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Abstract

Correlated private randomness, or correlation in short, is a fundamental cryptographic re-
source that helps parties compute securely over their private data. An o�ine preprocessing step,
which is independent of the eventual secure computation, generates correlated secret shares for
the parties and the parties use these shares during the �nal secure computation step. However,
these secret shares are vulnerable to leakage attacks.

Inspired by the quintessential problem of privacy ampli�cation, Ishai, Kushilevitz, Ostrovsky,
and Sahai (FOCS 2009) introduced the concept of correlation extractors. Correlation extractors
are interactive protocols that take leaky correlations as input and produce secure independent
copies of oblivious transfer (OT), the building blocks of secure computation protocols. Although
their initial feasibility result is resilient to linear leakage and produces a linear number of �fresh�
OTs, the constants involved are minuscule. The output of this correlation extractor can be used
to perform only small secure computation tasks, because the number of OTs needed to evaluate
a functionality securely is roughly proportional to its circuit size. Recently, Gupta, Ishai, Maji,
and Sahai (CRYPTO 2015) constructed an extractor that is resilient to 1/4 fractional leakage
and has near-linear production rate. They also constructed an extractor from a large correlation
that has 1/2 fractional resilience but produces only one OT, which does not su�ce to compute
even constant size functionalities securely.

In this paper, we show the existence of a correlation that produces n-bit shares for the
parties and allows the extraction of n1−o(1) secure OTs, despite n/2 bits of leakage. The key
technical idea is to embed several multiplications over a �eld into one multiplication over an
extension �eld. The packing e�ciency of this embedding directly translates into the production
rate of our correlation extractor. Our work establishes a connection between this problem and
a rich vein of research in additive combinatorics on constructing dense sets of integers that are
free of arithmetic progressions, a.k.a. 3-free sets. We introduce a new combinatorial problem
that su�ces for our multiplication embedding, and produces concrete embeddings that beat the
e�ciency of the embeddings inspired by the reduction to 3-free sets.

Finally, the paper introduces a graph-theoretic measure to upper-bound the leakage resilience
of correlations, namely the simple partition number. This measure is similar in spirit to graph
covering problems like the biclique partition number. If the simple partition number of a cor-
relation is 2λ, then it is impossible to extract even one OT if parties can perform λ-bits of
leakage. We compute tight estimates of the simple partition number of several correlations that
are relevant to this paper, and, in particular, show that our extractor and the extractor for
the large correlation by Gupta et al. have optimal leakage resilience and (qualitatively) optimal
simulation error.
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1 Introduction

Secure multi-party computation [71, 22] helps mutually distrusting parties to compute securely
over their private data. Unfortunately, it is impossible to securely compute most functionalities
in the information-theoretic plain model even against parties who honestly follow the protocol
but are curious to �nd additional information about the other parties' private input [19, 38, 32,
42, 2, 43, 41]. However, we can securely compute any functionality if honest parties are in the
majority [5, 12, 56, 16], parties use some trusted setup [10, 37, 35, 11, 49, 17, 23] or correlated private
randomness [39, 68, 15, 44], or there are bounds on the computational power of the parties [22, 35].

The study of secure computation using correlated private randomness, primarily initiated due to
e�ciency concerns, has produced several success stories, for example FairPlay [45, 4], TinyOT [50]
and SPDZ [18] (pronounced Speedz). These secure computation protocols o�oad most of the
computational and cryptographic complexity to an o�ine preprocessing phase. During this prepro-
cessing phase, a trusted dealer samples two shares (rA, rB) from the joint distribution (RA, RB),
namely the correlated private randomness, or correlation in short, and provides the secret shares rA
to Alice and rB to Bob. During the online secure computation phase, parties use their respective
secret shares in an interactive protocol to securely compute the intended functionality. Note that
the preprocessing phase is independent of the functionality or the inputs fed to the functionality by
the parties.

A prominent and extremely well-studied correlation is the random oblivious transfer correlation,
represented by ROT. It samples three bits x0, x1, b independently and uniformly at random, and
provides the secret shares (x0, x1) to Alice and (b, xb) to Bob. Note that Alice does not know the
choice bit b, and Bob does not know the other bit xb. Intuitively, ROT is an input-less functionality
that implements a randomized version of oblivious transfer functionality, where the sender sends
(x0, x1) as input to the functionality and the receiver picks xb out of the two input bits. Given
m independent samples from this distribution, parties can securely compute any functionality with
circuit complexity (roughly) m. For example, we can utilize the randomized self-reducibility of
oblivious transfer to reimagine the GMW protocol [22] in this framework naturally.

However, the storage of the secret shares by the parties brings to fore several vulnerabilities.
For instance, parties can leak additional information from the secret shares of the other parties. We
emphasize that the leakage need not necessarily reveal individual bits of the other party's share.
The leakage can be on the entire share and encode crucial global information that can potentially
jeopardize the security of the secure computation protocol.

To address these concerns, Ishai, Kushilevitz, Ostrovsky, and Sahai [33] introduced the notion
of correlation extractors. Correlation extractors distill leaky correlations into independent samples
of the ROT correlation that are secure. That is, for each of the new samples Alice does not know
Bob's choice bit and Bob does not know Alice's other bit. This problem is a direct analog of the
quintessential problems of privacy ampli�cation and randomness extraction problems in the secure
computation setting. With the exception that, correlation extractors ensure security against insider
attacks, i.e., the parties who perform the leakage are participants in the secure protocol itself. This
additional requirement makes the task of correlation extraction signi�cantly more challenging. It
is, thus, not surprising that relatively few results are known in the �eld of correlation extractor
construction.

For example, in the setting of privacy ampli�cation, if Alice and Bob start with a secret n-bit
random string then, in the presence of t-bits of arbitrary leakage to an eavesdropper, parties can
re-establish a fresh m-bit secret key such that the advantage of the eavesdropper in guessing the
secret key is roughly 2−∆ ≈ 2−(n−t−m). Intuitively, the sum of �entropy de�ciency� (t), �entropy
of production� (m), and �− log of the adversarial advantage� (∆) is roughly n, the initial entropy
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Correlation Number of OTs Number of Simulation Round
Description Produced (m) Leakage bits (t) Error (ε) Complexity

IKOS [33] ROTn/2 αn βn 2−γn 4

GIMS [26]
ROTn/2 n/ poly log n (1/4− g)n 2−gn/m 2

IP (GF [2]n) 1 (1/2− g)n 2−gn 2

Our Work IP
(
Fn/ log|F|) n1−o(1) (1/2− g)n 2−gn 2

Figure 1: A qualitative summary of prior relevant works in correlation extractors and a comparison
to our correlation extractor construction. All correlations have been normalized so that each party
gets an n-bit secret share. The positive constants α, β, and γ are minuscule. And g < 1/2 is an
arbitrary positive constant.

of the secret. Analogous results also exist in the setting of randomness extraction, where we can
extract nearly all of the min-entropy of a source. But similar tight extraction results are not known
for correlation extractors. In fact, the task of designing correlations that simultaneously support
high leakage resilience and production rate with exponential security has been elusive.

The number of the output ROT samples and their high security are crucial for the secure compu-
tation protocol. For example, protocols with exponential security can reduce the ROT production
or increase the statistical security parameter only slightly to prohibitively increase the e�ort needed
by adversaries to break them. Furthermore, the number of these ROT samples limit the size of the
eventual functionality that can be securely computed, because the number of ROT samples needed
to implement a functionality securely is directly proportional to its circuit size. As highlighted in
[26], the initial feasibility result of Ishai et al. [33], though asymptotically linear in leakage resilience
and production rate, has unsatisfactorily low resilience and production rate for realistic values of n,
the size of the original share of the parties. The subsequent work of Gupta et al. [26], improves the
resilience to (roughly) n/4 but trades-o� the security of the protocol for high production rate and,
consequently, achieves only negligible (and, not exponentially low) insecurity. They also consider
a new correlation, namely the inner-product correlation where the secret shares of the parties are
random n-bit binary vectors subject to the constraint that they are orthogonal to each other.1 They
construct a correlation extractor for the inner-product correlation with resilience n/2 and exponen-
tial security. However, it is inherently limited to producing one ROT sample as output, which is not
adequate for the end goal of performing interesting secure computations. Our work shows that the
inner-product correlation over an appropriately large �eld admits a correlation extractor that is re-
silient to n/2 bits of leakage, has high concrete production rate, and has exponentially high security.
Figure 1 summarizes the entire preceding discussion tersely. Finally, similar to Gupta et al. [26],
although our construction is stated in the information-theoretic setting, it is also relevant to the
setting where computationally secure protocol generate the correlations or use the output OTs.

However, is the upper-bound of n/2 resilience inherent to the inner-product correlation? For
example, n/2 samples of the ROT correlation cannot be resilient to more than n/4 bits of leak-
age. A partition argument can demonstrate this upper bound of the maximum resilience of this
correlation [34]. In this partition argument, Alice emulates the generation of n/4 (i.e., half of n/2)
independent samples (x0, x1) and (c, xc) from the ROT correlation and sends the corresponding

1 The actual inner-product correlation is de�ned slightly di�erently. Parties get shares (x0, x1, . . . , xn) and

(y0, y1, . . . , yn) such that x0 + y0 =
∑n
i=1 xiyi. That is, x0 and y0 are additive secret shares of the inner prod-

uct of (x1, . . . , xn) and (y1, . . . , yn). But for intuition, it su�ces to consider the correlation where the secret shares

of the parties are orthogonal vectors instead.
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Correlation Secret Share Simple Partition Upper Bound on the Max.
Description Size (s) Number (sp) Fractional Leakage (log sp/s)

ROTn/2 n 2n/4 1/4

ROLE (F)n/2 n log |F| |F|n/4 1/4

IP (Fn) n log |F| |F|n/2 1/2

Figure 2: A summary of the estimates of the simple partition number for the correlations relevant
to our work.

(c, xc) to Bob. Moreover, Bob emulates the generation of the remaining n/4 samples and sends
the corresponding (x0, x1) shares to Alice. Finally, we reimagine any correlation extractor that is
resilient to n/4 bits of leakage and produces even one secure ROT sample as a secure ROT protocol
in the plain model where Alice implements n/4 ROT samples, and Bob implements the remaining
n/4 ROT samples; which is impossible. Typically, the partition argument applies to �multiple in-
dependent samples of small correlations,� but its extension to one huge global correlation is not
apparent.

To address this question, we introduce a new graph-theoretic measure for the maximum re-
silience of a correlation, namely its simple partition number. In particular, a correlation with simple
partition number 6 2λ cannot be resilient to λ bits of leakage (refer to Figure 2 for a summary of
these estimates). Finally, we prove the optimality of the resilience demonstrated by the correlation
extractors for the inner-product correlation presented in [26] and our work. Refer to Section 5.7
for a discussion on how the relation between simple partition number and maximum resilience is
similar to the connection between biclique partition number and Wyner's common information [69].
The existence of correlation extractors for a slightly lesser amount of leakage implies the tightness
of our upper bounds on leakage resilience. Finally, we leverage the simple partition number bounds
and use an averaging argument to show that the decay in simulation security with entropy gap as
achieved by [26] and our correlation extractor are qualitatively optimal.

1.1 Model

This section presents the standard model of Ishai et al. [33] for correlation extractors, which sub-
sequent works also use. We consider 2-party semi-honest secure computation in the preprocessing
model. In the preprocessing step, a trusted dealer draws a sample (rA, rB) from the joint distribu-
tion (RA, RB). The joint distribution (RA, RB) is referred to as the correlated private randomness,
and rA and rB, respectively, are the secret shares of Alice and Bob. The dealer provides the secret
share rA to Alice and rB to Bob. An adversarial party can perform arbitrary t-bits of leakage on
the secret share of the other party at the end of the preprocessing step. We represent this leaky
correlation hybrid as (RA, RB)[t].2

In the leaky correlation (RA, RB)[t] hybrid, during the secure computation phase, parties perform
an interactive protocol to realize their target functionality securely. No leakage occurs during
the execution of the secure computation protocol. In this work, we consider the functionality
that implements m independent oblivious transfers between the parties, referred to as the OTm

2That is, the functionality samples secret shares (rA, rB) according to the correlation (RA, RB). The adversarial
party sends a t-bit leakage function L to the functionality and receives the leakage L(rA, rB) from the functionality.

The functionality sends rA to Alice and rB to Bob. Note that the adversary does not need to know its secret share

to construct the leakage function because the leakage function gets the secret shares of both parties as input.
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functionality.

De�nition 1 (Correlation Extractor). Let (RA, RB) be a correlated private randomness such that

the secret share size of each party is n-bits. An (n,m, t, ε)-correlation extractor for (RA, RB) is a

two-party interactive protocol in the (RA, RB)[t] hybrid that securely implements the OTm function-

ality against information-theoretic semi-honest adversaries with ε-simulation error.

1.2 Our Contribution

Our work makes a two-fold contribution regarding correlation extractors. First, we construct a
highly resilient correlation extractor that produces a large number of secure OTs as output and has
exponential security. Finally, we provide a general graph-theoretic measure that upper bounds the
maximal resilience of any correlation.

1.2.1 Correlation Extraction Construction.

For any �eld (F,+, ·), the inner-product correlation over Fn+1, represented by IP
(
Fn+1

)
, is a cor-

relation that samples random rA = (x0, x1, . . . , xn) ∈ Fn+1 and rB = (y0, y1, . . . , yn) ∈ Fn+1 such
that x0 + y0 =

∑n
i=1 xiyi. That is, x0 and y0 are the additive secret shares of the inner product of

x[n] := (x1, . . . , xn) and y[n] := (y1, . . . , yn). Gupta et al. [26] consider a special case of the inner-
product correlation, where F = GF [2]. Note that each party receives (n + 1) �eld elements as its
secret share. In particular, if F = GF [2a], then each party gets an a(n+ 1)-bit secret share.

Theorem 1 (High Resilience High Production Correlation Extractor). For all constants 0 < δ <
g < 1/2, there exists a correlation (RA, RB), where each party gets n-bit secret share, such that

there exists a two-round (n,m, t, ε)-correlation extractor for (RA, RB), where m = (δn)1−o(1), t =
(1/2− g)n, and ε = 2−(g−δ)n/2.

We use (RA, RB) = IP
(
GF
[
2δn
]1/δ)

in this theorem. Note that we maintain the dependence

on δ explicitly in the theorem statement to enable computation of concrete e�ciency. As we shall
see later, this theorem achieves high production rate of (δn)log 10/ log 38 ≈ (δn)0.633 even for realistic
values of n. The simulation error is exponentially low in the di�erence between the entropy gap
gn and the parameter δn. Our construction achieves (δn)1−o(1) production asymptotically, which
is close to the ideal target of δn production. Qualitatively, the decay in our simulation error is near
optimal as demonstrated by Theorem 2 and Corollary 3.

The crux of our construction is the composition of two technical contributions. First, we ob-
serve that the correlation extractor for IP (GF [2]n) constructed by Gupta et al. [26] extends to the
IP
(
F1/δ

)
correlation, where F is a large �eld. However, in this case, instead of producing a secure

OT, it produces a generalization of oblivious transfer, namely oblivious linear-function evaluation

over F [68] (represented as OLE (F)). An oblivious linear-function evaluation is a 2-party func-
tionality that takes (A,B) ∈ F2 as input from Alice and X ∈ F as input from Bob, and provides
Z = AX+B as output to Bob. Note that oblivious transfer is equivalent to oblivious linear-function
evaluation over GF [2], because xb = (x1 − x0)b+ x0, for x0, x1, b ∈ GF [2].

Finally, we embed m OT evaluations simultaneously into one OLE (F) evaluation. Note that,
this is not an asymptotic reduction. Asymptotically, there are several techniques to construct
multiple copies of OT using multiple copies of OLE at a good rate. Our focus is on securely
implementing multiple OT evaluations from only one OLE (F) evaluation. Development of more
e�cient embeddings will directly improve the production rate of our construction. We demonstrate
that dense sets of integers that avoid any arithmetic progressions, 3-free sets, provide such embedding
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of multiplications. We formulate a relaxed version of this combinatorial problem (see Figure 5) that
su�ces for our embedding problem and obtain more e�cient embeddings than those that are inspired
by the 3-free set constructions.

We emphasize that although we state our correlation extractor for the bounded leakage model,
i.e. an adversary can perform at most t-bits of leakage, it also extends to the noisy leakage setting.
As long as the noise is high enough to maintain (n− t) bits of (average) min-entropy in the secret
share of the parties, our extractor construction remains secure.

1.2.2 Bound on the Maximum Resilience.

The construction of Theorem 1 and the correlation extractor of Gupta et al. [26], with fractional
resilience 1/2, lead naturally to a fascinating question. Can there exist a correlation extractor for
IP (Fn) that achieves over 1/2 fractional resilience? In fact, more generally, can we meaningfully
upper-bound the maximum leakage resilience of an arbitrary correlation?

Note that if parties obtain multiple independent samples from identical correlation, then the
partition argument can be leveraged to deduce an upper bound. For example, either Alice or Bob
by getting adequate information on half of the other party's secret shares can break the security of
the correlation extractor protocol. As discussed earlier, this argument implies that the correlation
ROTn/2 is not resilient to dn/4e bits of leakage, because every ROT hides only one bit of information
from each party [34]. However, this approach does not apply to correlation extractors for secret
shares drawn from one large correlation, for example, IP (Fn). We prove the following main result.

Theorem 2 (Hardness of Correlation Extraction). Let (F,+, ·) be an arbitrary �eld. There exists

a universal constant ε∗ > 0 such that, for (RA, RB) = IP
(
Fk
)
, any (n, 1, (n/k) d(k + 1)/2e , ε)-

correlation extractor for (RA, RB) has ε > ε∗, where n = k log |F|.

This result proves the optimality of the leakage resilience achieved by our extractor in Theorem 1
and the correlation extractor for IP (GF [2]n) proposed by Gupta et al. [26]. In fact, a more general
version of this result (using averaging arguments) shows that any (n, 1, n/2 − gn, ε)-correlation
extractor for IP

(
Fk
)
has ε > ε∗2−gn (see Corollary 3). This result proves the qualitative optimality

of simulation error achieved by these two correlation extractors.
The technical heart of this result is a new graph-theoretic measure for maximum leakage re-

silience in correlations, namely simple partition number (see De�nition 4 in Section 2). Theorem 2
is a consequence of precise estimation of this quantity for the IP (Fn) correlation. This quantity
is similar in spirit to the biclique partition number of a graph [24, 25], the minimum number of
bicliques needed to partition the edges of a graph. Moreover, the connection of simple partition
number to maximum resilience is intuitively analogous to the link between biclique partition number
and Wyner's common information [69]. Section 5.7 provides details on this connection.

1.3 Prior Relevant Works

This work lies at the intersection of several �elds like correlation extractors, additive combinatorics,
graph covering problems, and information theory. In this section, we provide only a summary of
the work on combiners and extractors. The prior relevant works related to the remaining topics are
covered in appropriate sections later.

1.3.1 Combiners and Extractors.

A closely related concept is the notion of OT combiners, which are a restricted variant of OT
extractors in which the leakage is limited to local information about individual OT correlations,
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ROLE (F) Given a �eld F, Alice receives rA = (A,B) and Bob receives
rB = (X,Z) such that A,B,X are independently and uniformly
sampled from F and Z = A ·X +B.

IP (Fn) Given a �eld F, Alice receives rA = (x0, x1, . . . , xn−1) and Bob re-
ceives rB = (y0, y1, . . . , yn−1) such that x0, . . . , xn−1, y0, . . . , yn−1

are randomly selected from F, where x0 + y0 =
∑n−1

i=1 xi · yi.

Figure 3: A quick summary of the de�nitions of a few correlations that are relevant to this paper.

and there is no global leakage. The study of OT combiners was initiated by Harnik et al. [28].
Since then, there has been work on several variants and extensions of OT combiners [27, 35, 47, 48,
55]. Recently, Ishai et al. [34] constructed OT combiners with nearly optimal leakage parameters.
However, combiners consider a restricted variant of leakage where the leakage function leaks only
individual bits of the secret shares.

To address general leakage, Ishai, Kushilevitz, Ostrovsky, and Sahai [33], proposed the notion
of correlation extractors. Their construction has a linear leakage resilience, production rate, and
exponential security. However, as indicated by Gupta et al. [26], all the constants involved are
minuscule. To address this concern, they [26] construct correlation extractor for ROTn/2 that has
optimal leakage resilience with only a negligible (not exponentially-low) simulation error. They
also provide a correlation extractor construction from a large correlation that exhibits 1/2 leak-
age resilience but outputs only one OT. Our work will achieve (roughly) the best of both these
constructions, i.e., fractional resilience 1/2, (near) linear production rate, and exponential security.

1.4 Technical Overview

In this section we present a brief overview of our correlation extractor construction and the graph-
theoretic measure of the maximum resilience of an arbitrary correlation.

1.4.1 Correlation Extractor Construction

Suppose we are given 0 < δ < g < 1/2, and parties are in the IP
(
K1/δ

)[t]
-hybrid, where t = (1/2−g)n

and K = GF
[
2δn
]
. For m = (δn)1−o(1), we want to implement the OLE (GF [2])m functionality.

Figure 4 presents the outline of our correlation extractor construction. The extraction protocol π is
similar to the correlation extractor of Gupta et al. [26]. Except that, in their case the inner-product
correlation was over GF [2] instead of a large �eld K. The security of the protocol is argued in
Section 3. Our correlation extractor securely computes a sample from the ROLE (K) correlation.
The protocol ρ is the standard protocol that implements the OLE (K) functionality in the ROLE (K)-
hybrid with perfect security. So, all that remains is to simultaneously embed OLE (GF [2])m into one
OLE (K). This embedding relies on �nding solutions to a combinatorial problem that is summarized
in Figure 5. Section 4 outlines the technique of choosing the inputs to the OLE (K) functionality so
that the parties can implement the OLE (GF [2])m functionality with perfect security.

1.4.2 Hardness of Computation Result

The starting point of this result is the observation that we know the exact characterization of the
correlations which do not su�ce to construct OT asymptotically [38, 32, 42, 2, 43, 41], namely
simple correlations. Constructing one OT given a single sample from a simple correlation is even
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Ensure. Let F = GF [2] and K = GF
[
2δn
]
be an extension �eld of F. Let 0 < δ < g < 1/2.

Private Input. Let m = (δn)1−o(1). Alice has private input (a0, . . . , am−1) ∈ Fm and
(b0, . . . , bm−1) ∈ Fm. Bob has private input (x0, . . . , xm−1) ∈ Fm.

Hybrid. Parties are in the IP
(
K1/δ

)[t]
-hybrid, where t = (1/2− g)n.

Protocol.

1. Let π(K, 1/δ − 1) be a protocol in the IP
(
K1/δ

)[t]
-hybrid that securely computes ROLE (K)

with simulation error 2−(g−δ)n/2−1. Figure 7 provides the details of the protocol in Section 3.

2. Let ρ(K, A∗, B∗, X∗) be a perfectly secure protocol for OLE (K) in the ROLE (K)-hybrid. The
private input of Alice is (A∗, B∗) ∈ K2 and the private input of Bob is X∗ ∈ K. Bob obtains
the output Z∗ = A∗X∗ +B∗. Figure 8 provides the details of the protocol in Section 3.

3. The protocol σ(K, 1/δ − 1, A∗, B∗, X∗) is the parallel composition of π(K, 1/δ − 1) and
ρ(K, A∗, B∗, X∗) protocol.

4. Parties run the two-round protocol σ(K, 1/δ − 1, A∗, B∗, X∗) with Alice's private input
(A∗, B∗) and Bob's private input X∗. Lemma 3 in Section 4 explains the choice of the
inputs A∗, B∗, and X∗.

Output Computation. Lemma 3 in Section 4 presents Bob's algorithm to compute
(z0, . . . , zm−1) from Z∗.

Figure 4: For 0 < δ < g < 1/2, the outline of the (n,m, t, ε)-correlation extractor in the IP
(
K1/δ

)[t]
-

hybrid, where m = (δn)1−o(1), t = (1/2− g)n, ε = 2−(g−δ)n/2−1.

Our Combinatorial Problem. Find S and T such that

• S and T are ordered sets of non-negative integers of equal size.

• The set S + T represents the set of the sum of every element of S with every element in T .

• Interpret the set S + T as a matrix, where the (i, j)-th entry represents the sum of the i-th
entry in S and the j-th entry in T . All entries in S+T are in the range [0, n), and (S+T )i,i
is not equal to any other element in S + T , for i ∈ {0, . . . , |S| − 1}.

• Size of |S| = |T | is maximum

Figure 5: Our combinatorial problem for embedding multiple OLE over small �elds into one OLE
over an extension �eld.
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more restrictive, and, hence, the hardness of computation result carries over.3 This result holds
true even when there is no leakage on (RA, RB). In fact, there exists a universal constant ε∗ > 0
such that any OT protocol using any simple correlation has simulation error at least ε∗.

Intuitively, the simple partition number of a correlation (RA, RB), represented by sp (RA, RB),
is the minimum Λ such that (RA, RB) can be �decomposed into a union of� Λ simple correlations.
Section 5 formalizes this notion of decomposition. Next, we prove in Lemma 4 that for any cor-
relation (RA, RB), in the presence of t = log sp (RA, RB) bits of leakage, any protocol π for OT
has simulation error at least ε∗. Using this result, we translate tight upper bounds on the sim-
ple partition number of relevant correlations into corresponding meaningful upper bounds on their
maximum resilience. Figure 2 summarizes our results. We construct a smoother version of this
technical lemma using averaging arguments, see Corollary 3. For example, if the leakage bound
t > (log sp(G))− gn, then any (n, 1, t, ε)-correlation extractor for (RA, RB) has ε > ε∗ · 2−gn.

2 Preliminaries

We represent the set {1, . . . , n} by [n]. For a vector (x1, . . . , xn) and S = {i1, . . . , i|S|} ⊆ [n], the
set xS represents (xi1 , . . . , xi|S|). In this work we work with �elds F = GF [pa], where p is a prime
and a is a positive integer. An extension �eld K of F of degree n is interpreted as the �eld of all
polynomials of degree < n and coe�cients in F.

2.1 Functionalities and Correlations

We introduce some useful functionalities and correlations.
Oblivious Transfer. Oblivious transfer, represented by OT, is a two-party functionality that

takes as input (x0, x1) ∈ {0, 1}2 from Alice and b ∈ {0, 1} from Bob and outputs xb to Bob.
Oblivious Linear-function Evaluation. For a �eld (F,+, ·), oblivious linear-function eval-

uation over F, represented by OLE (F), is a two-party functionality that takes as input (a, b) ∈ F2

from Alice and x ∈ F from Bob and outputs z = ax + b to Bob. In particular, OLE refers to
the OLE (GF [2]) functionality. Note that OT is identical (functionally equivalent) to OLE because
xb = (x1 − x0)b+ x0.

Random Oblivious Transfer Correlation. Random oblivious transfer, represented by ROT,
is a correlation that samples x0, x1, b uniformly and independently at random. It provides Alice the
secret share rA = (x0, x1) and provides Bob the secret share rB = (b, xb).

Random Oblivious Linear-function Evaluation. For a �eld (F,+, ·), random oblivious
linear-function evaluation over F, represented by ROLE (F), is a correlation that samples a, b, x ∈ F
uniformly and independently at random. It provides Alice the secret share rA = (a, b) and provides
Bob the secret share rB = (x, z), where z = ax+ b. In particular, ROLE refers to the ROLE (GF [2])
correlation. Note that ROT and ROLE are identical (functionally equivalent) correlations.

Inner-product Correlation. For a �eld (F,+, ·) and n ∈ N, inner-product correlation over
F of size n, represented by IP (Fn), is a correlation that samples random rA = (x0, . . . , xn−1) ∈ Fn
and rB = (y0, . . . , yn−1) ∈ Fn subject to the constraint that x0 + y0 =

∑n−1
i=1 xiyi. The secret shares

of Alice and Bob are, respectively, rA and rB.
For m ∈ N, the functionality Fm represents the functionality that implements m independent

copies of any functionality/correlation F .
3 The problem of characterizing correlations whose single sample su�ce to construct OT is a fascinating open

problem that lies beyond the purview of this study.
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2.2 Toeplitz Matrix Distribution

Given a �eld F, the distribution T(k,n) represents a uniform distribution over all matrices of the
form [Ik×k|Pk×n−k], where Ik×k is the identity matrix and Pk×n−k is a Toeplitz matrix with each
entry in F. The distribution T⊥,(k,n) is the uniform distribution over all matrices of the form
[Pn−k×k|In−k×n−k], where In−k×n−k is the identity matrix and Pn−k×k is a Toeplitz matrix with
each entry in F.

2.3 Graph Representation of Correlations

We introduce a graph-theoretic representation of correlations for a more intuitive presentation.

De�nition 2 (Graph of a Correlation). Let (RA, RB) be the joint distribution for a correlation. The

graph of the correlation (RA, RB) is the weighted bipartite graph G = (L,R,E) de�ned as follows.

1. The left partite set L is the set of all possible secret shares rA for Alice,

2. The right partite set R is the set of all possible secret shares rB for Bob, and

3. The weight connecting the vertices rA and rB is the probability of sampling the shares (rA, rB)
according to the distribution (RA, RB).

In this paper, the notation (RA, RB) also represents the bipartite graph corresponding to it. If
the correlation is a uniform distribution over a subset E of all possible edges, then we normalize
the entire graph such that the weights on each edge is 1. For example, consider the correlations
presented in Figure 3. Henceforth, for the ease of presentation, we assume that the graph of a
correlation is an unweighted bipartite graph. The left-most graph in Figure 12 is the graph of the
ROLE correlation.

A bipartite graph G = (L,R,E) is a biclique if there exists L′ ⊆ L and R′ ⊆ R such that that
edge-set E(G) = L′ ×R′.

De�nition 3 (Simple Graph). A simple graph is a bipartite graph such that each of its connected

components is a biclique.

For example, consider the graph in Figure 6.4 A simple correlation is a correlation whose graph
is simple.

De�nition 4 (Simple Partition Number). The simple partition number of a graph G, represented
by sp(G), is the minimum number of simple graphs needed to partition its edges.

Figure 12 and Figure 13 show that the simple partition number for both ROLE (GF [2]) and
ROLE (GF [2])2 is 2.

In this work, we use the tensor product of bipartite graphs de�ned as follows.

De�nition 5 (Tensor Product Graph). For bipartite graphs G = (LG, RG, EG) and H = (LH , RH , EH)
the tensor product of G and H is the bipartite graph J = (LJ , RJ , EJ) de�ned as follows.

1. The left partite set LJ := LG × LH , the right partite set RJ := RG ×RH , and

2. The vertices (u, v) ∈ LJ and (u′, v′) ∈ RJ are connected if (u, u′) ∈ EG and (v, v′) ∈ EH .

Applying this de�nition recursively, we de�ne Gm :=

m−times︷ ︸︸ ︷
G×· · · ×G.

4 This de�nition naturally generalizes to weighted graphs. Suppose p(rA, rB) represents the probability of jointly

sampling (rA, rB) from the correlation (RA, RB). Then a simple graph has p(rA, rB) = p(rA)·p(rB), for every (rA, rB)
edge with positive weight.
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Figure 6: A representative example of a simple graph.

3 Extracting One OLE over a Large Field

In this section we will build some of the building blocks needed to construct the correlation ex-
tractor claimed in Theorem 1. In particular, we outline the extraction protocol that, given a leaky

IP
(
Kη+1

)[t]
correlation, realizes a secure OLE (K) functionality.

1. First, given the IP
(
Kη+1

)
correlation where parties can perform t-bits of arbitrary leakage, we

construct a secure sample of an ROLE (K) correlation. This protocol π(K, η) is presented in
Figure 7. At the end of the protocol Alice has (Ã0, B̃0) ∈ K2 and Bob has (X̃0, Z̃0) ∈ K2, such
that Ã0, B̃0, X̃0 are uniformly random elements in K and Z̃0 = Ã0X̃0 + B̃0. The simulation

error of this protocol is 1
2

√
|K|2t
|K|η/2

, refer to Lemma 2.

2. Next, starting with the private shares (Ã0, B̃0) with Alice and (X̃0, Z̃0) with Bob, we im-
plement a protocol ρ(K, A∗, B∗, X∗). Alice has private inputs (A∗, B∗) that are arbitrary
elements in K2. Bob has private input X∗ that is an arbitrary element in K. The proto-
col ρ(K, A∗, B∗, X∗), described in Figure 8 is a perfectly secure protocol where Bob outputs
Z∗ = A∗X∗ +B∗.

We emphasize that both π(K, η) and ρ(K, A∗, B∗, X∗) are 2-round protocols and we can compose
these two protocols in parallel. The resultant protocol σ(K, η, A∗, B∗, X∗) is an extraction protocol

that takes as input a leaky IP
(
Kη+1

)[t]
correlation where parties can perform t-bits of arbitrary leak-

age and implements the ROLE (K) functionality with simulation error 1
2

√
|K|2t
|K|η/2

. This is formalized

in the following lemma and the proof is included below.

Lemma 1 (Security of Correlation Extractor). The protocol σ(K, η, A∗, B∗, X∗) obtained by the

parallel composition of the protocols π(K, η) (see Figure 7) and ρ(K, A∗, B∗, X∗) (see Figure 8) is a
secure protocol in the IP

(
Kη+1

)[t]
hybrid that implements the OLE (K) functionality with simulation

error at most 1
2

√
|K|2t
|K|η/2

.

Section 4 elaborates the exact technique to choose appropriate K, η, A∗, B∗, X∗ to imply Theo-
rem 1.
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3.1 Extraction of one secure ROLE (K) correlation

The protocol is provided in Figure 7. The security of the protocol is analogous to the proof in [26]
that reduces to the unpredictability lemma over �elds. We state this lemma in our context.

Lemma 2 (Unpredictability Lemma). Let G ∈
{
T(k,η+1),T⊥,(k,η+1)

}
. Consider the following game

between an honest challenger and an adversary:

1. H samples m[η] ∼ UKη .

2. A sends a leakage function L : Kη → {0, 1}t.

3. H sends L
(
m[η]

)
to A.

4. H samples x[k] ∼ UKk , G ∼ G, and computes y{0}∪[n] = x · G + (0,m[η]). H sends (y[η], G)

to A. H picks b
$←{0, 1}. If b = 0, then she sends chal = y0 to A; otherwise (if b = 1) then

she sends chal = u ∼ UK to A.

5. A replies with an element b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the adversary is 6 1
4

√
|K|2t
|K|k

.

Similar to the security proof provided by Gupta et al. [26], the simulation error of the protocol
in Figure 7 is the bound provided by the unpredictability lemma over �elds (Lemma 2). Refer to
the full version of the paper [6] for a proof of correctness.

3.2 Securely Realizing OLE (K) using ROLE (K) Correlation

The protocol presented in Figure 8 is a perfectly semi-honest secure protocol for OLE (K) in the
ROLE (K) correlation hybrid. Note that the protocols π(K, η) in Figure 7 and ρ(K, A∗, B∗, X∗) in
Figure 8 can be composed in parallel. Let σ(K, η, A∗, B∗, X∗) be the parallel composition of the
protocols π(K, η) and ρ(K, A∗, B∗, X∗). This completes the proof of Lemma 1.

4 Embedding multiple OLEs into an OLE over an Extension Field

One of the primary goals in this section is to prove the following lemma.

Lemma 3 (Embedding Multiple small OLE into a Large OLE). Let K be an extension �eld of F
of degree n. There exists a perfectly secure protocol for OLE (F)m in the OLE (K)-hybrid that makes

only one call to the OLE (K) functionality and m = n1−o(1).

Proof. Section 4.3 provides this lemma and proves Theorem 1.

4.1 Intuition of the Embedding

We illustrate the main underlying ideas of this embedding problem and our proposed solution using
the representative �eld F = GF [2] and its extension �eld K = GF [2n]. Suppose we are provided
with an oracle that takes as input A∗, B∗ ∈ K from Alice and X∗ ∈ K from Bob, and outputs
Z∗ := A∗ ·X∗ + B∗ to Bob. Our aim is to implement the following functionality. Alice has inputs
(a0, . . . , am−1) ∈ Fm and (b0, . . . , bm−1) ∈ Fm, and Bob has inputs (x0, . . . , xm−1) ∈ Fm. We want
Bob to obtain (z0, . . . , zm−1) ∈ Fm, where each zi = ai · xi + bi, for i ∈ {0, . . . ,m− 1}. Intuitively,
we want maximize m and embed OLE (F)m into one OLE (K).

11



Pseudocode of the extraction protocol π(K, η).

Given. Alice has (X0, X1, . . . , Xη) and Bob has (Y0, Y1, . . . , Yη) such that X0 + Y0 =
∑η

i=1XiYi,
where X0, . . . , Xη, Y0, . . . , Yη ∈ K. For ease of presentation assume that η is odd and set w =
(η+ 1)/2. An adversarial party can obtain arbitrary t-bit leakage on the share of the other party.

Interactive Protocol.

1. First Round. Bob samples a random generator matrix G from the distribution Tw×(η+1)

such that its elements are in K. Let C be the code generated by G, and C⊥ be its dual code.
Let H be the generator matrix for the code C⊥. If the �rst column of H is 0η+1−w (i.e., all
zeros), then abort the protocol. Bob picks a random codeword (X̃0, X̃1, . . . , X̃η) ∈ C⊥ and

calculates M[η] = Y[η] − X̃[η].

Bob sends M[η] and G to Alice.

2. Second Round. Alice samples a random codeword (Ã0, Ã1, . . . , Ãη) ∈ C and a random

�eld element B̃0 ∈ K. Alice computes α[η] = X[η] + Ã[η] and β =
〈
X[η],M[η]

〉
− B̃0 −X0.

Alice sends α[η] and β to Bob.

Output Computation. Alice outputs (Ã0, B̃0) and Bob outputs (X̃0, Z̃0), where Z̃0 =

−
〈
α[η], X̃[η]

〉
− β + Y0.

Figure 7: Protocol to securely extract one random sample of the ROLE (K) functionality from the

leaky IP
(
Kη+1

)[t]
correlation.

Pseudocode of the OLE protocol ρ(K, A∗, B∗, X∗)

Given. Alice has (Ã0, B̃0) and Bob has (X̃0, Z̃0), where Ã0, B̃0, X̃0 are random elements in K and
Z̃0 = Ã0X̃0 + B̃0.

Private Inputs. Alice has private input (A∗, B∗) ∈ K2 and Bob has X∗ ∈ K.

Interactive Protocol.

1. First Round. Bob sends M ′ = X̃0 −X∗ to Alice.

2. Second Round. Alice sends α′ = Ã0 +A∗ and β′ = Ã0M +B∗ + B̃0.

Output Computation. Bob outputs Z∗ = α′X∗ + β′ − Z̃0.

Figure 8: Perfectly secure protocol to realize OLE (K) in the ROLE (K) correlation hybrid.
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Preliminary Idea. Consider the following simple preliminary embedding. Let m =
√
n. Alice

de�nes A∗ = a0+a1ζ+· · ·+am−1ζ
m−1, where a0, . . . , am−1 ∈ F. And, Alice de�nes B∗ =

∑n−1
i=0 riζ

i,
where each ri is a random element in F; except when (m + 1) divides i, then we set rt(m+1) = bt,

for t ∈ {0, . . . ,m− 1}. Bob de�nes X∗ = x0 + x1ζ
m +· · ·+ xm−1ζ

(m−1)m, where x0, . . . , xm−1 ∈ F.
Now, the parties compute Z∗ = A∗X∗ + B∗ using one oracle call to OLE (K) and Bob ob-

tains the output Z∗. Note that the intended zi = ai · xi + bi is the coe�cient of ζi(m+1) in Z∗,
for each i ∈ {0, . . . ,m − 1}. Coe�cients of all other powers of ζ contain no information about
a0, . . . , am−1, b0, . . . , bm−1, because they are masked with random elements in F. So, for m =

√
n,

we have embedded OLE (F)m into one OLE (K).

Better Embedding. Observe that (a0 + a1ζ) · (x0 + x1ζ) = a0x0 + (a0x1 + a1x0)ζ + a1x1ζ
2.

So, we can embed OLE (F)2 into one OLE (K), where K is an extension �eld of F of degree 3, as
follows. Alice chooses A∗ = a0 + a1ζ ∈ GF

[
22
]
and B∗ = b0 + rζ + b1ζ

2 (where r is a random
element from F), and Bob chooses X∗ = x0 + x1ζ. Note that the coe�cients of ζ0 and ζ2 in
Z∗, respectively, correspond to a0x0 + b0 and a1x1 + b1. Recursively applying this idea, we can

construct an embedding of OLE (GF [2])2k into one OLE
(
GF
[
23k
])
. Asymptotically, this scheme

embeds m = nlog 2/ log 3 ≈ n0.631 copies of OLE (GF [2]) into one OLE (GF [2n]).

Generalization to 3-free sets. Consider the previous solution when n = 3k. Let S = {s0 <
s1 < · · · < sm−1} be the set of indices. The set S corresponding to the previous solution contains all
integers less than 3k whose ternary representation does not contain the digit 2. This is the famous
greedy sequence of integers that does not include an arithmetic progression of length 3; namely,
3-free sets. In fact, there is nothing sacrosanct about the S chosen in the previous embedding, and
any 3-free set su�ces.

For example, let S = {s0 < s1 < · · · < sm−1} be any 3-free set such that each entry is in the range
[0, n/2), F = GF [2], and K = GF [2n]. Alice prepares A∗ =

∑m−1
i=0 aiζ

si and B∗ =
∑n−1

k=0 rkζ
k, where

r2si = bi; otherwise it is a random element in F. Bob prepares X∗ =
∑m−1

i=0 xiζ
si . Using one call to

OLE (K) Bob obtains Z∗. The coe�cient of ζ2si is aixi + bi, because no other sj + sk = 2si. Now,
we can embed m = n1−o(1) copies of OLE (F) into OLE (K) using the state-of-the-art constructions
of 3-free sets [3, 20]. However, this approach cannot give us m = Θ(n) due to sub-linear upper
bounds on m [58, 29, 61, 8, 9, 60].

New Problem. Note that although solutions to the 3-free set problem imply embeddings in our
setting, our embedding problem is potentially less restrictive. For example, the solution for m =

√
n

presented above is not obtained by the reduction to 3-free sets. Are we missing something?
Suppose S = (s0, . . . , sm−1) and T = (t0, . . . , tm−1) be tuples of indices in the range [0, n/2).

Consider the combinatorial problem proposed in Figure 5.
Given S and T that are solutions to the problem in Figure 5, Alice and Bob use the strategy

explained in Figure 9. Note that the initial solution for m =
√
n indeed corresponds to the solution

S = {0, . . . ,m−1} and T = {0,m, . . . , (m−1)m}. Restricted to S = T , our combinatorial problem
is identical to the 3-free set problem. We numerically solve this problem for small values of n and,
indeed, it produces more e�cient embeddings than the embedding based on the optimal 3-free set
constructions. We emphasize that we compare our solutions against the largest 3-free set computed
by exhaustive search. We summarize our observations in Figure 10.
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Given. Two sets S and T of size m that is a solution to the combinatorial problem presented in
Figure 5. Let K be an extension �eld of F of degree n.

Private input. Alice has private input (a0, . . . , am−1) ∈ Fm and (b0, . . . , bm−1) ∈ Fm. Bob has
private input (x0, . . . , xm−1) ∈ Fm.

Hybrid. Parties are in the OLE (K)-hybrid.

Private Input Construction.

1. Alice creates private input A∗ =
∑m−1

i=0 aiζ
si ∈ K.

2. Alice chooses ri, for i ∈ {0, . . . , n− 1}, as follows.

ri =

{
bk , if i = sk + tk for some k ∈ {0, . . . ,m− 1}
UF , otherwise.

Alice creates private input B∗ =
∑n−1

i=0 riζ
i ∈ K.

3. Bob creates private input X∗ =
∑m−1

i=0 xiζ
ti ∈ K.

4. Both parties invoke the OLE (K) functionality with respective Alice input (A∗, B∗) and Bob
input X∗. Bob receives Z∗ = A∗X∗ +B∗.

Output Decoding. Bob outputs (z0, . . . , zm−1), where zi is the coe�cient of ζsi+ti and i ∈
{0, . . . ,m− 1}.

Figure 9: Embedding OLE (F)m into one OLE (K), where K is an extension �eld of F of degree n.

4.2 Relevant Prior Work on 3-free Sets

Our asymptotic construction for Theorem 1 relies on constructing a dense subset S of {0, 1, · · · , n−
1} that does not contain any arithmetic progression, namely 3-free sets. Erd®s and Turán introduced
this problem in 1936 and presented a greedy construction with |S| = Ω

(
nlog 2/ log 3

)
≈ n0,631. Salem

and Spencer [59] showed that the surface of high-dimensional convex bodies can be embedded in
the integers to construct 3-free sets of size n1−o(1). Later, Behrend [3] noticed that points lying on
the surface of a sphere of suitable radius are a particularly good choice, and gave a construction

with |S| = Ω
(

n
22
√
2 logn·log1/4 n

)
. Recently, after a gap of over sixty years, Elkin [20] improved

this further by a factor of Θ(
√

log n) by thickening the spheres to produce the largest known 3-
free set. The proofs of Behrend [3] and Elkin [20] are constructive in nature and the sets can be
constructed in poly(n) time. Although the greedy construction is asymptotically worse than these
two constructions, it performs well for realistic values of n. See Figure 11 for details.

Roth [58] provided the �rst nontrivial upper bound of O
(

n
log logn

)
on the size of 3-free sets.

More than thirty years later, Heath-Brown [29] showed that |S| = O
(

n
logc n

)
, for some constant

c > 0, and then Szemeredi [61] produced an explicit value c = 1/20. Bourgain [8, 9] improved the

upper bound by polylog factors. Currently, the best known upper bound is O
(
n(log logn)4

logn

)
[60, 7].

Nathan [46] provides a comprehensive summary for both 3-free set size constructions and upper
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m n(m) Solution Sets n′(m) 3-free Set

1 1
S = {0}

1 S = {0}
T = {0}

2 3
S = {0, 1}

3 S = {0, 1}
T = {0, 1}

3 7
S = {0, 1, 3}

7 S = {0, 1, 3}
T = {0, 1, 3}

4 9
S = {0, 1, 3, 4}

9 S = {0, 1, 3, 4}
T = {0, 1, 3, 4}

5 14
S = {0, 1, 3, 5, 8}

17 S = {0, 1, 3, 7, 8}
T = {0, 1, 4, 5, 3}

6 19
S = {0, 1, 3, 4, 7, 9}

21 S = {0, 1, 3, 4, 9, 10}
T = {0, 1, 3, 9, 7, 8}

7 24
S = {0, 1, 3, 4, 11, 6, 10}

25 S = {0, 1, 3, 4, 9, 10, 12}
T = {0, 1, 5, 10, 6, 12, 9}

8 27
S = {0, 1, 3, 4, 9, 10, 12, 13}

27 S = {0, 1, 3, 4, 9, 10, 12, 13}
T = {0, 1, 3, 4, 9, 10, 12, 13}

9 34
S = {0, 1, 3, 4, 9, 12, 14, 16, 17}

39 S = {0, 1, 5, 6, 8, 13, 14, 17, 19}
T = {0, 1, 3, 4, 13, 11, 12, 15, 16}

10 38
S = {0, 1, 3, 5, 8, 12, 13, 16, 17, 15}

47 S = {0, 1, 4, 6, 10, 15, 17, 18, 22, 23}
T = {0, 1, 4, 5, 3, 12, 13, 15, 17, 20}

Figure 10: Let K be an extension �eld of F of degree n. Our goal is to embed m copies of OLE (F)
into one OLE (K) using minimum n. The number n(m) represents the minimum n obtained by using
solutions to our combinatorial problem in Figure 5. The number n′(m) represents the minimum n
obtained by using the optimum solutions to the 3-free set problem.

bounds.

4.3 Generating Explicit Embedding and Proof of Theorem 1

First, we prove Lemma 3. Let S(n) be a 3-free set with elements in the range [0, n/2). Behrend [3]
and Elkin [20] provide constructions for S(n) such that |S(n)| > n1−o(1). Note that S = T = S(n)
is a solution to the combinatorial problem proposed in Figure 5. Now, we use the protocol described
in Figure 9.

It is clear that the protocol is correct. The coe�cients of all other ζi in Z∗ are random elements
in F, if i 6= sk + tk, for all k ∈ {0, . . . ,m − 1}. It is, therefore, easy to see that this is a perfectly
secure protocol for OLE (F)m in the OLE (K)-hybrid.

Remark. We provide a short discussion on how to pick the 3-free set S for concrete values of n. The
greedy construction is the fastest and runs in O(n log n) time. It picks all numbers that do not have
2 in their ternary representation, and |S(n)| = nlog 2/ log 3 ≈ n0.631. The proofs of Behrend [3] and
Elkin [20] are also constructive in nature and the set can be constructed in poly(n) time. However,
their performance for realistic values of n are worse than the greedy algorithm.

Further, for concrete values of n, one of the solutions to our combinatorial problem generates
better embeddings than the greedy solution. Note that, Figure 10 presents a solution that enables
the embedding of 10 independent OLE (F) evaluations into one OLE (K) evaluation, where K is an
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Figure 11: A logarithmic scaled graph of the size of the 3-free sets produced by the greedy,
Behrend [3], and Elkin [20] constructions.

extension �eld of F of degree 38. Recursively applying this embedding, we embedm = nlog 10/ log 38 ≈
n0.633 � n0.631 ≈ nlog 2/ log 3 independent OLE (GF [2]) evaluations into one OLE (GF [2n]) evaluation.

4.3.1 Proof of Theorem 1

Suppose we given n, 0 < δ < g < 1/2, and t = (1/2− g)n. Let K = GF
[
2δn
]
and F = GF [2]. We

construct A∗, B∗, X∗ ∈ K using Lemma 3 and m > (δn)1−o(1). Perform the protocol σ(K, 1/δ −
1, A∗, B∗, X∗) in the IP

(
K1/δ

)[t]
-hybrid.5 The simulation error is

ε 6
1

2

√
2δn2t

2δn(1/δ−1)/2
= 2−(g−δ)n/2−1

This is an (n,m, t, ε)-correlation extractor for the correlation IP
(
K1/δ

)
.

5 Simple Partition Number

This section de�nes the simple partition number of a graph, provides estimates of this quantity for
correlations relevant to our work, and proves Theorem 2.

5.1 Intuition of the Hardness of Computation Result

We know that if parties have multiple independent samples of secret shares sampled according to a
simple correlation, then the parties cannot securely compute OT [38, 32, 42, 2, 43, 41]. Constructing
one OT given a single sample from such a correlation is even more restrictive, and, hence, the
hardness of computation result carries over. This result holds true even when there is no leakage
on (RA, RB). More precisely, we import the following result that we restate in our context.

5 Recall that in the protocol π(K, η), all parties have share size (η + 1) log |K|.
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Imported Theorem 1 ([43]). Let (RA, RB) be a simple correlation with n-bit secret shares for

each party. There exists a universal constant ε∗ > 0, such that any (n, 1, 0, ε)-correlation extractor

for (RA, RB) has ε > ε∗.

Suppose (RA, RB) is a correlation that has simple partition number sp(G) = 2λ and G =

G(1) + · · · + G(2λ), where each G(i) is a simple graph. Then we consider the leakage function
L(rA, rB) = `, where ` ∈ {1, . . . , 2λ} is the unique index such that (rA, rB) ∈ E(G(`)). Note
that L is a λ-bit leakage function and conditioned on the leakage being `, for any ` ∈ {1, . . . , 2λ},
the correlation (RA, RB|`) is a simple correlation. So, one of the parties can break the security of
any purported OT protocol where parties get secret shares sampled from the (RA, RB|`) correlation.
Overall, with probability half, one of the parties can break the security of any purported OT protocol
where parties get secret shares sampled from the (RA, RB) by performing the leakage L described
above. This technique upper-bounds the leakage resilience of (RA, RB) and we summarize it as
follows.

Lemma 4 (Connection between Maximum Leakage Resilience and Simple Partition Number). Let
(RA, RB) is a correlated private randomness that provides n-bit private shares to Alice and Bob.

Let G be the bipartite graph corresponding to the correlation (RA, RB). There exists a universal

constant ε∗ > 0 such that any (n, 1, t, ε)-correlation extractor for (RA, RB) with t > dlg sp(G)e has
ε > ε∗.

We construct a smoother version of this technical lemma using averaging arguments. For exam-
ple, if the leakage bound t is roughly (log sp(G))− gn, then we consider a subset of simple graphs of
size sp(G) · 2−gn from the set

{
G(1), . . . , G(sp(G))

}
that covers at least 2−gn fraction of the edges of

G. Applying the previous lemma, we can conclude that (n, 1, t, ε)-correlation extractor for (RA, RB)
with t > dlog sp(G)− gne has ε > ε∗ · 2−gn.

Corollary 3 ((Smooth Version of the) Connection between Maximum Leakage Resilience and
Simple Partition Number). Let (RA, RB) is a correlated private randomness that provides n-bit
private shares to Alice and Bob. Let G be the bipartite graph corresponding to the correlation

(RA, RB). There exists a universal constant ε∗ > 0 such that any (n, 1, t, ε)-correlation extractor

for (RA, RB) with t > dlg sp(G)− gne has ε > ε∗ · 2−gn.

5.2 Relevant Prior Work on Graph Covering Problems

The graph-theoretic measure proposed in our work to measure the maximum resilience of correlations
in best presented in the framework of graph covering problems. Several problems in graph theory,
for example, clique partition number, biparticity, arboricity, edge-chromatic number, vertex cover
number and biclique partition number, can be expressed as covering a graph with subgraphs from
a family of graphs. Of these representative examples, the concept of biclique partition number is
most relevant to our paper. For a graph G, its biclique partition number, represented by bp (G), is
the minimum number of bicliques that su�ce to partition it.

Refer to [40] for a comprehensive survey on graph covering problems. Motivated by network
addressing problem and graph storage problem, Graham and Pollak [24, 25] introduced the biclique
partition problem (see also [1, 64, 70, 63]). The celebrated Graham-Pollak Theorem states that
bp (Kn) = (n − 1) [25, 62, 52, 65, 66], but all proofs are algebraic, and no purely combinatorial
proof is known. In general, bp (G) > max{n+(G), n−(G)} [25, 30, 62, 52], where n+(·) and n−(·),
respectively, represents the number of positive and negative eigenvalues of the adjacency matrix of
the graph. Determining the bp (G) of a general graph is a hard problem [40], but it admits a trivial
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upper bound bp (G) 6 the size of the smallest vertex cover of G. Variants of this quantity have
been considered recently by [14].

This quantity is closely related to the recently disproved [31, 13] Alon-Saks-Seymour Conjec-
ture [36] that bp (G) + 1 colors su�ce to color a graph. This conjecture can be interpreted as
a generalization of the Graham-Pollak Theorem and has close relations to computational com-
plexity [31, 51, 57]. In the context of this paper, intuitively, the biclique partition number is a
combinatorial version of the Wyner's Common Information [69] that corresponds to the minimum
description complexity of the information that kills the mutual information of correlations. We in-
terpret a correlation as a weighted bipartite graph with the left-partite set being all possible values
of rA, and the right partite set being all possible values of rB. The weight on an edge joining rA and
rB represents the probability of jointly sampling (rA, rB). This graph-theoretic interpretation of
correlations helps establish connections between combinatorial and information-theoretic concepts.

5.3 Relation to Leakage resilience: Proof of Lemma 4

In this section we prove Lemma 4, i.e. the maximum leakage resilience of a correlation (RA, RB) is
at most lg sp (RA, RB).

Let G be the bipartite graph corresponding to the correlation (RA, RB). Let π be a (n, 1, t, ε)-
correlation extractor for G, where t = dlog sp (G)e. Let G = G(1) + · · · + G(sp(G)) be the simple
partition of G. De�ne the leakage function L : E(G) → {1, . . . , sp (G)} as follows. For e ∈ E(G),
we have L(e) = `, where ` is the unique index in {1, . . . , sp (G)} such that e ∈ E(G(`)).

Consider an interactive protocol that runs π between Alice and Bob with secret samples drawn
from the correlation G, and both parties receive the leakage L(rA, rB).

Note that this is identical to the interactive protocol, where the correlation G+ that samples

` ∈ {1, . . . , sp (G)} with probability proportional to
∣∣E(G(`))

∣∣, samples (u, v) ≡ e
$← E(G(`)), and

provides (u, `) to Alice and (v, `) to Bob.
The functionality G+ itself is simple, because each G(`) is simple. So, we can use Imported

Theorem 1. Therefore, one of the parties' view cannot be simulated with less than ε∗ > 0 simulation
error when the parties follow the protocol π. Suppose, that party is Alice, without loss of generality.
That is, the view of the party Alice∗ (to represent the semi-honest adversarial strategy) in the
interactive protocol between Alice∗ and B incurs at least ε∗ simulation error.

Now consider the case where only Alice∗ receives the leakage from the correlation and not Bob.
The view of Alice∗ remains identical to the previous hybrid. Therefore, this protocol also incurs a
simulation error at least ε∗

This implies that for any (n, 1, t, ε)-correlation extractor for (RA, RB), if t > log sp (RA, RB),
then ε > ε∗.

Intuitively, Lemma 4 can be summarized as follows. A small simple partition number of the
correlated private randomness (RA, RB) implies a low maximum leakage-resilience of (RA, RB).

5.3.1 Proof of Corollary 3.

Suppose 2t = sp (G) /2gn and π is an (n, 1, t, ε)-correlation extractor for (RA, RB). Now, we choose
the sp (G) / (2gn − 1) simple graphs among {G(1), . . . , G(sp(G))} that cover a subset E′ ⊂ E(G) such
that |E′| / |E(G)| > (2gn − 1)−1. The leakage function L(rA, rB) outputs the index of the simple
graph from which the edge e = (rA, rB) comes, if e ∈ E′; otherwise, it returns ⊥. Using the same
proof as Lemma 4 we can conclude that the simulation error is ε > ε∗ (2gn − 1)−1 ≈ ε∗2−gn.
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5.4 Estimates of Simple Partition Number and Proof of Theorem 2

In this section we present the lemma that provides the estimates of the simple partition number of
relevant correlations.

Lemma 5 (Simple Partition Number Estimates). The following holds true for arbitrary �eld F.

1. sp (IP (Fn)) 6 |F|d(n+1)/2e, and

2. For even n, sp
(
ROLE (F)n/2

)
6 |F|dn/4e.

Refer to the full version [6] for a proof of the �rst part. The proof outline of the second part is
provided in Section 5.5. The simple decomposition we construct for the correlations mentioned above
have an additional property. Given an edge (rA, rB) ∼ (RA, RB), we can e�ciently compute the
index of the simple graph in the decomposition that contains it. Thus, the leakage that demonstrates
the upper bound of the maximal resilience in Lemma 4 is computationally e�cient.

The proof of Theorem 2 is a direct application of Lemma 4 and Lemma 5.

5.5 Subsuming the Partition Argument

In this section, using a particular example, we want to illustrate that the simple partition number
is sophisticated enough to subsume partition argument based impossibility results. To begin, let
us consider an example. Let (RA, RB) be the random oblivious linear-function evaluation over
GF [2]. So, the correlation samples a, b, x ∈ GF [2] independently and uniformly at random. The
secret share of Alice is rA = (a, b) and the secret share of Bob is rB = (x, z), where z = ax + b.
The secrecy of ROLE (GF [2]) ensures that Alice has no advantage in guessing x and Bob has no
advantage in guessing a. The graph of the correlation is provided in Figure 12. The �gure presents
the simple decomposition corresponding to the leakage ` = x− a.
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(1, 1)

(0, 0)
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Figure 12: The graph of the correlated private randomness ROLE (GF [2]) and its decomposition
into two simple graphs.

Now, let us consider ROLE (GF [2])2, i.e. two independent samples from the ROLE (GF [2]) cor-
relation. Alice gets secret share (a1, b1, a2, b2) and Bob gets secret share (x1, z1, x2, z2), where
z1 = a1x1 + b1 and z2 = a2x2 + b2. Suppose in the partition argument Alice implements the �rst
correlation and Bob implements the second correlation. This implies that Alice knows x1 and Bob
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knows a2. We want to achieve this e�ect using only one-bit leakage that is provided to both the
parties.

Given the decomposition in Figure 12, note that we can de�ne a two-bit leakage to achieve this.
For example the �rst leakage bit represents `1 = x1 − a1, and the second leakage bit represents
`2 = x2 − a2. We show in Figure 13 that even a one-bit leakage su�ces. In particular, we use

L(rA, rB) = x1 − a2. In the full version [6], we show that sp
(
ROLE (F)2

)
6 |F|.

Using this observation and the fact that sp (G×H) 6 sp (G) · sp (H) (see full version [6] for the

proof), Lemma 5 shows that sp (ROLE (F)n) 6 |F|dn/2e. This demonstrates that the simple partition
number subsumes the partition argument.

5.6 Relevant Prior Work on Common Information and Assisted Common In-

formation

We brie�y introduce a few relevant information-theoretic measures for maximum resilience and max-
imum production rate. For a joint distribution, the mutual information I(RA;RB) measures the
distance (KL-divergence) between the joint probability distribution p(rA, rB) and the distribution
p(rA) · p(rB). The mutual information between (RA, RB) represents the number of bits of the se-
cret key that the two parties can agree. The Gács-Körner [21] common information, represented by
K(RA;RB), represents the largest entropy of the common random variable that each party can gen-
erate based on their respective secret share. Intuitively, this corresponds to the number of connected
components in a bipartite graph representing the correlation. The Wyner common information [69],
represented by J(RA;RB), is the minimum information that, when leaked to the eavesdropper, en-
sures that the parties cannot establish a secret key. This quantity roughly corresponds to the biclique
partition number of a bipartite graph for the correlation, where the correlation is a uniform distri-
bution over the edges of the bipartite graph. Prabhakaran and Prabhakaran [53, 54], generalizing
[67], introduced the concept of assisted common information that, among its various applications,
helps characterize an upper bound on the number of OTs that a correlation can produce.

5.6.1 Relation to Mutual Information.

In the setting of key-agreement, the mutual information I(RA;RB) of a correlation (RA, RB) mea-
sures the length of the secret key that the two parties can agree on. We emphasize that this is a
measure of production, and not a measure of resilience. For example, I(IP (GF [2]n)) = 1. Since,
secure OT implies one-bit key-agreement, mutual information is also an upper bound on the OT
production that a correlation can support. However, production capacity and resilience to leakage
are extremely disparate quantities. For example, in the secure computation setting, the correlation
IP (GF [2]n) is resilient to n/2 bits of leakage but can only produce one OT. Additionally, mutual
information signi�cantly overestimates the maximum OT production capacity. For example, n-bit
shared private key cannot produce one OT even without any leakage. However, it has n-bits of
mutual information.

We emphasize that the simple partition number is only a measure for the maximum leakage
resilience of correlations in the setting of secure computation. Our measure does not provide any
estimates on the OT production. The most relevant measure for OT production is the notion of
assisted common information proposed by Prabhakaran and Prabhakaran [53, 54].
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Figure 13: A simple decomposition of ROLE (GF [2])2, into two simple graphs. Each collection of
nodes with identical shade of gray and letter represents a connected component.
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5.7 Analogy of Biclique Partition Number and Wyner's Common Information

A correlation that is a biclique has no mutual-information and, hence, is useless for parties to agree
on a secret key even asymptotically. In particular, one sample from a correlation that is a biclique
is also useless for key-agreement. Suppose (RA, RB) is an arbitrary correlation and has biclique
partition complexity bp (RA, RB). Similar to Lemma 4, in the presence of t = log bp (RA, RB) bits
of leakage there is not even a one-bit secure key-agreement protocols using (RA, RB). The random
variable J for the leakage function L(RA, RB) outputs the index of the biclique that contains the
edge e = (rA, rB).

Wyner's common information [69] is de�ned to be the minimum entropy random variable J that
su�ces to ensure I(RA;RB|J) = 0. If the bicliques that partition G have roughly equal number
of edges then these two concepts are identical. Analogously, sp (RA, RB) can be interpreted as the
analog for Wyner's common information in the secure computation setting.

However, we cannot use biclique partition number or Wyner's Common Information to meaning-
fully measure the resilience of a correlation against leakage in the secure computation setting. The
biclique partition number bp (RA, RB) can be signi�cantly higher than the simple partition num-
ber sp (RA, RB), which is an upper bound on the maximum resilience. For example, the biclique

partition number bp (IP (Fn)) ≈ |F|n−1 while its simple partition number sp (IP (Fn)) ≈ |F|n/2 is ex-
ponentially small. This example demonstrates the non-trivial utility of the new measure introduced
by us in the secure computation setting.

6 Conclusions and Open Problems

This paper helps progress towards the ideal goal of designing correlations such that there are
(n,m, t, ε)-correlation extractors, for n ≈ m + t − log ε. We need to explore new correlations
and extractor design principles for this task. A fascinating open question is whether we can break
the barrier of 1/2 fractional leakage.

Regarding the technical tools and techniques introduced in this paper, it will be interesting to
obtain asymptotic and concrete constructions for our combinatorial problem that are better than
the solutions produced by 3-free set constructions. It will also be interesting to upper-bound the
maximum achievable solution size for our combinatorial problem. For concrete constructions, linear
programming methods and perturbation techniques need to be explored.

We also need algorithmic techniques to explore the hardness, estimate and approximate the
simple partition number of general correlations. Analogous to the biclique partition number, it
will be helpful to obtain algebraic or combinatorial techniques to lower bounds the simple partition
number of a graph. An ideal result in this �eld, though it is perceived extremely di�cult by the
authors, will be to demonstrate that the simple partition number also forms a lower-bound to leakage
resilience.
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A Outline of the Security Proof of Protocol in Figure 7

The protocol presented in [26] is speci�c to K = GF [2]. So, the `+' and `-' over the �eld K are
identical operations. We have to be careful because our protocol is de�ned over arbitrary �elds. So,
we argue the correctness of the correlation extractor protocol in Figure 7. The correctness follows
from the expression provided below.

X0 + Y0 =

η∑
i=1

XiYi

(X̃0, X̃1, . . . , X̃η) ∈ C⊥

(M1, . . . ,Mη) = (Y1, . . . , Yη)− (X̃1, . . . , X̃η)

(Ã0, Ã1, . . . , Ãη) ∈ C

Ã0X̃0 = −
η∑
i=1

ÃiX̃i

(α1, . . . , αη) = (X1, . . . , Xη) + (Ã1, . . . , Ãη)

β =

η∑
i=1

XiMi − B̃0 −X0

=

η∑
i=1

(XiYi −XiX̃i)− B̃0 −X0

= (X0 + Y0)−
η∑
i=1

XiX̃i − B̃o −X0

= Y0 −
η∑
i=1

XiX̃i − B̃0

−
η∑
i=1

αiX̃i = −
η∑
i=1

(Xi + Ãi)X̃i

= −
η∑
i=1

XiX̃i −
η∑
i=1

ÃiX̃i

= −
η∑
i=1

XiX̃i +A0X0

Z0 = −
η∑
i=1

αiX̃i − β + Y0

=

(
−

η∑
i=1

XiX̃i +A0X0

)
−

(
Y0 −

η∑
i=1

XiX̃i − B̃0

)
+ Y0

= A0X0 +B0

Similar to Gupta et al. [26], using the unpredictability lemma over �elds (Lemma 2), we can
argue the security of the protocol in Figure 7.
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B Proof of Lemma 2

LetM be the random variable for m[η]. Let G0 be the �rst column of G, and G′ be the matrix after
truncating the �rst column of G. Let L = L(M) represent the random variable for the leakage. It
su�ces to show that

2SD((XG0, XG
′ +M,G,L), (UKη+1 , G, L)) 6

√
|K| 2t

|K|k

Utilizing the property of the random choice of the generator matrix, analogous to Gupta et al. [26],
we make the following claim.

Claim 1.

EG(XG0, XG|G)
∧

(S)2 6
1

|K|k|K|2(η+1)

Now, we upper-bound the statistical distance as follows.

2SD((XG0, XG
′ +M,G,L), (UKη+1G,L))

= EG,L [2SD((XG0, XG+M |G,L), (UKη+1 |G,L))]

= EG,L

[∑
y

|(XG0, XG+M |G,L)(y)− (UKη+1 |G,L)(y)|

]

6 EG,L
[
|K|η+1

√
Ey ((XG0, XG+M |G,L)(y)− (UKη+1 |G,L)(y))2

]
[By Cauchy Schwartz]

= |K|η+1 · EG,L
√∑

S

(XG0, XG+M |G,L)− (UKη+1 |G,L)
∧

(S)2 [By Parseval's Identity]

= |K|η+1 · EG,L
√∑
S0 6=0

(XG0, XG+M |G,L)(S)
∧2

= |K|η+1 · EG,L
√∑
S0 6=0

(
|K|η+1(XG0, XG|G,L
∧

)(S) · (0,M |G,L)
∧

(S)
)2

[By Convolution]

= |K|2(η+1) · EG,L
√∑
S0 6=0

(XG0, XG|G
∧

)(S)2 · (0,M |L)
∧

(S)2

6 |K|2(η+1)

√∑
S0 6=0

EG,L
[
(XG0, XG|G
∧

)(S)2 · (0,M |L)
∧

(S)2
]

[By Jensen's Inequality]

= |K|2(η+1)

√∑
S0 6=0

EL(0,M |L)
∧

(S)2 · EG(XG0, XG|G
∧

)(S)2

6 |K|2(η+1)

√∑
S0 6=0

EL(0,M |L)
∧

(S)2 · 1

|K|k+2(η+1)

6 |K|2(η+1)

√
2t

|K|η+1 · |K|η
· 1

|K|k+2(η+1)

=

√
|K| 2t

|K|k

This completes the proof of the unpredictability lemma.
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C Proof of Lemma 5

In this section, we will prove the estimates of the simple partition number of a few correlations
relevant to our work.

C.1 Bound on the Inner-Product Correlation.

De�ne IPλ(Fn) to be the bipartite graph over the partite sets L = R = Fn such that there is an
edge between x = (x1, x2, · · · , xn) ∈ L and y = (y1, y2, · · · , yn) ∈ R if 〈x, y〉 :=

∑n
i=1 xiyi = λ.

Lemma 6.

sp (IPλ(Fn)) 6 |F|dn/2e

We shall prove a more generalized result as following. Then Lemma 6 follows immediately as a
corollary.

Lemma 7. For any natural numbers n and m such that n/2 6 m 6 n, there exists a simple

decomposition of IPλ(Fn) of size |F|m.

Proof. Consider any subspace U of Fn of dimension (n −m) 6 n/2. Let V be the dual of U and,
hence, has dimension m > n/2. Note that Fn is a group under addition, so the number of cosets of

U is [Fn : U ] = |F|m and the number of cosets of V is [Fn : V ] = |F|(n−m), where n −m 6 m. Let
π : Z|F|m × Z|F|n−m → Z|F|m be a function de�ned by: π(k, y) = (k + y) mod |F|m.

For 0 6 k < |F|m, de�ne G(k) as the bipartite graph over the partite sets L and R such that
every edge in IPλ(F)n between the cosets x+ U and y + V , such that π(k, y) = x, is included.

To complete the proof of Lemma 7, the following claims su�ce.

Claim 2. For every k such that 0 6 k < |F|m, the graph G(k) is simple.

Proof. Note that if there is an edge between (x+u) ∈ (x+U) and (y+v) ∈ (y+V ), then π(k, y) = x.
For the sake of contradiction, assume G(k) is not simple for some k. Then G(k) must contain a
OR minor (or �Z� shape). More concretely, there exist four distinct nodes x + u, x′ + u′ ∈ L and
y+v, y+v′ ∈ R, where u, u′ ∈ U and v, v′ ∈ V such that there are exactly three edges between the two
left nodes and the two right nodes. Without loss of generality, suppose that the edge between x+u
and y′+v′ is missing. Since there is an edge between x+u and y+v, by above observation π(k, y) = x;
also since there is an edge between x′ + u′ and y + v, by above observation π(k, y) = x′. Thus,
x = x′. Similarly, we have y = y′. Next, since 〈x+ u, y + v〉 = 〈x+ u′, y + v〉 = 〈x+ u′, y + v′〉 = λ
and 〈u, v〉 = 〈u′, v〉 = 〈u′, v′〉 = 0,

〈x, y〉+ 〈x, v〉+ 〈u, y〉 = λ

〈x, y〉+ 〈x, v〉+ 〈u′, y〉 = λ

〈x, y〉+ 〈x, v′〉+ 〈u′, y〉 = λ

The �rst and second equations imply that 〈u′, y〉 = 〈u, y〉. Substituting this into the third equation,
we get 〈x, y〉+〈x, v′〉+〈u, y〉 = λ. Notice that 〈u, v′〉 = 0, therefore 〈x+ u, y + v′〉 = λ, contradiction
with the assumption that 〈x+ u, y + v′〉 6= λ.

Claim 3. For every edge e ∈ E(IPλ(Fn)), there exists a unique k such that G(k) contains the edge

e.

30



Proof. Let x+U be the coset that contains the left endpoint of e, where 0 6 x < |F|m, and let y+V
be the coset that contains the right endpoint of e, where 0 6 y < |F|n−m. The equation (k + y)
mod |F|m = x has a unique solution, which is (x−y) mod |F|m in Z|F|m . It means that there exists

a unique integer k such that 0 6 k < |F|m and π(k, y) = x. Clearly e ∈ E(G(k)). Hence, G(k) is the
unique graph that contains the edge e.

This completes the proof of Lemma 7.

Now, we prove that sp (IP (F)n) 6 |F|d(n+1)/2e. The graph IP (Fn) can be partitioned into
|F| disjoint components such that every component Gλ, for λ ∈ F, satis�es that there is an edge
between (x0, x1, · · · , xn−1) and (y0, y1, · · · , yn−1) if x0+y0 = x1y1+· · ·xn−1yn−1 = λ. The equation
x0 + y0 = λ has exactly |F| solutions. Thus, each Gλ can be viewed as the disjoint union of |F|
graphs Gλ = IPλ(Fn−1). By Lemma 6, sp(Gλ) 6 |F|d(n−1)/2e. Therefore, we can conclude that
sp(IP (Fn)) 6 |F| · |F|d(n−1)/2e = |F|d(n+1)/2e.

C.2 Bound on the Random Oblivious Linear-function Evaluation Correlation.

Let ñ = n/2. Then, we shall show that sp
(
ROLE (F)ñ

)
6 |F|ñ/2. To aid our proof, we need the

following lemmas.

Lemma 8. For any bipartite graphs G and H, sp(G×H) 6 sp(G) · sp(H).

Proof. Suppose sp(G) = p and sp(H) = q. Then let G(1), . . . , G(p) be the smallest simple partition
of G, and let H(1), . . . ,H(q) be a smallest simple partition of H. For each (i, j) in [p]× [q], consider
the graph J (i,j) de�ned by G(i)×H(j). Since G(i) and H(j) are simple, G(i)×H(j) is also simple. It
is clear that the set of graphs J (i,j) is a partition of the graph G ×H. Therefore, J (1,1), . . . , J (p,q)

is a simple partition of G×H, which implies that sp(G×H) 6 p · q = sp(G) · sp(H).

Applying Lemma 8 inductively for G = H, we have the following result as a corollary.

Corollary 4. For any bipartite graph G, we have sp (Gn) 6 sp (G)n.

Lemma 9 (Simple partition number of ROLE (F)).

sp (ROLE (F)) 6 |F|

Proof. Note that ROLE (F) is a |F|-regular bipartite graph. Thus, |F| perfect matchings give us a
simple partition of size |F|.

Lemma 10 (Simple partition number of ROLE (F)2).

sp
(
ROLE (F)2

)
6 |F|

Proof. Let G = (L,R,E) be the graph representing ROLE (F)2. Consider the following partition of
edges: for every c ∈ F,

E(c) := {((a1, b1, a2, b2), (x1, z1, x2, z2)) : a1 − x2 = c}

Then, we create the following graphs: for every c ∈ F,

G(c) :=
(
L,R,E(c)

)
.
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We claim that for every c ∈ F, G(c) is simple. Suppose for any c ∈ F, we have

((a1, b1, a2, b2), (x1, z1, x2, z2)) ∈ E(c) (1)(
(a′1, b

′
1, a
′
2, b
′
2), (x1, z1, x2, z2)

)
∈ E(c) (2)(

(a′1, b
′
1, a
′
2, b
′
2), (x′1, z

′
1, x
′
2, z
′
2)
)
∈ E(c). (3)

We shall show that (
(a1, b1, a2, b2), (x′1, z

′
1, x
′
2, z
′
2)
)
∈ E(c)

This su�ces to show that the graph G(c) is a simple graph. Fix (a1, b1, a2, b2). Since (a1, b1, a2, b2)
is connected to (x1, z1, x2, z2), we have:

(x1, z1, x2, z2) = (x1, a1x1 + b1, a1 − c, a2(a1 − c) + b2)

Since (x1, z1, x2, z2) is connected to (a′1, b
′
1, a
′
2, b
′
2), we have:

(a′1, b
′
1, a
′
2, b
′
2) = (a1, b1, a

′
2, (a2 − a′2)(a1 − c) + b2)

Since (a′1, b
′
1, a
′
2, b
′
2) is connected to (x′1, z

′
1, x
′
2, z
′
2), we have:

(x′1, z
′
1, x
′
2, z
′
2) = (x′1, b1x

′
1 + z′1, a1 − c, a2(a1 − c) + b2)

This implies that (a1, b1, a2, b2) is connected to (x′1, z
′
1, x
′
2, z
′
2). This completes the proof.

Now, we get back to proving the estimate of the simple partition number of ROLE (F)ñ. Consider
two cases.

1. If ñ is even, by Lemma 10, we know that sp
(
ROLE (F)2

)
6 |F|. Then directly applying

Corollary 4 with G = ROLE (F)2, we have that

sp
(
ROLE (F)ñ

)
6 sp

((
ROLE (F)2

)ñ/2)
6 |F|ñ/2

2. If ñ is odd, then ñ− 1 is even. We have

sp
(
ROLE (F)ñ

)
6 sp (ROLE (F)) · sp

(
ROLE (F)ñ−1

)
[ By Lemma 8]

6 |F| · sp
(
ROLE (F)ñ−1

)
[ By Lemma 9]

6 |F| · |F|(ñ−1)/2 [ By applying Case 1]

= |F|dñ/2e
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