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Motivation

Computations over uncertainty data
Queries and machine learning training and inference
The uncertainty will typically stem from unrecoverability of the ground truth clean
version of dirty dataset
Inherent complexity often necessitates approximation

Over-approximation of the set of possible results
Under-approximation of what is certainly known to be true

Connections to abstract interpretation and control theory
Abstract interpretation [Cou96]
Reachability analysis [ASB08]
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Examples

Query evaluation
Using K-relations and interval domains for query evaluation

Machine learning: training and inference
Using convex polytopes for training and inference with linear models
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Data Quality Issues

Missing Values (NULLs)

Salary Tax
35,000 3,300

1,200

149,000 5,000

Constraint Violations
A is a key for R

A B
1 1
1 2
2 2
3 1
3 2
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Repairs, Incomplete Databases, and Possible Worlds Semantics

Definition (Incomplete databases)

An incomplete database D⊙ is a set of databases:

D⊙ = {D1,D2, . . . ,Dn}

Uncertainty stemming from dirty data
Given a "dirty" database D we consider all possible clean versions as an incomplete
database D⊙

Possible world semantics
Given some function F define its evaluation on an incomplete database, under possible world
semantics as

F (D⊙) = {F (D1), . . . ,F (Dn)}
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Certain and Possible Answers / Facts

Definition (Certain Answers)

The certain answers certain(Q,D⊙) to a query Q over an incomplete database D⊙ are:

certain(Q,D⊙) =
⋂

D∈D⊙

Q(D)

Definition (Possible Answers)

The possible answers certain(Q,D⊙) to a query Q over an incomplete database D⊙ are:

possible(Q,D⊙) =
⋃

D∈D⊙

Q(D)
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Representation Systems

Representation systems
representation system [ILJ84] is a pair (A,Mod)

A = {Ai} - the representations
each element A represents an incomplete database Mod(A)

(A, Mod) is closed under classes of computations F:
∀F ∈ F : Mod(F (D♯)) = F (Mod(D♯))
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Limitations

Limitations
Some representation systems are only closed under relatively small classes of queries

e.g., V-tables [LJ84] not closed under selection with inequalities
Some representation systems are not concise

e.g., aggregation over C-tables [LJ84] can result in exponential blowup
Delaying complexity

e.g., [ADT11] handles aggregation, but extracting all worlds is hard
PTIME is often not good enough

e.g., joins can degenerate into cross-products

Slide 7 of 33 Boris Glavic - How to Bake an Uncertainty Pie: Incomplete Databases, Repairs, and Approximations



Over-approximations Of Incomplete Databases

Relax two requirements of representation systems
1 representations are allowed to be over-approximations

assign each incomplete database D⊙ with a representation α(D⊙) = A
that can be an over-approximation: Mod(α(D⊙)) ⊇ D⊙

2 computations should preserve this over-approximation

Mod(F (α(D⊙))) ⊇ F (D⊙)
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Under-approximating certain answers

Certain facts for an incomplete databases certain(D⊙) =
⋂

D∈D⊙ D
now we require α(·) to under-approximate
extend representation system with an operation certain↓

require under-approximation: certain↓(α(D⊙)) ⊆ certain(D⊙)

computations should preserve this under-approximation

certain↓(F (α(D⊙))) ⊆ certain(F (D⊙))
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Abstract Domains and Transformers

Definition (Abstract Domain)

Given a concrete domain D, an abstract domain is a set D♯ with two operations:
abstraction α : P(D) → D♯

concretization: γ : D♯ → P(D)
such that for any set S ⊆ P(D)

γ (α(S)) ⊇ S

Definition (Abstract Transformers)

Given a function F : D1 → D2 and abstract domains D♯
1 and D♯

2 an abstract transformer
F ♯ : D♯

1 → D♯
2 for F has to fulfill for any S ⊆ P(D1):

γ
(
F ♯(α(S))

)
⊇ F (S)
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Example: Interval Arithmetic

Interval Domain
concrete domain: R
abstract domain: RI = {[l , u] | l ≤ u ∧ l , u ∈ R}
abstraction: for S ⊆ R : α(S) = [inf S , sup S ]

concretization: γ ([l .u]) = {c | c ∈ [u, l ]}

Interval Arithmetic
[a, b] + [c , d ] = [a+ c , b + d ]

[a, b]− [c , d ] = [a− d , b − c]

[a, b] · [c, d ] = [min(ac, ad , bc, bd),max(ac, ad , bc, bd)]

[dFS04]
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Example: Zonotopes

Zonotope Domain
concrete domain: Rn

abstract domain
set of variables E
affine forms: A = {a0 +

∑
ϵi∈E ai · ϵi | ai ∈ R} with finite support

zonotopes: Zn
♯ = {z | z ∈ An}

abstraction: α(S) = IH(S) (interval hull)
concretization: γ (z) = {φ(z) | φ is a valuation}

valuation: φ : E → [−1, 1]
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Zonotopes: Affine Arithmetic

Affine Arithmetic
zonotopes

z1 = a0 +
∑

ϵi∈E ai · ϵi
z2 = b0 +

∑
ϵi∈E bi · ϵi

addition: z1 + z2 = a0 + b0 +
∑

ϵi∈E ai · bi · ϵi
multiplication: z1 · z2 = a0b0 + (

∑
ϵi∈E(a0 · bi + ai · b0) · ϵi ) + c · ϵnew

c = (
∑

i |ai |) · (
∑

i |bi |)
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Naturally Ordered Semirings

Natural order
Semiring (K ,+K , ·K , 0K , 1K )
Define k1 ≤K k2 ⇔ ∃k3 : k1 + k3 = k2

A semiring is naturally ordered if ≤K is a partial order

Properties of the natural order
natural order is preserved under semiring operations:
addition: a ≤K c ∧ b ≤K d ⇒ a+K b ≤K c +K d

multiplication: a ≤K c ∧ b ≤K d ⇒ a ·K b ≤K c ·K d
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Incomplete K-relations

Definition (Incomplete K-databases)

An incomplete K database D⊙ is a set of K databases {D1, . . . ,Dn}

D1

name salary
Boris 120k 1
Peter 150k 1
Peter 380k 2

D2

name salary
Peter 180k 2
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K-relations as Abstract Domains

Abstract Domain
Assume a naturally ordered semiring K , then we can use K databases as abstract domains
[FHGK19],
abstraction

∀t : α(D⊙)(t) = sup
D∈D⊙

D(t)

concretization
γ (D) = {D ′ | ∀t : D ′(t) ≤K D(t)}
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Abstract Transformers for Query

Abstract Transformers for Relational Algebra Operators
Under the standard K-relational semantics for positive relational algebra [GT17], operators
are abstract transformers.
This follows from the preservation of natural order under semiring operations
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K-relations with Interval Domain Values

Use interval domain values to encode value uncertainty
Also for aggregation results [ABC+03, AK08, DK22]

name salary
Boris [120k,120k] [0,2]
Peter [140k,400k] [2,3]
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Over-approximating Possible Worlds

Selection
requires interval arithmetic and embedding of Boolean intervals into the semiring K

Difference
to be useful requires both upper and lower bounds [GL17]

Aggregation
for N there exist an abstract transformer for semi-module expressions [ADT11]
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TLDR

What has been achieved?
a semantics for relational algebra over uncertain data with PTIME data complexity

closed under full relational algebra with aggregation and order-based operations (e.g.,
windowed aggregation)

mechanisms to approximate repairs to common data quality issues and approximate
common incomplete and probabilistic data models
uniform treatment of aggregation results and value uncertainty
Approximating certain and possible answers

under-approximation of certain answers with value uncertainty
over-approximation of possible answers with value uncertainty

Over-approximation of the set of possible worlds
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Learning and Inference over Incomplete Databases

Setting
uncertain training D⊙ with features X⊙ and labels and test datasets Xtest

⊙

consider linear models trained with ridge regression (l2 regularization)
train an over-approximation of all possible models
compute an over-approximation of all possible inference outcomes

!⊙

"

## !#"#

#⊙

#"

## #$ !"

!#

!$

Abstract Learning

Concrete Learning

Abstract
Dataset

Abstract
Weights

Possible
Datasets

Possible
Weights
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Uncertain Training and Test Data

Training Data

Age Income Savings
25 50K 5K

NULL 60K 6K
35 NULL 7K

NULL NULL [8K,9K]
45 90K 12K
50 NULL [10K,12K]
55 75K 9K
60 85K 10K
65 80K 13K

Test Data

Age Income Savings
25 50K ??
40 60K ??
20 90K ??
70 50K ??
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Possible Models
Possible World 1     Possible World 2
Sav. = -2855 + 98×Age + 0.1×Inc. 
Sav. = -3361 + 84×Age + 0.1×Inc. 

Possible World 1     Possible World 2
Sav. = -2855 + 98×Age + 0.1×Inc. 
Sav. = -3361 + 84×Age + 0.1×Inc. 

Each training data world Di

induces a model!
w∗

i = A(Di )
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Possible Predictions

The difference in models leads to a difference in predictions

Predictions in world D1 with w ∗
1

sav . = −2855 + 98 · Age + 0.1 · Inc .

Age Income Savings
25 50K 4595
40 60K 7065
20 90K 8105
70 50K 9005

Predictions in world D2 with w ∗
2

sav . = −2855 + 84 · Age + 0.1 · Inc .

Age Income Savings
25 50K 4245
40 60K 6505
20 90K 7825
70 50K 8025
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Abstract Gradient Decent

Fixed Point Gradient Descent
Model weights w
Loss L

Learning Rate η

w (t+1) = w (t) +
(
−η · ∇L(w (t))

)
Abstract Gradient Descent

Exact abstract transformers exist for all operations of gradient descent for linear regression
requires polynomial zonotopes

w ♯(t+1)
= w ♯(t) +

(
−η ⊙∇♯L♯(w ♯(t))

)
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Equivalence-Based Abstract Fixed Points

Abstract Fixed Points (Equivalence)

γ
(
w ♯∗

)
= γ

(
w ♯∗ +

(
−η · ∇♯L♯(w ♯(t))

))
Existence of Fixed Points

Abstract fixed points exists
Reached once all concreted gradient descent processes have converged

Challenges
The size of the representation grows exponentially in the number of gradient descent steps
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Ridge Regression

Ridge regression

L(X , y ,w) =
1
n

n∑
i=1

(y ′i − yi )
2 =

1
n
(Xw − y)T (Xw − y)

Gradient Descent

w t+1 = w t − η
2
n
(XTXw t − XTy) + 2λw t
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Order Reduction, Linearization & Divergence

Order-Reduction
Order-reduction
over-approximates a
zonotope with another
zonotope of smaller
representation size

Linearization
Linearization
over-approximates
polynomial zonotopes with
linear zonotopes

Projection	A

Interval	
Hull

Interval	Hull

Inverse

Projecti
on	A

-1

Line
ariz

atio
n

Transformation-based
Interval	Hull

Polynomial
Zonotope

Challenges
Fixed point may not exist
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Abstract Closed Form

Abstract gradient descent with order-reduction and linearization

w ♯(t+1)
= R

(
w ♯(t) + L

(
−η · ∇♯L♯(w ♯(t))

))
Decomposition

Decomposition: w ♯ ∗ = w∗
R + w ♯ ∗

D + w ♯ ∗
N is a fixed point if:

w∗
R = ΦR(w∗

R), w ♯ ∗
D = Φ♯

D(w∗
R ,w

♯ ∗
D ) w ♯ ∗

N ≃♯ Φ
♯
N(w∗

R ,w
♯ ∗
D ,w ♯ ∗

N )

Choose order-reduction to construct fixed point
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Conclusions

Abstract Interpretation
Over-approximate sets of "possible worlds"
Abstract transformers: computations that preserve the over-approximation

Applications to machine learning
Can we go beyond linear models

Applications to databases
Databases with zonotope values: z-tables
What about annotations?

can we model correlation
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Group & Collaborators
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