
noWorkflow: a Tool for Collecting, 
Analyzing, and Managing Provenance 
from Python Scripts
João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, Juliana Freire

1



• Background and Important Concepts
• Overview of noWorkflow (Murta, et. al 2014)
• Demonstration

• Provenance Collection
• Definition Provenance
• Deployment Provenance
• Execution Provenance

• Provenance Analysis
• Provenance Management
• Conclusion

Agenda

(Murta, et. al 2014) noWorkflow: Capturing and Analyzing Provenance of Scripts



3

● Provenance, scientific reproducibility and evolution of experiments.
● Previous works: 

○ Operating system level: general but difficult to reason
○ Workflow management systems (WFMS): closely match experiment semantics but high adoption 

costs
○ Current script approaches: do not support repeatability and experiment evolution

● noWorkflow: 
○ Provenance from Python scripts
○ Tracking history and evolution
○ Analysis of multiple trials
○ Prospective provenance (from YesWorkflow) + retrospective provenance (noWorkflow)

Background



Important concepts
• Static analysis

• Examining code without executing
• Type checking
• Control flow analysis (execution 

paths)
• Dataflow analysis (flow through 

variables and functions)
• Conservative (consider worst-case 

scenarios)



Important concepts
• Runtime monitoring

• Expanding static analysis
• Use of network
• Detecting anomalies (e.g., memory 

usage)
• Ensuring security (e.g., no 

unauthorized access)
• Profilers



6

● Appropriate level of granularity
● Difficult to determine which parts of script produced data

Overview of noWorkflow



Overview of noWorkflow



Overview of noWorkflow



Overview of noWorkflow

Definition provenance: “represents 
the structure of the script, including 
function definitions, their arguments, 
function calls, and other static data”.



Overview of noWorkflow

Deployment provenance: “represents 
the execution environment, including 
information about the operating system, 
environment variables, and libraries on 
which the script depends”.



Overview of noWorkflow

Execution provenance: “represents the 
execution log for the script”.



Demonstration
• Checking if the precipitation in Rio de Janeiro remains constant across 

years (2013 and 2014).

• Collecting data from meteorological database, process the data and 
produce an image for comparison.



Provenance Collection
• Attribute trial number
• 1) definition provenance, 2) deployment provenance. After execution 3) 

execution provenance
• Accessed files, modules, and scripts stored to files. SHA1 hash to files stored 

on the database



Definition Provenance
• Prospective provenance
• Abstract Syntax Tree (AST)
• Python bytecode of the script

Relational Database Content Database

script file and 
function definition

function names, calls, 
parameters, and 
global variables 

Content of ‘experiment.py’
Hash code and function 
calls (i.e., arange, read, 
sum_by_month, and 
create_bargraph)



Abstract Syntax Tree (AST)
• AST models relationship between tokens as a 

tree of nodes containing children. Each node 
contains type of token and related data.

5 * (2 + 4)

*

5 +

2 4



Abstract Syntax Tree (AST)



Abstract Syntax Tree (AST)

function_a

function_bprint

function_cprint

print



Deployment Provenance
• Environment

• Operating system information (e.g., Ubuntu 16.04)
• Hostname 
• Machine Architecture (e.g., x86_64)
• Python version (e.g., 3.5.2)
• Environment variables

• Library dependencies
• Versions (e.g., ‘numpy’ in 1.11.3)
• Names
• Transitive closure
• Libraries

Relational Database

Content Database



Execution Provenance

• Input and output files before and after 
processing (e.g., ‘p13.dat’ and ‘output.png’)

• Two granularities: 
• Coarse (Python Profiler): function activations (i.e., 

executed function calls), global variables, 
parameters, and return values

• Fine (Profiler + Tracer): variable attributions, loop 
definitions, variable dependencies

Content Database

Relational Database

Retrospective provenance and Runtime monitoring



Execution Provenance 
Function call: related to definition 
provenance. Can be captured by static 
analysis.

Function activation: related to 
execution provenance. Only captured in 
runtime.



Execution Provenance (Example)

● Coarse: np.arange(12) 
returns [0, 1, ..., 10, 11]

● Fine: value of months as 
[1, 2, ..., 11, 12]



Provenance Analysis

now dataflow 1 | dot -Tpng -o p1.png

data

files

variables

function calls



Provenance Analysis
• Query provenance with SQL
• Export provenance to Prolog facts and common queries
• Textual comparison between trials (now diff 1 2)

access_influence(1, File, ‘out.png’)

Which files might have influenced the 
generation of ‘output.png’ in trial 1 ‘p13.dat’ and ‘p14.dat’



Provenance Analysis
• Web visualization tool
• History of trials as a graph

Activation graph of trial 1 Diff to trial 2



Provenance Management
• Possible to restore code and data from previous trials
• Alternate scenarios
• Derivation history

backup trial



Conclusion



Conclusion
• Collecting provenance from Python scripts without modifying the script
• Tracking and navigating the evolution of experiments

Limitations:
• Does not collect important data to some scripts (e.g., network or database) 
• Only supports Python scripts
• Provenance size can grow with loops and size of scripts

Takeaways:
• The idea can be adapted to different languages and parts of the experiments
• Offers intuitive approach to provenance
• Calls for more initiatives that makes provenance accessible to final users



Conclusion
• Python is highly dynamic and unpredictable during runtime (no sound static 

analysis is possible in general case)



Thank you!


