ ∃α ⊂ K ∈ CandKeys(R,Σ) : α → A ∈ Σ+

72

2NF Example
Placeholder

• R(A, B, C,D)
— A, B → C,D— A → C— B → D

• K = {A, B} is the only candidate key
• R is not in 2NF

— A → C where A ⊂ K and C ∈ NonPrime(R,Σ)
• For instance, a more concrete interpretation of R is
Advisor(InstrSSN, StudentUIN, InstrName, StudentName)

• This is an indication that we are putting stuff together that
does not belong together
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Why Is Non-2NF Bad?
Placeholder

• Why is a dependency on parts of a candidate key bad?
— That is: Why is not being in 2NF bad?

• Redundancy

• Advisor ( InstrSSN, StudentCWID, InstrName, StudentName)
• StudentCWID → StudentName
• If a student has more than one adviser then the student’s name will be repeated
• Disconnect

— Some attributes are unrelated to parts of a candidate key— Indication that we have put an N-M relationship into a table including the attributesof the involved entities. We should decompose the relation.
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Does 2NF Avoid All Types of Redundancy?
Placeholder

• instructor (name, salary, depname, depbudget) = I(A, B, C,D)
• {Name} is the only candidate key
• I is in 2NF
• Redundancy

— depbudget is repeated if there are more than one instructor in the same department
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Normalforms & Decomposition Algorithms
Normal Forms
1NF
2NF
3NF
BCNF
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Third Normal Form (3NF)
Placeholder

Definition (Third Normal Form (3NF))

A relation R with FDs Σ is in third normal form (3NF) if for all σ : α → β ∈ Σ+ at least
one of the following conditions holds:
1. α → β is trivial (β ⊆ α)
2. α is a superkey
3. each attribute A ∈ (β − α) is part of a some candidate key of R:

∀A ∈ (β − α) : ∃K ∈ CandKeys(R,Σ) : A ∈ K

Remark
In the 3rd condition each attribute Amay belong to a different candidate key!
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Alternative Definition of 3NF
Placeholder

Alternative Interpretation
• Every non-prime attribute only depends directly on a candidate key
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3NF Example
Placeholder

• instructor (name, salary, depname, depbudget) = I(A, B, C,D)
• {Name} is the only candidate key
• I is in 2NF
• I is not in 3NF
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Testing for 3NF
Placeholder

Naive Algorithm
• Compute all candidate keys
• Compute Σ+

• For each σ ∈ Σ check whether one of the three conditions holds
Optimizations

• It is sufficient to check the conditions of 3NF on FDs in Σ instead of Σ+

• Use attribute closure to determine whether α is a superkey for each FD
α → β ∈ Σ

• If α is not a superkey then we need to check whether each attribute β − α is part
of candidate key
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Testing for 3NF - Computational Complexity
Placeholder

Computational Complexity
• Testing for 3NF is computationally hard (NP-hard)
• Why? Computing candidate keys is hard
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Blind Decomposition
Placeholder

• Given the computational complexity, it is not practical to test whether relations
with many attribute and / or many FDs are in 3NF

• Should we just give up on 3NF?
• No! There exists a decomposition algorithm that takes a relation schema R and
creates lossless join decomposition R1, . . . , Rn of R such that every Ri is in 3NF
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Decomposition Algorithm
Placeholder

Algorithm 7: 3NF
Input : Relation R with canonical cover ΣC of FDs Σ
Output: Decomposition R1, . . .Rn

1 result ← ∅, i← 0
2 for σ : α→ β ∈ ΣC do
3 if ̸ ∃j ∈ [1, i− 1] : (α ∪ β) ⊆ Rj then /* ensure one fragment contains FD’s attributes */
4 i← i+ 1
5 Ri = α ∪ β
6 result ← result ∪ {Ri}

7 if ̸ ∃K ∈ CandKeys(R,Σ) : ∃j ∈ [1, i] : K ⊆ Rj then /* one fragment should have candidate key */
8 i← i+ 1
9 Ri = K for some K ∈ CandKeys(R,Σ)

10 while ∃Rj,Rk ∈ result : Rj ⊆ Rk do /* remove redundant relations */
11 result ← result − {Rj}
12 return result
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Properties of the Decomposition Algorithm
Placeholder

• The algorithm is in PTIME• The decomposition R1, . . . , Rn computed by the algorithm has the followingproperties
— each Ri is in 3NF— the decomposition is dependency preserving and lossless-join

Paradox?
• Does the existence of a PTIME algorithm for decomposition contradict thehardness of the 3NF testing problem?

— Why can’t we apply the decomposition algorithm to R and if the algorithm does notdecompose R then R was already in 3NF?
• We can reconcile these two results by observing that the algorithm maysometimes further decompose a relation that is already in 3NF

— Thus, we cannot use it to test for 3NF
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3NF Decomposition Example
Placeholder

• cust_banker_branch ( customer_id, employee_id, banch_name, type)
Σ = {

σ1 : customer_id, employer_id → branch_name, type
σ2 : employee_id → branch_name
σ3 : customer_id, branch_name → employee_id
}
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3NF Decomposition Example - Compute Canonical
Cover
Placeholder

• (1) Compute a canonical cover
— branch_name is extraneous in the RHS of σ1— no other attribute is extraneous, so:

ΣC = {
σ1′ : customer_id, employee_id → type
σ2 : employee_id → branch_name
σ3 : customer_id, branch_name → employee_id
}
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3NF Decomposition Example - Decomposition
Placeholder

• (2) Ensure that each FD’s attributes appear together in one or more
fragments
— fragments created in this step

◦ R1(customer_id, employee_id, type)
◦ R2(customer_id, branch_name)
◦ R3(customer_id, branch_name, employee_id)

• (3) Ensure that at least one fragment contains a candidate key
— R1 contains the candidate key {customer_id, employee_id}— no additional fragments have to be added in this step

• (4) Remove contained fragments
— R2 is contained in R3, R2 will be removed

• (5) Final result
— R1(customer_id, employee_id, type)— R3(customer_id, branch_name, employee_id)
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Redundancy in 3NF
Placeholder

• R (S,I,D)
• Σ = {S,D → I, I → D}

S I D
s1 i1 d1
s2 i1 d1
s3 i1 d1
s3 i2 d2

• dept_advisor (studentid, instructorid, dept_name)
— instructors work for one department only— a student has a unique advisor from eachdepartment

• Candidate keys are {S,D} and {S, I}
• This relation is in 3NF, but exhibits redundancy:

— if an instructor appears in multiple tuples, then thedepartment is repeated, e.g., (i1, d1)
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Normalforms & Decomposition Algorithms
Normal Forms
1NF
2NF
3NF
BCNF
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Boyce-Codd Normal Form (BCNF)
Placeholder

Definition (Boyce-Codd Normal Form (BCNF))

A relation schema R with FDs Σ is in Boyce-Codd Normal Form if for every functional
dependency σ ∈ Σ+ at least one of the following conditions holds:

• α → β is trivial
• α is a superkey for R, i.e., α → R ∈ Σ+

• inst_dept ( ID, name, salary, dept_name, building, budget)
— with σ : dept_name → building, budget in Σ

• This relation is not in BCNF as dept_name is not a superkey and the FD σ is not
trivial
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Testing for BCNF
Placeholder

Testing for BCNF
• For each FD σ : α → β ∈ Σ+ check whether it fulfills one of the two conditions

— β ⊆ α— α+ = R (α is a superkey)
Optimizations

• It can be shown that it suffices to test only the FDs in Σ

• ⇒ testing for BCNF is in PTIME
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Testing for BCNF after Decomposition
Placeholder

Caveat
• The optimization is only applicable on the original relation before
decomposition!

• Testing whether the dependencies are preserved is computationally hard!

• Consider R (A,B,C,D,E) with Σ = {A → B, B, C → D}
— Decompose R into R1(A,B) and R2(A,C,D,E)— None of the original FDs contain only attributes from R2 so Σ2 = ∅

◦ Applying the optimized test to R2 would mislead us to think that this fragment is in BCNF
— However, A, C → D ∈ Σ+ based on which R2 is not in BCNF
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Decomposition Algorithm
Placeholder

Algorithm 8: BCNF Decomposition
Input : Relation R with FDs Σ
Output: Decomposition R1, . . .Rn

1 result ← R, i← 0, done = false
2 while ¬ done do
3 if ∃i : Ri not in BCNF then /* one fragment not in BCNF */
4 Let σ = α→ β such that α→ Ri ̸∈ Σ+∧α ∩ β = ∅
5 result ← (result − Ri) ∪ {(Ri − β), (α ∪ β)}
6 else
7 done = true

8 return result
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Properties of the Decomposition Algorithm
Placeholder

Runtime Complexity
• The algorithm is exponential time because of the potential need to compute Σ+

• There are PTIME algorithms for BCNF decomposition, but . . .
— as for 3NF they may decompose more than necessary

Lossless Join Decomposition
• The algorithm guarantees that the decomposition is lossless

— When we split a fragment we produce Rj = Ri − β and Rk = α ∪ β based on an FD
α → β.— As Rj ∩ Rk = α the FD Rj ∩ Rk → Rk holds which means that the decomposition islossless
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BCNF and Dependency Preservation
Placeholder
Theorem (Impossibility of Dependency Preservation)

There exists a schema R and set of FDs Σ such that there exists no BCNF decomposition of R
that is dependency preserving

R = (J, K, L)

Σ = {
J, K → L
L → K
}

• Two candidate keys {J, K} and {J, L}
• R is not in BCNF
• Any decomposition of R that is in BCNF will fail to
preserve: J, K → L
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Does BCNF Solve All of Our Problems with
Redundancy?
Placeholder

• There are schemas in BCNF that still exhibit redundancy
• instructors can have multiple children and
phone numbers

• id 1 has children (Bob and Pete) and phone
numbers (312-888-8888 and 312-777-5555)

InstrID child phone
1 Pete 312-888-8888
1 Pete 312-777-5555
1 Bob 312-888-8888
1 Bob 312-777-5555

• Only trivial functional
dependencies hold on this
relation

• Redundancy stems from theindependence of children andphone numbers
— Adding another phonenumber we have to insertone tuple per child
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Does BCNF Solve All of Our Problems with
Redundancy?
Placeholder

The redundancy in this example can be solved using decomposition:
InstrID child

1 Pete
1 Bob

InstrID phone
1 312-888-8888
1 312-777-5555
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Additional Normal Forms
Placeholder

• Removing further redundancies requires more powerful types of constraints andfurther normal forms
— multivalued dependencies and join dependencies— 4NF— 5NF or Project-join Normal Form— Domain-key Normal Form (DKNF)
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Recap
Placeholder

• Functional dependencies and other constraints
— Armstrong’s Axioms— Inference— Closure and attribute closure— Canonical Cover

• Redundancy & lossless join decomposition
• Normal Forms

— 1NF, 2NF, 3NF, BCNF (and higher normal forms)— Testing for normal forms and decomposition algorithms
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Placeholder
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Multivalued Dependencies
Placeholder

Definition (Multivalued Dependency)

The multivalued dependency (MVD) α ↠ β holds on R iff for any pair of tuples t1 and t2with t1[α] = t2[α] there exists two tuples t3 and t4 in R such that
t1[α] = t2[α] = t3[α] = t4[α]
t3[β] = t1[β]
t3[R− β] = t2[R− β]

t4[β] = t2[β]
t3[R− β] = t1[R− β]
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Remarks
Placeholder

FDs imply MVDs
Consider a schema R and α ⊆ R and β ⊆ R, then

α → β ⇒ α ↠ β

Trivial MVDs
• An MVD σ is trivial if ∅ ⇒ σ.
• An MVD α ↠ β is trivial if either:

— β ⊆ α— R = α ∪ β
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MVD Example
Placeholder

• Let us revisit the the example in BCNF that still exhibited redundancy

• instructors can have multiple children and
phone numbers

• id 1 has children (Bob and Pete) and phone
numbers (312-888-8888 and 312-777-5555)

InstrID child phone
1 Pete 312-888-8888
1 Pete 312-777-5555
1 Bob 312-888-8888
1 Bob 312-777-5555

• MVDs:
Σ = {ID ↠ child; ID ↠ phone}

• For any two tuples
t1 = (i, c1, p1) and
t2 = (i, c2, p2) there alsoexists:
— t3 = (i, c1, p2) and

t4 = (i, c2, p1)
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Fourth Normal Form (4NF)
Placeholder

Definition (4NF)

A relation R with functional and multivalued dependencies Σ is in 4NF if for every
multivalued dependency is one of the two conditions hold:
1. α ↠ β is a trivial multivalued dependency
2. α is a superkey of R

Remark
• 4NF is stricter than BCNF
• Why? Because FDs imply MVDs but not necessarily vice versa
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4NF and Redundancy
Placeholder

• A relation in 4NF may still exhibit redundancies that can be fixed through
decomposition
agent product company
Bob Laptop ABM
Bob Memory ABM
John Laptop Pear
John Memory Pear
Pete Disk ABM
Pete Disk X
Pete Laptop ABM
Pete Laptop Pear

• No non-trivial FDs and MVDs
hold on this relation

• It is in 4NF
• Note that R can bedecomposed into

— R1 = (agent, product)— R2 = (agent, company)— R3 = (product, company)
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Definition (Join Dependency)
Consider a relation R with schema R and a decomposition R1, . . . , Rn. The relationfulfills the join dependency (JD) ▷◁ (R1, . . . ,Rn) iff:

R = πR1(R) ▷◁ . . . ▷◁ πRn(R)

Remark
• join dependencies are defined based on lossless join decomposition!
• join dependencies generalize MVDs as α ↠ β over R = α ∪ β ∪ γ is equivalent to
a binary join dependency ▷◁ (α ∪ β, α ∪ γ)
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Inference
• The inference problem for join dependencies is decidable
• However, there does not exist a sound and complete axiomatization for join
dependencies
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Fifth Normal Form (5NF)
Placeholder

Definition (5NF)

Let Σ be a set of FDs, MVDs, and JDs for a relation R and let∆ denote all the key
dependencies of R, i.e., FDs of the form α → R where α is a candidate key. R is in
project-join normal form also called fifth normal form if for every join dependency σ

(∆ ⇒ σ) ⇔ σ ∈ Σ+
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