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Context
Introduction

• In healthcare, patients and action need to be prioritized based on risk.
• Most at-risk patients should be handled first
• Tradition paradigm of predictivemodels does not contain such logic

• Often, models also lack interpretability.
• Gap between what we want to achieve with a model and what can be achieved
with it
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Falling Rule List
Introduction

• Ordered list of if-then rules, sorted by an importance criteria.

• Estimated probability of success decreases monotonically down the list

Conditions Probability Supp.
IF IrregularShape AND Age≥ 60 THEN risk is 85.22% 230
ELSE IF SpiculatedMargin AND Age ≥ 45 THEN risk is 78.13% 64
ELSE IF IlDefinedMargin AND Age ≥ 60 THEN risk is 69.23% 39
ELSE IF IrregularShape THEN risk is 63.40% 153
ELSE IF LobularShape AND Density ≥ 2 THEN risk is 39.68% 63
ELSE IF RoundShape AND Age ≥ 60 THEN risk is 26.09% 46
ELSE THEN risk is 10.38% 366
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Objectives
Placeholder

The paper aims to achieve the following objectives:

Implementation
Propose an algorithm creating a falling
rule list for patient diagnosis

Usage
Create a model with a high level of
interpretability for the physicians (by
looking at the list, they will understand the
decision criterias).
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Proposed Method
Alerts and repeats

• Binary classificationmodel to estimate p(Y|x), Y is the disease and x the patient
features.
— Y indicates the presence of a disease
— x patients features

• Coditional distribution, ordered list of IF THEN. With the p(Y = 1) decreasing
after each rule

• Bayesian Parametrization to characterize the posterior falling rule list.
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Introduction
Background

• One of themost challenging parts of Bayesian parameterization is choosing the
right distribution to represent the model. The commonly used distributions will
be introduced.

• Bayesian Inference will be introduced as amethod
• Point estimators as well
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Common Discrete Distributions
Background

This paper uses the following distributions in its model:

• Bernoulli: distribution captures binary cases, xϵ[0, 1]: it’s the coin toss
distribution. It’s parametrized by p = P(X = 1)ϵ[0, 1].

• Poisson: distribution describes a rare event limit: there are more and more
(n→∞) Bernoulli(p) random variables, but each has less and less of a chance of
giving 1(p = λ

n → 0). It’s parametrized by λ > 0.

• Gamma: distribution models the waiting time until the occurrence of k events
in a Poisson process. It’s parametrized by a shape parameter α (the number of
events) and a rate parameter β.
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Bayesian Inference
Background

Statistical method that updates the probability of a hypothesis as more evidence or
information becomes available.

Discrete case

pΘ|X(θ|x) =
pΘ(θ)pX|Θ(x|θ)∑
t pΘ(θ)pX|Θ(x|t)

• pΘ(θ) is the Prior distribution, our belief on
the unknown truth Θ

• pX|Θ(x|θ)is the likelihood representing the
relation between the observation X andΘ

• pΘ|X(θ|x) is the Posterior distribution
representing our belief in X after observingΘ
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Point Estimator, MAP estimator
Background

θ̂ is an estimator that maps an observation x into a realistic θ, called a point estimator
(used in a single observation).

Theorem

θ̂MAP = argmaxθpΘ|X(θ|x)
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Plan
Material and Methods

• Objective: find the optimal Rule list
• We need therefore to parameterize the model (prior and likelihood).

— Enforcemonotonicity over the risk score rl associated with each IF cause
— Build the prior specific

• Find the optimal Point Estimator, that can build the optimal Rule list

14 / 35



Model Parameters
Material and Methods

Conditions Probability Supp.
c0 : IF IrregularShape AND Age≥ 60 THEN r0 is 85.22% 230
c1 : ELSE IF SpiculatedMargin AND Age ≥ 45 THEN r1 is 78.13% 64

• L ∈ Z+ → size of the list (2 in this case)

• cl(.) ∈ Bx(.), for l = 0,…, L− 1→ IF clauses
• rl ∈ R, for l = 0,…, L→ risk score s.t. rl+1 ≤ rl for l = 0,…, L− 1

• rl fed into a logistic function to produce risk probability

• L+ 1 nodes and risk probabilities. +1 for default patients matching none of the L
rules (ELSE case)

15 / 35



Model Parameters
Introduction

Conditions Probability Supp.
IF IrregularShape AND Age≥ 60 THEN risk is 85.22% 230
ELSE IF SpiculatedMargin AND Age ≥ 45 THEN risk is 78.13% 64
ELSE IF IlDefinedMargin AND Age ≥ 60 THEN risk is 69.23% 39
ELSE IF IrregularShape THEN risk is 63.40% 153
ELSE IF LobularShape AND Density ≥ 2 THEN risk is 39.68% 63
ELSE IF RoundShape AND Age ≥ 60 THEN risk is 26.09% 46
ELSE THEN risk is 10.38% 366
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Prior - Plan
Material and Methods

• Reparametrization to enforcemonotonicity on rl
• Build the prior specific
• The prior specific is exposed only to the outputs of aMining algorithm to help
with computations.
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Prior
Material and Methods

Reparametrization

rl = log(vl) for l = 0, . . . , L

vl = K
L−1∏
l′=l

yl′ for l = 0, . . . , L− 1

Constraints:
vL = K

yl ≥ 1

K ≥ 0

Therefore rL (risk of default rule) is
equal to log(K).
After parametrization, we obtain
the following:

θ = {L, {cl(.)}L−1
l=0 , {γl}

L−1
l=0 ,K}
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Mining Algorithm
Material and Methods

• Place positive prior probability of {cl}L−1
l=0 only over a list of booleans B

• B is a the result of amining algorithm (FPGrowth is used in this case)

• Input is a binary dataset , where x is a boolean vector and the output is a set of
subset of the features of the dataset

Input
Binary dataset , where x is a boolean
vector

Output
Set of subsets of the features of the
dataset
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Prior Specific
Placeholder

1. Initialize hyperparameter
H = {B, λ, {αl}|B|−1

l=0 , αK, βK,wl
|B|−1
l=0 }

2. Initialize Θ← {}
3. L ∼ Poisson(λ)
4. For l = 0, .., L− 1

—

cl(·) ∼ pc(·)
(
· | Θ; B, {wl}|B|−1

l=0

)
pc(·)

(
c(·) = cj(·) | Θ; B, {wl}|B|−1

l=0

)
∝ wj if cj(·) /∈ Θ and 0 otherwise.

Update Θ← Θ ∪ {cl(·)·}

• For l = 0, .., L− 1 draw
γl ∼ Gamma1(αl, βl),

• Draw K ∼ Gamma(αk, βk)

• L ∼ Poisson(λ),where λ is the
prior decision length
decided by the user.

• l-thrule with prob. ∝ to a
user designed weight wl.

• Kmodels the risk of patients
not satisfying any rules
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Posterior Probability
Material and Methods

• Objective: Finding the decision list with themaximum posterior probability.

ppost(L, c0,...,L−1(.),K, γ0,...,L−1|y1,...,N; c1,...,N)

• The posterior does not have a simple solution. It can be computationally
expensive to even calculate the posterior distribution.

• Monte Carlo sampling from the posterior distribution over the decision
parameter:

θ = {L, {cl(.)}L−1
l=0 , {γl}

L−1
l=0 ,K}
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Obtaining the MAP
Material and Methods

θ∗ = {L∗, c0,...,L∗−1(·)∗,K∗, γ0,...,L∗−1}, where

L∗, c∗0,...,L∗−1(·),K∗, γ∗0,...,L∗−1 ∈ argmaxL,c0......L−1(·),K, γ0,...,L−1L

where L = log(ppost). This optimization problem is equivalent to finding:

L∗, c0,...,L∗−1(·)∗ ∈ argmaxL,{cl(·)}L−1
l=0
L
(
L, {cl(·)}L−1

l=0 ,K∗, γ∗0,...,L−1

)
where

K∗, γ∗0,...,L−1 ∈ argmaxK,γ0,...,L−1
L
(
L, {cl(·)}L−1

l=0 ,K, γ0,...,L−1

)
Note that K∗ and γ∗0,...,L−1 depend on L, {cl(·)}L−1

l=0 .
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Summary
Material and Methods

• FRL takes themined rules and attempts to build a sequential list of rules
(decision list).

• Each rule is evaluated based on its ability to explain the positive and negative
samples (i.e., X_pos and X_neg). Rules that best separate positive from negative
samples are prioritized.

• Bayesian parameterization to characterize the posterior falling rule list.
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Experiments

Predicting Hospital Readmis-
sion, Performance on Public
Datasets



Predicting Hostpital Readmission
Material and Methods

• Falling Rule Lists to preliminary readmission data to predict whether a patient
will be readmitted to the hospital within 30 days.

• Pre-operative and Post-operative data for 8000 patients.
• Other 30 features.
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Results
Placeholder

Falling Rule List
• No parameters were tuned in the Falling Rule List.

• The prior condition on L, each rule had an equal
chance of being in the rule list.

• λ = 8, simulated annealing search for 5000 steps.

• Measured out-if-sample performance using the AUROC
from 5-fold CV, where theMAP decision list was used
to predict each fold test.

Method Mean AUROC
FRL .80 (.02)

NF_FRL .75 (.02)
NF_GRD .75 (.02)

RF .79 (.03)
SVM .62 (.06)
Logreg .82 (.02)
Cart .52 (.01)
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Resulting FRL
Placeholder

Conditions Probability Support
IF BedSores AND Noshow THEN read. risk is: 33.25% 770
ELSE IF PoorPrognosis AND MaxCare THEN read. risk is: 28.42% 278
ELSE IF PoorCondition AND Noshow THEN read. risk is: 24.63% 337
ELSE IF BedSores THEN read. risk is: 19.81% 308
ELSE IF NegativeIdeation AND Noshow THEN read. risk is: 18.21% 291
ELSE IF MaxCare THEN read. risk is: 13.84% 477
ELSE IF Noshow THEN read. risk is: 6.00% 1127
ELSE IF MoodProblems THEN read. risk is: 4.45% 1325
ELSE Read. risk is: 0.88% 3031
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Performance on Public dataset
Placeholder

Performance on several UCI datasets:
Columns of the Mamm: BI-RADS assessment, Age, Shape, Margin, Density, Severity

Method Spam Mamm Breast Cars
FRL .91(.01) .82(.02) .95(.04) .89(.08)

NF_FRL .90(.03) .67(.03) .70(.11) .60(.21)
NF_GRD .91(.03) .72(.04) .82(.12) .62(.20)
SVM .97(.03) .83(.01) .99(.01) .94(.08)
Logreg .97(.03) .85(.02) .99(.01) .92(.09)
CART .88(.05) .82(.02) .93(.04) .72(.17)
RF .97(.03) .83(.01) .98(.01) .92(.05)
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Conclusion & Comments

Conclusion, Positive aspect of
the paper, negative aspect of the
paper



Conclusion
Placeholder

• New class of interpretive predictive model.

• No loss in accuracy for using the FRL.

• ”An interpretable model that is actually used is better that one that is more
accurate that sits on a shelf”. Director U.S. National Institute of Justice.
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Comments
Placeholder

Positive Aspects
• Novel model explained in detailed.

• One of the highest interpretable
models existing in the domain.

• Tested on different datasets and with
different setups.

• 8000 patients for hospitalization
dataset is and consequent amount of
samples.

Negative Aspects
• Comparison should include boosting
models like XGBoost or L-GBM.

• SVM performed terribly, when it is a
widely used model in this context.

• 30 features for a hospitalization
dataset is very small
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Thank you!



Annex : PMF gamma Distribution
Placeholder

Theorem

f(x;α, β) =
xα−1e−x/β

βαΓ(k)
for x > 0.
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Annex : Mining Algorithm
Placeholder

Xpos, Xneg=mine_antecedents(data): mines rules from the training data using the
FP-Growth algorithm, separately for positive and negative samples, and then forms
binary representations of the data points that satisfy each rule, returning the sets of
positive and negative examples, rule lengths, and the list of mined antecedents. LINK
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https://github.com/cfchen-duke/FRLOptimization


Annex : AUROC metric
Placeholder

Area Under the Receiver Operating Characteristic curve measures the out-of-sample
performance of a binary classifier by evaluating its ability to distinguish between
classes, with a score of 1 indicating perfect classification and 0.5 representing random
guessing.
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