
CS594
Provenance & Explanations
2 - Provenance Models
� Course webpage
� Boris Glavic
bglavic@uic.edu

1

https://www.cs.uic.edu/~bglavic/cs594/2024-fall/
mailto:bglavic@uic.edu

Provenance Models

Overview
Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra
Provenance Models For Relational Queries
Provenance Applications & Querying Provenance
References

Overview

Overview
What is a Provenance Model?

Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra
Provenance Models For Relational Queries
Provenance Applications & Querying Provenance
References

Overview
Placeholder

Overview
What is a Provenance Model?

2

What is a Provenance Model?
Placeholder

• For this section of the course, a provenance model enables us to determinemechanically which data dependencies (wasDerivedFrom) hold for acomputation
— For now we will assume that computations take in— later we will generalize this

• Black Box Models
— treat the computation as a black box, we can only test data dependencies by feedinginputs into the computation— declarative (state what properties the provenance should fulfill)— can be applied to any type of computation

• White Box Models
— have knowledge about the computation⇒ specific to particular computations— often more efficient by exploiting properties of the computation

2

Black Box Models
Placeholder

• Assumption:
— Computation C is a function C(I) = O— Input: a set I = {i1, . . . , in}— Output: a set O = {o1, . . . , om}• Determine Prov(C, I, o) ⊆ I, the subset of inputs that contribute to o ∈ O
1. What conditions should Prov(C, I, o) fulfill?2. How can we test these conditions by evaluating C over different inputs I′?

Relational Database Queries

• Computation is a query Q
— Input is a database D which is a set of tuples {t1, . . . , tn}— Output is a table Q(D) which a set of tuples {o1, . . . , om}

• Prov(Q,D, t) ⊆ D are the tuples from D that contribute to t ∈ Q(D)
3

What Do We Want From a Provenance Model?
Placeholder

• What do we want from Prov(C, I, o)?
— Include every input i ∈ I that is needed to produce o— Exclude every input i ∈ I that is irrelevant for producing o

• What are the right declarative requirements to enforce this?

A

B

C

Activity E

D

F

used

used

used

wasGeneratedBy

wasGeneratedBy
wasGeneratedBy

4

Black-Box Provenance Models &
Requirements for Provenance

Overview
Black-Box Provenance Models & Requirements for Provenance

Agenda
Sufficiency & Minimality
Causality
Recap

Excursion - Relational Algebra
Provenance Models For Relational Queries
Provenance Applications & Querying Provenance
References

Black-Box Provenance Models & Requirements for
Provenance
Placeholder

Black-Box Provenance Models & Requirements for Provenance
Agenda
Sufficiency & Minimality
Causality
Recap

5

Agenda
Placeholder

• Come up with requirements for provenance that are "testable"
• Reason about the computational cost of testing these conditions
• We will often reason about this for queries over relational databases where tablesare sets of rows

— The concepts, however, are applicable to any computation on sets of elements!

5

Example
Placeholder

name
t1 Peter
t2 Bob
t3 Alice

SELECT DISTINCT name FROM student;

name major gpa
s1 Peter CS 3.9
s2 Peter BIO 3.6
s3 Peter Law 2.5
s4 Bob CS 4.0
s5 Alice CS 3.5

Provenance
• Subsets of D that are enough to
produce a result tuple (test by
running Q)

• {s1} is enough to produce t1
• {s2} is enough to produce t1
• {s1, s2, s3, s4} is enough toproduce t1

6

Black-Box Provenance Models & Requirements for
Provenance
Placeholder

Black-Box Provenance Models & Requirements for Provenance
Agenda
Sufficiency & Minimality
Causality
Recap

7

Sufficiency
Placeholder

• Test whether w ⊆ D is enough for producing a result tuple t by running Q on wand testing whether the result contains t
— If yes, then apparently w contains sufficient information for computing t through Q

Definition (Sufficiency)

Given a query Q, database D, and tuple t ∈ Q(D), a set of tuples w ⊆ D is sufficient for
producing t iff:

t ∈ Q(w)
If w is sufficient, we call it a witness for t

7

Example Sufficiency and Witnesses
Placeholder

name
t1 Peter
t2 Bob
t3 Alice

SELECT DISTINCT name FROM student;

name major gpa
s1 Peter CS 3.9
s2 Peter BIO 3.6
s3 Peter Law 2.5
s4 Bob CS 4.0
s5 Alice CS 3.5

Witnesses
• Subsets of D that are enough to
produce a result tuple (test by
running Q)

• $\s1\, \s2\,$ {s3}, {s1, s2, s3},
{s1, s4}, D are all witnesses for t1

• {s4}, {s3, s4},D are witnesses
for t2

• {s5}, {s1, s2, s3, s5},D are
witnesses for t3

8

Monotone Queries
Placeholder

• An important property of queries: if we insert new data to the input database,
then the query returns more results

• Our running example query is monotone
Definition (Monotone Queries)

A query Q is monotone iff:
∀D1 ⊆ D2 : Q(D1) ⊆ Q(D2)

9

Witnesses for Monotone Queries
Placeholder

Lemma (Sufficiency closed under monotonicity)
Let Q be a monotone query and D a database. Consider w ⊂ w′ ⊆ D,

• If w ⊆ D is sufficient for t ∈ Q(D) then w′ is also sufficient
Remarks

• D is always a trivial witness!
• Witnesses may include irrelevant data!
• Witnesses are guaranteed to include irrelevant data for monotone queries

10

Minimality
Placeholder

• How to prune irrelevant inputs from witnesses?
• If we can remove a tuple from a witness and the result is still sufficient, then this
tuple was apparently irrelevant and can be removed

Definition (Minimal Witnesses)

A witness w ⊆ D for a tuple t wrt. a query Q and database D isminimal, if there does
not exist a witness w′ ⊂ w

11

Example Minimal Witnesses
Placeholder

name
t1 Peter
t2 Bob
t3 Alice

SELECT DISTINCT name FROM student;

name major gpa
s1 Peter CS 3.9
s2 Peter BIO 3.6
s3 Peter Law 2.5
s4 Bob CS 4.0
s5 Alice CS 3.5

Witnesses
• Minimal witnesses highlighted in
red

• {s1}, {s2}, {s3}, {s1, s2, s3},
{s1, s4}, D are all witnesses for t1

• {s4}, {s3, s4},D are witnesses
for t2

• {s5}, {s1, s2, s3, s5},D are
witnesses for t3

12

Computational Complexity
Placeholder

• If we do not have any information about the query Q then we have to test all
subsets of D

• If |D| = n then there are 2n subsets of D which each could potentially be witnesses
• Assume that |Q(D)| = m
• For each result tuple t ∈ Q(D) we have to test 2n candidate witnesses in worst-case
• If we have k witnesses then we can identify minimal witnesses in O(k2 · |D|) time
by comparing every witness w with every other witness w′

Lemma (Complexity of computing all (minimal) witnesses)
The computational complexity of computing all (minimal) witnesses is O(m · (2n)2 · cost(Q))
where cost(Q) is the time of running Q

13

Black-Box Provenance Models & Requirements for
Provenance
Placeholder

Black-Box Provenance Models & Requirements for Provenance
Agenda
Sufficiency & Minimality
Causality
Recap

14

Intuition
Placeholder

• Intuitively, we can test whether an input tuple s is needed to produce a resulttuple t through a query Q by:
1. removing s from D and reevaluating Q over the modified input2. if t is still in the result then apparently it was necessary for producing the result

14

Counterfactual Causes
Placeholder

Definition (Counterfactual Cause)

Given query Q, database D, and tuple t ∈ Q(D), a tuple s ∈ D is a counterfactual cause
for t if:

t ̸∈ Q(D− {s})

15

Example Counterfactual Causes
Placeholder

name
t1 Peter
t2 Bob
t3 Alice

SELECT DISTINCT name FROM student;

name major gpa
s1 Peter CS 3.9
s2 Peter BIO 3.6
s3 Peter Law 2.5
s4 Bob CS 4.0
s5 Alice CS 3.5

Counterfactual Causes
• {s4} for t2
• {s5} for t3
• There are no counter-factual
causes for t1

16

Limitations of Counterfactual Causes
Placeholder

• As shown in the previous example
• Counterfactual causes fail if there are alternative ways to derive a result tuple

— that means that there are multiple minimal witnesses

17

Actual Causes
Placeholder

• Intuition: delete all alternative witnesses until only one remains that is then
counterfactual

Definition (Actual Cause)

Given query Q, database D, and tuple t ∈ Q(D), a tuple s ∈ D is a counterfactual cause
for t if here exists Γ ⊆ D− {s}, called a contingency, such that:
1. t ∈ Q(D− Γ)

2. t ̸∈ Q(D− Γ− {s})
Remarks

• Any counterfactual cause is an actual cause (by setting Γ = ∅)
18

Example Actual Causes
Placeholder

name
t1 Peter
t2 Bob
t3 Alice

SELECT DISTINCT name FROM student;

name major gpa
s1 Peter CS 3.9
s2 Peter BIO 3.6
s3 Peter Law 2.5
s4 Bob CS 4.0
s5 Alice CS 3.5

Actual Causes
• {s4} for t2 with Γ = ∅
• {s5} for t3 with Γ = ∅
• t1

— {s1} with Γ = {s2, s3}— {s2} with Γ = {s1, s3}— {s3} with Γ = {s1, s2}

19

Black-Box Provenance Models & Requirements for
Provenance
Placeholder

Black-Box Provenance Models & Requirements for Provenance
Agenda
Sufficiency & Minimality
Causality
Recap

20

Literature References
Placeholder

Surveys on Provenance Models
• [Gla21]
• [CCT09]

Sufficiency and Witnesses
• [CWW00]
• [BKT01]

Causality
• [MGMS10]

20

Recap
Placeholder

• Declarative notions of
— minimal witnesses— actual causes

• Can be applied to any computation the consumes and returns sets
• Exponential complexity!

— not practical

21

Excursion - Relational Algebra

Overview
Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra

Relational Algebra
Extended Relational Algebra
Incompleteness

Provenance Models For Relational Queries
Provenance Applications & Querying Provenance
References

Excursion - Relational Algebra
Placeholder

Excursion - Relational Algebra
Relational Algebra
Extended Relational Algebra
Incompleteness

22

Properties
Placeholder

• Procedural, set-oriented language
• Operators are functions from relations to relations

— input: 0 or more relations— output: 1 relation— closed language: outputs are of the same type as inputs (relations)→ composition

• Pure: no side-effects
• An algebra over relations

22

Standard relational algebra
Placeholder

• Seven basic operators
— Table access: R— Selection: σθ— Projection: πA— Union: ∪— Set difference: −— Cross product: ×— Renaming: ρ

23

Excursion: Set Comprehension
Placeholder

• We will use the concept of set comprehension to define the semantics of
relational algebra operators

Definition (Set Comprehension)

A comprehension {e | ϕ(e)} where ϕ(e) is a Boolean condition over variable e define a
set containing all elements e such that ϕ(e) evaluates to true.

24

Excursion: Set Comprehension
Placeholder

• We will use the concept of set comprehension to define the semantics of
relational algebra operators

Definition (Set Comprehension)

A comprehension {e | ϕ(e)} where ϕ(e) is a Boolean condition over variable e define a
set containing all elements e such that ϕ(e) evaluates to true.

Examples

• {n | n ∈ N ∧ n < 3} =?

• {(n,m) | n,m ∈ N ∧ n+m = 5} =?

25

Excursion: Set Comprehension
Placeholder

• We will use the concept of set comprehension to define the semantics of
relational algebra operators

Definition (Set Comprehension)

A comprehension {e | ϕ(e)} where ϕ(e) is a Boolean condition over variable e define a
set containing all elements e such that ϕ(e) evaluates to true.

Examples

• {n | n ∈ N ∧ n < 3} = {1, 2}
• {(n,m) | n,m ∈ N ∧ n+m = 5} = {(1, 4), (2, 3), (3, 2), (4, 1)}

26

Table Access
Placeholder

Intuition
• Return the content of relation R

Definition (Syntax)

• Table Access R
Definition (Semantics)

Given a relational algebra expression R and database D:
RD = {t | t ∈ R}

27

Table Access - Example
Placeholder

Example Expression

persons
Input

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

Output

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

28

Selection
Placeholder

Intuition
• Filter out rows that do not fulfill condition θ

Definition (Syntax)

• Selection σθ(R)• θ is a Boolean condition constructed from
— constants (e.g., 1, Peter, 2023-01-01, . . .)— attribute references (e.g., a, item, name, . . .)— arithmetic expressions (e.g., 1, a, (a+ 10) ∗ 2)— comparisons between arithmetic expressions (e.g., a < 3, a+ 1 < 2 ∗ b)— logical operators: ∧ (and), ∨ (or), ¬ (not)

29

Selection
Placeholder

Definition (Semantics)

Given a relational algebra expression σθ(R) and database D:
σθD = {t | t ∈ RD ∧ t |= θ}

30

Selection - Example
Placeholder

Example Expression

σsalary>50,000∧age<40(persons)
Input

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

Output
name salary age
Alice 55,000 38
Sudeepa 90,000 39

31

Projection
Placeholder

Intuition
• For each row only keep attributes from A

Definition (Syntax)

• Projection πA(R)
• A = (a1, . . . , an) is a list of attributes from R

— attributes cannot appear more than once in A

32

Projection
Placeholder

Definition (Semantics)

Given a relational algebra expression πA(R) and database D:
πAD = {t.A | t ∈ RD}

where t.A denotes the restriction of tuple t to attributes from A

33

Projection - Example
Placeholder

Example Expression

πage,salary(persons)
Input

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

Output
age salary
34 24,000
45 65,000
38 55,000
39 90,000

34

Union
Placeholder

Intuition
• Combine the rows from tables R and S into one table

Definition (Syntax)

• Union R ∪ S
• R and S have to have the same arity (number of attributes)
• also same types

Definition (Semantics)

Given a relational algebra expression R ∪ S and database D:
R ∪ SD = {t | t ∈ RD ∨ t ∈ SD}

35

Union - Example
Placeholder

Example Expression

customer ∪ employee
Input

customer

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45

employee

name salary age
Alice 55,000 38
Sudeepa 90,000 39

Output

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

36

Set Difference
Placeholder

Intuition
• Return all rows from R that do not exist in S

Definition (Syntax)

• Set difference R− S
• R and S have to have the same arity (number of attributes)
• also same types

Definition (Semantics)

Given a relational algebra expression R− S and database D:
R− SD = {t | t ∈ RD ∧ ¬ t ∈ SD}

37

Set Difference - Example
Placeholder

Example Expression

student − instructor
Input

student

name department
Gertrud CS
Sanjiv CS
Jun BIO

instructor

name department
Sanjiv CS
Sudeepa BIO

Output
name department
Gertrud CS
Jun BIO

38

Cross product
Placeholder

Intuition
• Return the concatenation of each row from R with each row from S

Definition (Syntax)

• Cross product R× S
• Sch(R) ∩ Sch(S) = ∅ (no common attribute names)

39

Cross product
Placeholder

Definition (Semantics)

Given a relational algebra expression R× S and database D:
R ∪ SD = {r ◦ s | r ∈ RD ∧ s ∈ SD}

where ◦ denotes concatenation of tuples r = (c1, . . . , cn) and s = (d1, . . . , dm):
r ◦ s = (c1, . . . , cn, d1, . . . , dm)

40

Cross product - Example
Placeholder

Example Expression

year ×month
Input

year

year
2022
2023

month

month name
01 Jan
02 Feb

Output
year month name
2022 01 Jan
2022 02 Feb
2023 01 Jan
2023 02 Feb

41

Renaming
Placeholder

Intuition
• Return the input relation with new attribute names

Definition (Syntax)

• Rename ρB(R)
• B = (b1, . . . , bn) is a list of attributes with the same arity as R(a1, . . . , an)

— attributes cannot appear more than once in B

42

Renaming
Placeholder

Definition (Semantics)

Given a relational algebra expression σθ(R) and database D:
ρBD = {t[b1 ← a1, . . . , bn ← an] | t ∈ RD}

Here t[b← a] renames attribute a to b in tuple t
Notational convenience

• If we want to only rename some attributes we will use ρbi←ai,... to denote renaming
where all attributes not explicitly mentioned are assumed to not be renamed

43

Renaming - Example
Placeholder

Example Expression

ρlastname,salary,howold(persons)
Input

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

Output
lastname salary howold
Gertrud 24,000 34
Sanjiv 65,000 45
Alice 55,000 38
Sudeepa 90,000 39

44

Combining Operators
Placeholder

• Each operator is quite simple and of limited expressiveness
• The power of relational algebra stems from combining operators

Return instructors older than 40 that are not students

πname(σage>40(instructor))− πname(student)
Input

instructor

name age
Fatima 45
Rohit 35
Luis 50

student

name major
Fatima CS
Nattawut BIO
Rohit CS

Output
name
Luis

45

Sharing Subexpressions
Placeholder

• To simplify writing of complex queries we will allow for modularization by giving
subqueries a name using Name← Query

Assignment

q1 ← person ▷◁addr=aid address
q← q1 ∪ q1

46

Excursion - Relational Algebra
Placeholder

Excursion - Relational Algebra
Relational Algebra
Extended Relational Algebra
Incompleteness

47

Limited Expressive Power
Placeholder

• There are certain queries that we cannot express using the operators we havediscussed so far:
— How many rows are in the student table?— Return a particular tuples independent of the database content— For each row in the employee table return income - tax

47

Additional Operators
Placeholder

Adding expressive power
• Constant relation
• Aggregation with group-by γ
• Generalized projection

48

Additional Operators
Placeholder

Syntactic sugar
• Operators that can be expressed using the standard relational algebra operators
• Natural join and Theta join ▷◁

• Relational division ÷
• Intersection ∩
• Outer joins ▷◁, ▷◁ , ▷◁
• Semi join and Anti-join

49

Constant Relation
Placeholder

Intuition
• Return a fixed table

Definition (Syntax)

• Constant Relation {t1, . . . , tn}(a1,...,am)• (a1, . . . , am) defines the attribute names for the result relation
• each ti is expected to be a tuple over (a1, . . . , am)

Definition (Semantics)

Given a relational algebra expression {t1, . . . , tn}(a1,...,am):
{t1, . . . , tn}(a1,...,am)D = {t1, . . . , tn}

50

Constant Relation - Example
Placeholder

Example Expression

{(Peter, 30), (Bob, 45)}(name,age)

Input

Output
name age
Peter 30
Bob 45

51

Aggregation Functions
Placeholder

• An aggregration function f takes a set of values and returns a single value
— for convenience we will all aggregation functions to take a set of tuples with a singleattribute

• Aggregation functions we consider here:
— count(v1, ..., vn) = n— sum(v1, . . . , vn) = ∑ni=1 vi— min(v1, . . . , vn) = vi such that ∀j ∈ [1, n] : vi ≤ vj— max(v1, . . . , vn) = vi such that ∀j ∈ [1, n] : vi ≥ vj
— avg(v1, . . . , vn) = sum(v1,...,vn)

count(v1,...,vn)

52

Aggregation Function Examples
Placeholder

• S = {1, 10, 15, 25}
• count(S) = 4
• sum(S) = 51
• min(S) = 1
• max(S) = 25
• avg(S) = 12.75

53

Aggregation Functions on Empty Inputs
Placeholder

• Consider an input set ∅:
— count(∅) = 0— sum(∅) = null— min(∅) = null— max(∅) = null— avg(∅) = null

54

Aggregation
Placeholder

Intuition
• without group-by: compute an aggregation function over all values in a column
• with group-by: group rows based on their group-by attributes and compute the
aggregation function for each group of tuples

Definition (Syntax)

• Aggregation γf(a);G(R)
• a ∈ Sch(R)
• f is an aggregation function (one of sum, avg, count,min,max)

— aggregation functions take a set of values and return a single value
• G is a list of group-by attributes (G = ∅ is allowed)

55

Aggregation Semantics w/o Group-by
Placeholder

Definition (Semantics - aggregation w/o group-by)

Given a relational algebra expression γf(a)(R) and database D:
γf(a)(R)D = {(f(πa(R)D))}

• Aggregation returns a single row even if the input relation is the empty set
• The attribute storing the result of the aggregation function f(a) is named f(a)

56

Aggregation Semantics With Group-by
Placeholder

Definition (Semantics - aggregation with group-by)

Given a relational algebra expression γf(a);G(R) and database D:
γf(a);G(R)D = {(f(Group(R,G, t))) ◦ t.G | t ∈ R}

Group(R,G, t) = {t′ | t′ ∈ R ∧ t.G = t′.G}
Tuple concatenation

t ◦ t′ denotes the concatenation of tuples, i.e.,
(a1, . . . , an) ◦ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm)

57

Aggregation Example (w/o Group-By)
Placeholder

Example Expression

γsum(salary)(persons)
Input

name salary age
Gertrud 24,000 30
Sanjiv 65,000 30
Alice 55,000 40
Arthur 100,000 40
Sudeepa 90,000 40

Output
sum(salary)
334,000

58

Aggregation Example (w/o Group-By)
Placeholder

Example Expression

γsum(salary)(persons)
Input

name salary age
Output

sum(salary)
null

59

Aggregation Example (Group-by)
Placeholder

Example Expression

γage;sum(salary)(persons)
Input

name salary age
Gertrud 24,000 30
Sanjiv 65,000 30
Sudeepa 90,000 40
Jose 100,000 40
Alice 55,000 40

Output
age salary
30 89,000
40 245,000

60

Aggregation (Multiple Functions)
Placeholder

• We will allow aggregation to compute multiple aggregation functions at once
Multiple aggregation functions

γdept;sum(salary),avg(tax)(employee)
No extra expressive power

• This does not add any expressive power
• We can rewrite this into individual aggregations + join

61

Generalized Projection
Placeholder

Intuition
• Allow for arithmetic expressions in projection

Definition (Syntax)

• Projection πA(R)
• A = (e1, . . . , en) is a list of expressions:— basic expressions:

◦ an attribute a ∈ R
◦ a constant c

— composite expressions:
◦ e1 ⋄ en for arithmetic operator ⋄ (e.g.,+, or ·)
◦ e1 ⋄ en where ⋄ is a comparison operator (e.g.,< or≥)
◦ e1 ∧ e2, e1 ∨ e2, ¬e

62

Generalized Projection
Placeholder

Definition (Semantics)

Given a relational algebra expression σθ(R) and database D:
πAD = {(e1(t), . . . , en(t)) | t ∈ RD}

Result Schema
• Expressions are used as attribute names, e.g., πsalary−tax(person) has a singleattribute named salary - tax

63

Generalized Projection - Example
Placeholder

Example Expression

πname,salary−tax+bonus(employee)
Input

name salary tax bonus
Gertrud 24,000 3,500 0
Sanjiv 65,000 4,700 10,000

Output
name salary
Gertrud 20,500
Sanjiv 70,300

64

Query Equivalence
Placeholder

Definition (Query Equivalence)

Two queries Q1 and Q2 are equivalent, written as Q1 ≡ Q2 iff:
∀D : Q1(D) = Q2(D)

• Two queries are equivalent if they return the same result over every database
• Equivalently, they encode the same function

65

Natural Join
Placeholder

Intuition
• Join two tables on equality of common attributes

Definition (Syntax)

• Natural Join R ▷◁ S
Definition (Semantics)

Given a relational algebra expression R ▷◁ S and database D, let O = Sch(S)− Sch(R)
and C = Sch(R) ∩ Sch(S) = (a1, . . . , an) and C′ = (a1′, . . . , an′)

R ▷◁ S ≡ πR,O(σ∧a∈C a=a′(R× ρC′,O(S)))
66

Natural Join - Example
Placeholder

Example Expression

president ▷◁ provost
Input

president

year president
2023 Bob
2024 Alice

provost

year provost
2023 Les
2024 Joe

Output
year president provost
2023 Bob Les
2024 Alice Joe

67

Natural Join
Placeholder

No common attributes
• It is permissible to natural join two relations that do not share any common
attributes

• This is a cross product!

68

Theta Join
Placeholder

Intuition
• Join tuples on a condition θ.

Definition (Syntax)

• Theta Join R ▷◁θ S
• Sch(R) ∩ Sch(S) = ∅ (no common attribute names)

Definition (Semantics)

Given a relational algebra expression R ▷◁θ S and database D:
R ▷◁θ S ≡ σθ(R× S)

69

Theta Join - Example
Placeholder

Example Expression

πname,manager(πname,manager,salary(employee)
▷◁manager=man∧salary>mansalary
(ρman,mansalary(πname,salary(employee))))

Input
employee

name manager salary
Lin null 60,000
Faizan Lin 50,000
Saeed Lin 100,000

Output
name manager
Saeed Lin

70

Semi-join
Placeholder

Intuition
• Return all tuples from R that join with at least one tuple from S.

Definition (Syntax)

• Semi-join R ▷θ S
• Sch(R) ∩ Sch(S) = ∅ (no common attribute names)

Definition (Semantics)

R ▷θ S ≡ πSch(R)(R ▷◁θ S)
71

Semi-join - Example
Placeholder

Example Expression

student ▷name=name′ ρname′,course(takes)
Input

student

name
Gertrud
Sanjiv
Alice
Sudeepa

takes

name course
Gertrud CS480
Sanjiv CS480
Sanjiv CS430

Output
name
Gertrud
Sanjiv

72

Natural Semi-join
Placeholder

Natural Semi-join
• If no condition θ is provided, then the semi join will be assumed to be a natural join
• In this case we join on equality of the common attributes
• We still only return attributes from the left input

73

Anti-join
Placeholder

Intuition
• Return all tuples from R that do not join with any tuple from S.

Definition (Syntax)

• Anti-join R ▶θ S
Definition (Semantics)

R ▶θ S ≡ R− (R ▷θ S)

74

Anti-join - Example
Placeholder

Example Expression

student ▶name=name′ ρname′,course(takes)
Input

student

name
Gertrud
Sanjiv
Alice
Sudeepa

takes

name course
Gertrud CS480
Sanjiv CS480
Sanjiv CS430

Output
name
Alice
Sudeepa

75

Outer Joins
Placeholder

Intuition
• Like a regular join but retain tuples form one or both sides that do not have join
partners. Tuples that do not have join partners are padded with null values.

Definition (Syntax)

• Left Outer Join R ▷◁θ S
• Right Outer Join R ▷◁ θ S
• Full Outer Join R ▷◁ θ S
• Sch(R) ∩ Sch(S) = ∅ (no common attribute names)

76

Outer Joins
Placeholder

Definition (Semantics)

Consider R and S with | Sch(R) |= n and | Sch(S) |= m
R ▷◁θ S ≡ (R ▷◁θ S) ∪ ((R− (R ▷θ S))× {(null, . . . ,null︸ ︷︷ ︸

m times
)})

R ▷◁ θ S ≡ (R ▷◁θ S) ∪ ({(null, . . . ,null︸ ︷︷ ︸
n times

)} × (S − (S ▷θ R)))
R ▷◁ θ S ≡ (R ▷◁θ S) ∪ ((R− (R ▷θ S))× {(null, . . . ,null︸ ︷︷ ︸

m times
)})

∪ ({(null, . . . ,null︸ ︷︷ ︸
n times

)} × (S − (S ▷θ R)))

77

Left Outer Joins - Example
Placeholder

Example Expression

πname,city(person ▷◁address=aid address)
Input

person

name address
Peter NULL
Bob 1

address

aid city
1 Chicago
2 New York

Output
name city
Peter NULL
Bob Chicago

78

Right Outer Joins - Example
Placeholder

Example Expression

πname,city(person ▷◁ address=aid address)
Input

person

name address
Peter NULL
Bob 1

address

aid city
1 Chicago
2 New York

Output
name city
Bob Chicago
NULL New York

79

Full Outer Joins - Example
Placeholder

Example Expression

πname,city(person ▷◁ address=aid address)
Input

person

name address
Peter NULL
Bob 1

address

aid city
1 Chicago
2 New York

Output
name city
Peter NULL
Bob Chicago
NULL New York

80

Intersection
Placeholder

Intuition
• Return all tuples that exist in both R and S.

Definition (Syntax)

• Intersection R ∩ S
• R and S have to have the same arity (number of attributes)
• also same types

Definition (Semantics)

Given a relational algebra expression R ∩ S and database D:
R ∩ S ≡ R− (S − R)

81

Intersection
Placeholder

R S

R− (R− S) = R ∩ S

R− S

82

Intersection - Example
Placeholder

Example Expression

customer ∩ employee
Input

customer

name salary age
Gertrud 24,000 34
Sanjiv 65,000 45

employee

name salary age
Gertrud 24,000 34
Alice 55,000 38
Sudeepa 90,000 39

Output
name salary age
Gertrud 24,000 34

83

Division
Placeholder

Intuition
• The maximal T such that T × S ⊆ R

— compare integer division n÷m is the largest u such that u ·m ≤ n
• For the attributes O only in R find tuples t such that all combinations of t.O withtuples from S exist in R

— this is a type of universal quantification

84

Division
Placeholder

Definition (Syntax)

• Division R÷ S
— Sch(S) ⊂ Sch(R)

Definition (Semantics)

Given a relational algebra expression R÷ S and database D. Let U = Sch(R)− Sch(S).
E1 ← πU(R)
E2 ← πU((E1 × S)− πU,Sch(S)(R ▷◁ S))

R÷ S ≡ E1 − E2
85

Division - Example
Placeholder

Example Expression

takes÷ course
Input

takes

student course
Bob CS480
Bob CS100
Alice CS480

course

course
CS480
CS100

Output
student
Bob

86

Excursion - Relational Algebra
Placeholder

Excursion - Relational Algebra
Relational Algebra
Extended Relational Algebra
Incompleteness

87

Missing Values
Placeholder

• Real information is often incomplete
— The information may not be available at all— The information may be too expensive to obtain— We may not have gotten the information yet

• Incomplete Databases are a principled way to model missing or uncertain
information

• The relational model as defined by Codd and implemented in database system
only has very limited support for incompleteness

• We will have a brief look at the general model to understand the limitation of the
relational model according to Codd and to SQL

87

Incomplete Databases
Placeholder

Definition (Incomplete Database)

A incomplete database D = {D1, . . . ,Dn} is a set of deterministic databases Di calledpossible worlds
Intuition

• Each possible world represents one possible true state of the world, but we do not
know which world correctly represents the real world

88

Incomplete Database Example
Placeholder

Incomplete Database
D1

name age salary
Peter 30 60,000
Alice 40 90,000
Bob 40 100,000

D2
name age salary
Peter 31 70,000
Alice 40 90,000

89

Nulls for Incomplete Information
Placeholder

• In the relational model, null values are used to model incompleteness
• A null valuemeans that we have complete uncertainty about what value is thecorrect value for a tuple’s attribute

— any domain value is considered possible
• A database with null values encodes an incomplete database where each possible
world is generated from the database by replacing each null value with a value
from the attribute’s domain

90

Database with Nulls Example
Placeholder

name is-graduate active
Peter NULL 1
Bob 1 NULL

D1name is-graduate active
Peter 0 1
Bob 1 0

D2name is-graduate active
Peter 0 1
Bob 1 1

D3name is-graduate active
Peter 1 1
Bob 1 0

D4name is-graduate active
Peter 1 1
Bob 1 1

91

Limited Expressive Power of Databases with Nulls
Placeholder

• Databases with nulls are not powerful enough to express all types of
incompleteness

• We can not express:
— Correlations between missing values (e.g., Peter and Bob both work on the sameunknown project)— Restrictions of allowable values (e.g., we do not know Peter’s salary but it is either 70k or71k)— Uncertainty about tuple existence (/e.g., Peter may or may not exist)

92

Nulls & Three-valued Logic
Placeholder

• How to we deal with the incompleteness encoded by null values?
• Redefine arithmetic operations and comparisons with null

Definition (Operations with Null)

c ⋄ null = null (⋄ ∈ {+, ·, <,=,≤, . . .})
Definition (Logical Operators and Null)

OR

textcolorwhitetextbffalsetextcolorwhitetextbftruetextcolorwhite(textcolorwhitenullvaltextcolorwhite)
false false true null
true true true true
null null true null

AND

textcolorwhitetextbffalsetextcolorwhitetextbftruetextcolorwhite(textcolorwhitenullvaltextcolorwhite)
false false false false
true false true null
null false null null

NOT

textcolorwhitetextbfresult
false truetrue false
null null

93

Relational Algebra Operators over Databases with
Nulls
Placeholder

Selection & join
• Filter rows where θ(t) = false or θ(t) = null

Aggregation
• Null values are ignored in aggregation
• For group-by values nulls are treated like actual values

— e.g., there may be a group (null, 3)

94

Inconsistencies Arising From Three-valued Logic
Placeholder

• Tautologies fail
— A = A does not return true if A = null

• Certain rows are missed
— Query results that exist in every possible world may not be returned

• Impossible rows may be returned
— Query results that are impossible (are not returned in any world) may be returned

95

Omitting Certain Rows
Placeholder

σisalive=isalive(beings)
Input

beings

name isalive
Schroedinger’s cat NULL

D1
name isalive
Schroedinger’s cat 0

D2
name isalive
Schroedinger’s cat 1

Output
name isalive

96

Returning Impossible Rows
Placeholder

beings− σisalive=isalive(beings)
Input

beings

name isalive
Schr. cat NULL

D1
name isalive
Schr. cat 0

D2
name isalive
Schr. cat 1

Output
name isalive
Schr. cat NULL

97

Provenance Models For Relational
Queries

Overview
Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra
Provenance Models For Relational Queries

Agenda
Why Provenance
Provenance Polynomials
Beyond Positive Relational Algebra

Provenance Applications & Querying Provenance
References

Provenance Models For Relational Queries
Placeholder

Provenance Models For Relational Queries
Agenda
Why Provenance
Provenance Polynomials
Beyond Positive Relational Algebra

98

Agenda
Placeholder

• we now will consider specific classes of queries
• we will develop provenance models which can be computed efficiently

98

Provenance Models For Relational Queries
Placeholder

Provenance Models For Relational Queries
Agenda
Why Provenance
Provenance Polynomials
Beyond Positive Relational Algebra

99

Witness Sets
Placeholder

• Recall our declarative notion of a witness andminimal witness

Definition (Witness Sets)

Given a query Q, database D, and tuple t ∈ Q(D), we introduce the following notation:
• Wit(Q,D, t) = {w | w ⊆ D ∧ t ∈ Q(w)}
• MWit(Q,D, t) = {w | w ∈ Wit(Q,D, t) ∧ ¬∃w′ ⊂ w : w′ ∈ Wit(Q,D, t)}

99

Positive Relational Algebra
Placeholder

• ForWhy provenance we will restrict our attention to positive relational algebra
RA+ queries which are all queries that only use:
— Selection σ, Projection Π, Union ∪, Cross Product × and renaming ρ

• We will provide a recursive definition that expresses the witnesses for the result ofa relational algebra operator based on the witnesses for the operators input
— The why-provenance of a query result is then computed top-down starting with thetop-most operator of a query and finishes at the leaves (table accesses)

100

Why Provenance
Placeholder

Definition (Why Provenance)

Let Q be anRA+ query, D a database, and t ∈ Q(D). Why(Q,D, t) is:

Why(R,D, t) =
{
{{t}} if t ∈ R
∅ otherwise Why(ρAB(Q),D, t) = Why(Q,D, t.AB)

Why(σθ(Q),D, t) =
{Why(Q,D, t) if t |= θ

∅ otherwise Why(πA(Q),D, t) = ⋃
u∈Q(D):u.A=t

Why(Q,D, u)
Why(Q1 ▷◁ Q2,D, t) = {D′ ∪ D′′ | D′ ∈ Why(Q,D, t.Q1) ∧ D′′ ∈ Why(Q,D, t.Q2)}
Why(Q1 ∪ Q2,D, t) = Why(Q1,D, t) ∪Why(Q2,D, t)

101

Minimal Why Provenance
Placeholder

Definition (Minimal Why Provenance)

MWhy(Q,D, t) = {w | w ∈ Why(Q,D, t) ∧ ¬w′ ⊂ w : w′ ∈ Why(Q,D, t)
Lemma (Minimal Why Provenance Contains All Minimal Witnesses)

MWhy(Q,D, t) = MWit(Q,D, t)

102

Syntax Independence
Placeholder

• Declarative models have the beneficial property that equivalent queries have
the same provenance
— provenance only depends on how the query behaves not on how it is written

• For models that are based on specific query syntax this is not necessarily true
Definition (Syntax Independence)

A provenance model P is syntax independent if for any two queries Q1 ≡ Q2 we havethat:
∀D : ∀t ∈ Q1(D) : P(Q1,D, t) = P(Q2,D, t)

103

Why Provenance and Syntax Dependence
Placeholder

Theorem (Syntax Independence of Minimal Why-provenance)

• Minimal Why-provenance is syntax independent
• Why-provenance is syntax dependent
• Q1 = πA(R) ≡ πA(R) ▷◁ πA(R) = Q2

R

A B
1 1 r11 2 r2

Query result

A Why MWhy
1 {{r1}, {r2}, {r1, r2}} {r1}, {r2}}

104

Discussion
Placeholder

• Why provenance distinguishes between conjunctive and disjunctive use
— Each witness w is a set of tuples that are together sufficient for producing the result(conjunctive)— Multiple witnesses model alternative ways to derive a tuple (disjunctive)

• Why provenance works for set semantics, but not for bags
— Minimization can lead to incorrect results under bag semantics— Defining provenance as sets of tuples does not work well with bags

• Why provenance is computed top-down

105

Provenance Models For Relational Queries
Placeholder

Provenance Models For Relational Queries
Agenda
Why Provenance
Provenance Polynomials
Beyond Positive Relational Algebra

106

Bag Semantics
Placeholder

• so far we have focused only on set semantics
• SQL databases (almost) exclusively use bag semantics
• Under bag semantics (multisets) a relation can contain multiple copies of a tuple

— Themultiplicity of a tuple is the number of duplicates of the tuple

A B
1 1
1 1
1 1
1 2

• (1, 1): multiplicity 3
• (1, 2): multiplicity 1

106

Equivalence in Bag and Set Semantics
Placeholder

• Queries that are equivalent under set semantics may not be equivalent under bag
semantics

• Q1 = R is equivalent to Q2 = R ▷◁ R under set semantics
• Q1 and Q2 are not equivalent under bag semantics

R
A B
1 1
1 1

Q1
A B
1 1
1 1

Q2
A B
1 1
1 1
1 1
1 1

107

Agenda - K-relations
Placeholder

• We want a provenance model that works for both bags and sets
• For our provenance model to be syntax independent it should have exactly the
same equivalences as regular query semantics

• Allows us to track how tuples are combined by a query to derive a result
• Can express other models like minimal why provenance

108

Annotation to the Rescue
Placeholder

• Annotations associate data with additional metadata
— Comments from users— Trust annotations— Provenance— . . .

• we will annotate tuples with provenance

109

Semirings
Placeholder

• Use elements from a semiring as tuple annotations
Definition (Semiring)

A semiring over a set K is a structure K = (K,⊕K,⊗K, 0K, 1K) where ⊕K : K × K → K
and ⊗K : K × K → K are binary operations and 0K and 1K are elements from K . K has
to obey the algebraic laws shown on the next slide.

110

K-relations
Placeholder

Definition (K-relations)

Consider a be a universal domain of values U . An n-ary K-relation R is a function
Un → K such that the set {t | t ∈ Un ∧ R(t) ̸= 0} is finite.

Tuples That Do Not Exist
• K-relations are total functions (every possible tuple gets an annotation)
• Non-existing tuples are annotated with 0K
• Convention: do not explicitly list tuples annotated with 0K

111

K-relations Examples
Placeholder

• Natural Numbers (N = (N,+, ·, 0, 1): bag semantics by annotating each tuple
with its multiplicity

• Boolean Semiring B = ({⊤,⊥},∨,∧,⊥,⊤): Tuples that exist are annotated with
⊤ and tuples that do not with ⊥.

• Possible Worlds SemiringW = (2W ,∪,∩, ∅,W): W denotes the set of possible
worlds. Each tuple is annotated with the set of worlds it appears in.

112

K-relations Examples (cont.)
Placeholder

Sets (B)
Student Activity
A hike ⊤
B tennis ⊤
C tennis ⊤

Bags (N)
Student Activity
a hike 2
b tennis 3
b tennis 4

113

Semirings Laws
Placeholder

k1 ⊕K k2 = k2 ⊕K k1 (commutativity of addition)
k1 ⊗K k2 = k2 ⊗K k1 (commutativity of multiplication)

(k1 ⊕K k2)⊕K k3 = k1 ⊕K (k2 ⊕K k3) (associativity of addition)
(k1 ⊗K k2)⊗K k3 = k1 ⊗K (k2 ⊗K k3) (associativity of multiplication)

k1 ⊕K 0K = k1 (neutral element of addition)
k1 ⊗K 1K = k1 (neutral element of multiplication)
k1 ⊗K 0K = 0K (annihilation by zero)

k1 ⊗K (k2 ⊕K k3) = (k1 ⊗K k2)⊕K (k1 ⊗K k3)(multiplication distributes over addition)
114

Queries over K-relations
Placeholder

• Queries returns the same tuples as under set semantics
•

Definition (RA+ Query Semantics)

• Rename: ρA←B(R)(t) = R(t[B← A])
• Projection: πU(R)(t) = ∑

t=t′[U] R(t′)
• Selection: σθ(R)(t) = R(t)⊗K θ(t)
• Natural Join: (R1 ▷◁ R2)(t) = R1(t[R1])⊗K R2(t[R2])
• Union: (R1 ∪ R2)(t) = R1(t)⊕K R2(t)

115

Provenance Semirings
Placeholder

Positive Boolean Algebra Semiring
• PosBool[X] = (PosBool[X],∨,∧,⊥,⊤):

The elements of the PosBool[X] are positive boolean formulas over a set of variables X
• minimal why-provenance
• same equivalences as set semantics

Why-provenance Semiring

• Why[X] = (22X ,∪,⋓, ∅, {∅}):
— k1 ⋓ k2 = {w1 ∪ w2 | w1 ∈ k1 ∧ w2 ∈ k2}

• why provenance

116

Provenance Semirings (cont)
Placeholder

Which-provenance Semiring
• Which[X] = (2X ∪ {⊥},∪+,∪×,⊥, ∅):

— Operations ∪+ and ∪× are set union, but— k1 ∪+ ⊥ = ⊥ ∪+ k1 = k1— k1 ∪× ⊥ = ⊥ ∪× k1 = ⊥
• lineage

Provenance Polynomials Semiring
• N[X] = (N[X],+,×, 0, 1)

— Polynomials with integer coefficients over variables X
• the right provenance model for bag semantics
• same equivalences as bag semantics

117

Provenance Polynomial Intuition
Placeholder

• Provenance polynomials record how input annotations where combined toderive an output annotations
— only fulfills the equivalences needed to be a semiring

• Works for every semiring

118

K-relational Queries Example - Sets
Placeholder

• query Q = πA(R ▷◁ S)
R

A B C
1 1 1 ⊤
1 2 1 ⊤

S
B D
1 3 ⊤
1 4 ⊤
2 3 ⊤

Q
A
1 (⊤ ∧⊤) ∨ (⊤ ∧⊤) ∨ (⊤ ∧⊤) = ⊤

119

K-relational Queries Example - Bags
Placeholder

• query Q = πA(R ▷◁ S)
R

A B C
1 1 1 2
1 2 1 5

S
B D
1 3 1
1 4 2
2 3 3

Q
A
1 (2 · 1) + (2 · 2) + (5 · 3) = 21

120

K-relational Queries Example - Minimal Why
Placeholder

• query Q = πA(R ▷◁ S)
R

A B C
1 1 1 x11 2 1 x2

S
B D
1 3 y11 4 y22 3 y3

Q
A
1 (x1 ∧ y1) ∨ (x1 ∧ y2) ∨ (x2 ∧ y3)

121

K-relational Queries Example - Provenance
Polynomials
Placeholder

• query Q = πA(R ▷◁ S)
R

A B C
1 1 1 x11 2 1 x2

S
B D
1 3 y11 4 y22 3 y3

Q
A
1 (x1 · y1) + (x1 · y2) + (x2 · y3)

122

Semirings and Query Equivalence
Placeholder

N[X] (N)

B[X] Trio[X]

Sorp[X] Why[X] Why-provenance

PosBool[X] (B)Minimal
Why-provenance Which[X] Lineage

k ⊕K k = k k ⊗K k = k

k ⊕K k = kk ⊗K k = kk1 ⊕K (k1 ⊗K k2) = k1

k ⊗K k = k k1 ⊕K (k1 ⊗K k2) = k1
k1 ⊕K k2 = k1 ⊗K k2for ki ̸= 0

123

Homomorphisms
Placeholder

• homomorphisms: technical tool to understand the relationship between
semirings and prove the generality of provenance polynomials

Definition (Homomorphism)

Let K1 and K2 be semirings, a mapping h : K1 → K2 is a homomorphism if for all
k1, k2 ∈ K1, we have:

h(k1 ⊕K1 k2) = h(k1)⊕K2 h(k2)
h(k1 ⊗K1 k2) = h(k1)⊗K2 h(k2)

h(0K1) = 0K2
h(1K1) = 1K2

124

Homomorphisms on K-relations
Placeholder

• Consider a semiring homomorphism: h : K1 → K2, we define its application to a
K1 relation R by applying it to the annotation of very tuple:

h(R)(t) = h(R(t))

125

Homomorphism on K-relations - Example
Placeholder

• h1 : N→ B

h1(k) =
{
⊥ if k = 0
⊤ otherwise

• Q = πA(R)

Q(D)
A
1 3
R

A B
1 a 2
1 b 1

h(Q(D)) = Q(h(D))
A
1 ⊤ = h1(3) = ⊤ ∨⊤

h(R)

A B
1 a ⊤ = h1(2)1 b ⊤ = h1(1)

126

Homomorphisms Commute with Queries
Placeholder

• As relational algebra over K-relations is defined based on the semiring operations,
it follows homomorphisms commute with queries

Theorem (Homomorphism commute with queries)

Consider a K1 database D and query Q and a homomorphism h : K1 → K2:
h(Q(D)) = Q(h(D))

127

Homomorphisms and Expressiveness
Placeholder

• Homomorphisms can "delete" information, but can never generate new
information

• Consider two provenance semirings K1 and K2 that consists of symbolicexpressions over variables X (e.g., provenance polynomials)
— If there exist a semiring homomorphism K1 → K2 then K1 tracks more information(see [Gre11])

128

Homomorphisms and Deletions
Placeholder

Lemma (Deleting tuples is a homomorphism)
Consider a N[X] relation where each tuple ti is annotated with a unique variable xi from set
X. Consider a subset Y ⊆ X, then hdel as defined below is a semiring homomorphism.

hdel(x) =
{0 if x ∈ Y
x otherwise

Implications
• Given the provenance polynomials for the result of a query over a database D, we
can determine the correct provenance polynomials for any database D′ ⊂ D by
applying hdel to these polynomials!

129

Provenance Polynomials and "Computability"
Placeholder

• As provenance polynomials track semiring computations in a generic way, we canevaluate any supported query Q over an N[X] database where every tuple isannotated with a unique variable xi and derive the query results for any Kdatabase with the same support by:
1. Design a homomorphism Evalµ that assigns to each variable xi an annotation from K2. Apply Evalµ to the query result

Generality of Provenance Polynomials
• Provenance polynomials track the provenance of queries for any K database for
any semiring K

130

Provenance Polynomials and "Computability"
Placeholder

Definition (Computability)

We say a provenance model has the computability property if from the provenance of
a query Q over database D we can reconstruct Q(D).

Theorem (Computability of Provenance Polynomials)

Provenance polynomials have the computability property for K-relations any semiring K.

131

Provenance Models For Relational Queries
Placeholder

Provenance Models For Relational Queries
Agenda
Why Provenance
Provenance Polynomials
Beyond Positive Relational Algebra

132

Queries With Negation
Placeholder

• So far we have only considered positive relational algebra
— all queries aremonotone

• We assumed that provenance is transitive
• Introducing negation leads to new challenges

— the absence of tuples can be required to produce a result— transitivity breaks down

132

Negation and Transitivity - Counterexample
Placeholder

R

A
1 r1

S

B
1 s1

T

A
1 t1

• Q1 = R− Q2 andQ2 = S − T
• w2 = {s1} is awitness for Q2
• w1 = {r1} is awitness for Q1

Q2
WHITEB

Q1
WHITEA

1 133

Provenance Applications & Querying
Provenance

Overview
Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra
Provenance Models For Relational Queries
Provenance Applications & Querying Provenance

Applications & Requirements
Provenance for Debugging
Querying Provenance

References

Provenance Applications & Querying Provenance
Placeholder

Provenance Applications & Querying Provenance
Applications & Requirements
Provenance for Debugging
Querying Provenance

134

Provenance Applications & Querying Provenance
Placeholder

Provenance Applications & Querying Provenance
Applications & Requirements
Provenance for Debugging
Querying Provenance

134

Debugging Computations
Placeholder

134

Forward Tracing
Placeholder

135

Backward Tracing
Placeholder

136

Provenance Applications & Querying Provenance
Placeholder

Provenance Applications & Querying Provenance
Applications & Requirements
Provenance for Debugging
Querying Provenance

137

Backward Provenance Queries
Placeholder

137

Forward Provenance Queries
Placeholder

138

References

Overview
Black-Box Provenance Models & Requirements for Provenance
Excursion - Relational Algebra
Provenance Models For Relational Queries
Provenance Applications & Querying Provenance
References

References

References
Placeholder

References
References

139

References I
Placeholder

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan.Why and Where: A Characterization of Data Provenance.In ICDT ’01: Proceedings of the 8th International Conference on Database Theory, pages 316–330, 2001.
[CCT09] James Cheney, Laura Chiticariu, and Wang-Chiew Tan.Provenance in Databases: Why, How, and Where.Foundations and Trends in Databases, 1(4):379–474, 2009.
[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener.Tracing the Lineage of View Data in a Warehousing Environment.ACM Transactions on Database Systems (TODS), 25(2):179–227, 2000.
[Gla21] Boris Glavic.Data provenance - origins, applications, algorithms, and models.Foundations and Trends® in Databases, 9(3-4):209–441, 2021.
[Gre11] T.J. Green.Containment of conjunctive queries on annotated relations.Theory of Computing Systems, 49(2):429–459, 2011.
[MGMS10] A. Meliou, W. Gatterbauer, K.F. Moore, and D. Suciu.The Complexity of Causality and Responsibility for Query Answers and non-Answers.Proceedings of the VLDB Endowment, 4(1):34–45, 2010.

139

	Provenance Models
	Overview
	What is a Provenance Model?

	Black-Box Provenance Models & Requirements for Provenance
	Agenda
	Sufficiency & Minimality
	Causality
	Recap

	Excursion - Relational Algebra
	Relational Algebra
	Extended Relational Algebra
	Incompleteness

	Provenance Models For Relational Queries
	Agenda
	Why Provenance
	Provenance Polynomials
	Beyond Positive Relational Algebra

	Provenance Applications & Querying Provenance
	Applications & Requirements
	Provenance for Debugging
	Querying Provenance

	References
	References

