

Searching Local Information in Mobile Databases *

* Research supported by NSF Grants 0326284, 0330342, ITR-0086144, 0513736, and 0209190.

Ouri Wolfson Bo Xu Huabei Yin Hu Cao

University of Illinois at Chicago
{wolfson, boxu, hyin, hcao2}@cs.uic.edu

1. Introduction

A mobile ad-hoc network (MANET) is a set of moving

objects that communicate with each other via unregulated,
short-range wireless technologies such as IEEE 802.11,
Bluetooth, or Ultra Wide Band (UWB). No fixed
infrastructure is assumed or relied upon. An important
application domain of MANET’s is local resource
discovery. In a local resource discovery application, a
user finds local resources that satisfy specified criteria.
For example, a driver finds an available parking slot in a
region by receiving information generated by the parking
meter, or gets the traffic conditions on a highway segment
a mile ahead; a cab driver finds a near-by customer, or a
participant at a convention finds another participant with
a matching profile.

The main problem in answering queries about
resources in MANET’s is finding the resource
information, since the issuer of a query usually does not
know the network-id of the moving objects storing the
resource information, or how to reach them. In this paper
we propose an algorithm for mobile resource discovery in
MANET’s in which the moving objects disseminate
resource-information (namely reports) and queries. Each
moving object can be a report producer, consumer (i.e.
query issuer), or both. The MANET is self organizing in
the sense that the reports flow towards the appropriate
queries, even while the network topology changes.

Resource-reports and queries correspond to resource
descriptions and resource queries in the resource
discovery literature, and events and subscriptions in the
publish/subscribe literature. Existing literature on
resource discovery in MANET’s addresses this problem
using a pull approach. Specifically, a moving object
floods a resource discovery query in the MANET, and
when found the network constructs a routing structure
from the query originator to the resource. The structure is
built by augmenting traditional MANET routing
protocols. Existing literature on publish/subscribe in
MANET’s also has queries (called profiles) and resources
(called events), and the objective is to route the events to
the matching subscribers. Again, a routing structure is
built and maintained, but the events are pushed along the
structure to the appropriate profiles, as they are produced.

In short, both push and pull approaches use routing
structures, and consequently they can be inefficient,
particularly in high mobility networks which are prone to
frequent topology changes. In such an environment, either
a lot of communication has to be expended to keep the
routing structure up to date, or the routing structure
rapidly becomes obsolete and misses many matches.

In this paper we propose a hybrid approach between
push and pull, in the sense that it disseminates both
queries and resource reports. In this approach, a moving
object O periodically selects the k most relevant reports
and queries in its local database and broadcasts them to its
neighbors (i.e. the objects that are within the transmission
range of O). Upon receiving the broadcast from O, each
neighboring object incorporates the received reports and
queries into its own local database, and subsequently
broadcasts the top k reports and queries. Thus reports and
queries transitively spread across moving objects. The
frequency of broadcasting and the size of each broadcast
(i.e. k) depend on the bandwidth and power allocated by a
moving object to local resource discovery. We call this
algorithm Periodic Flooding with Reports Ranking
(PF_Rank).

A novel aspect of the PF_Rank algorithm is the
strategy used by a moving object O to rank the reports
based on their relevance. Intuitively, the relevance of a
report depends on the queries in the local database (which
represent the global demand in the network); the more
queries it satisfies, the more relevant is the report.

While disseminating queries enables moving objects to
rank reports based on the global demand, it reduces the
bandwidth and power available for dissemination of
reports. Thus there is a tradeoff when dividing the space
(k) of a broadcast between queries and reports. In this
paper we experimentally determine the optimal fraction of
queries in a broadcast message.

In order to evaluate the proposed PF_Rank algorithm,
we experimentally compare it with periodic flooding
without ranking (referred to as PF_Random), in which no
queries are disseminated and the k reports are randomly
selected. We compare these two algorithms in terms of
the average number of relevant reports that are delivered
to a consumer. We compare the algorithms in low
mobility (simulating a pedestrian application); and for
802.11g. The experimental results show that PF_Rank

performs better than PF_Random. The benefit of report-
ranking is greater when the bandwidth and power
allocation to local resource discovery is small, and when
the demand pattern is skewed, i.e., a few resources are
very popular and many resources are unpopular.

2. The Model and PF_Rank Algorithm

Our system consists of a finite set of point (i.e. without
an extent) moving objects. Their motion occurs in a finite
geographic space. Occasionally, a moving object O
obtains from an outside source information about a
resource; the resource has some unique resource-id. For
example, a pedestrian passing by an Automatic Teller
Machine learns about the location and Bank of the
machine from a Wi-Fi transmitter in the machine. The
information about a learnt resource R is represented by a
report, denoted a(R); O is called the producer of that
report.

Each moving object O also issues queries that express
O’s interests in certain types of information. O is called
the issuer of these queries. An example of a query is a
request for the locations of ATM’s within 4 blocks of the
Sears Tower in Chicago. The queries issued by a moving
object O are native to O. For simplicity we assume that at
any point in time a moving object has a single native
query. A report a(R) either satisfies a query Q, or not. If it
does then Q(a(R)) = true and match(a(R), Q) = 1.
Otherwise Q(a(R)) = false and match(a(R), Q) = 0.

Now, let us describe our PF_Rank algorithm. The
objective of PF_Rank is to maximize the number of
reports delivered to the “right” moving objects, i.e., to the
issuers of queries satisfied by these reports. For this
purpose, both queries and resources reports are
disseminated. The purpose of disseminating the queries is
to reflect the demand in the neighborhood and the
network in general, such that the reports that are in
demand are ranked higher. In other words, at any point in
time a moving object’s database has reports, its native
query, and queries issued by other moving objects.

The PF_Rank algorithm works as follows. Every p
seconds, a moving object O sorts reports in its database
based on a ranking function, and selects the k(1-q) highest
ranked reports and k⋅q queries to broadcast. The k⋅q
queries include the native query of O and the rest are
randomly selected. k, p, q are the broadcast size,
broadcast period, and query fraction respectively. The
values of k and p are determined by the cost a moving
object is willing to pay in terms of bandwidth and power
for local resource discovery applications. The appropriate
value of q is determined experimentally in this paper.

The rank of a report is defined to be the sum of all its
relevance values. Let the foreign queries in moving object
O’s queries relation be queries that are received from
other objects, i.e. non-native queries.

Definition 1: Let Q1, Q2, …, Qn be the foreign queries
in moving object O’s queries relation. The rank of a
report a(R) at O at time t is:

∑
=

=
n

i
iQRaMatchRarank

1
)),(())(((1) �

Notice that the native queries do not participate in
computation of report rank, since such a query should not
increase the probability of a report being propagated.
Furthermore, for simplicity of presentation we assume
that the size of a query is equal to the size of a report
(although our results easily extend to the different-size
case) and that an infinite number of queries and reports fit
in the memory of a moving object (to avoid dealing with
memory allocation issues).

3. Experimental Analysis

Simulation Method. All algorithms are implemented in
SWANS, a Scalable Wireless Ad-hoc Network Simulator
built by Cornell University. In the simulations, we use
802.11g with the data transmission speed of 54M bits per
seconds. 100 objects move within a 0.5mile×0.5mile
square area according to the following random way-point
mobility model. A moving object is introduced at a
random point in the area, and it moves at constant speed
in a straight line to another random point. There it
pauses, then moves at constant speed in a straight line to
another random point; and so on. The pause time at each
waypoint is a random variable uniformly distributed
between 120 and 240 seconds. The motion speed is
randomly picked up from the interval [0.5, 1.5]
miles/hour. This mobility model simulates, for example,
the motion of a shopper at a mall. The whole simulation
runs for 18000 seconds. Each object has a life span which
is set to be a random period between 600 seconds and
1200 seconds. When the life span of an object expires, it
is removed from the system and a new object is created.
Thus the number of live moving objects is fixed.

For representing resources and queries, we adopted the
Number Intervals (NI) subscription model introduced in
[1]. Particularly, a resource is represented by a point
within the real interval [0, 1]. A query is represented by a
range within [0, 1], e.g., [0.2, 0.7]. A report a(R) matches
a query Q if R’s number falls into Q’s range.

One resource is generated every second. The number
that represents the resource, called R, is randomly chosen
from the [0, 1] interval. An arbitrary live moving object
becomes the producer of the report a(R).

Each moving object has a native query which is
generated when the object is introduced to the system,
and is fixed for the life span of the object. The range of
the query is generated by choosing a center and a length.
The length of the range is selected randomly according to
a normal distribution with mean 0.05 and variance 0.002.

The query-center falls into the [0, 1] interval following a
Zipf distribution. In particular, the [0, 1] interval is
divided into 10 disjoint sections ([0, 0.1), [0.1, 0.2), …).
The probability that a query-center falls into the i-th
(1≤i≤10) section is ∑ =

10
1)/1(/)/1(j

ss ji , where s is called the

relative popularity and i is called the popularity rank. s
ranges from 0 to 4. The greater the value of s, the more
skewed is the distribution of queries. In other words, the
resources are uniformly distributed, and the queries are
distributed according to Zipf’s law.

The query fraction q ranges from 0 to 0.9 with an
increment of 0.1. The case in which the query fraction is
0 is the PF_Random algorithm. The broadcast period p
ranges from 50 to 300 seconds; the broadcast size k is
fixed to 10 reports. By varying the value of the broadcast
period parameter, we model different amounts of
bandwidth/power allocation to local resource discovery.

Performance Measure. As the performance measure
we use the average number of matching resource reports
received by a moving object during its trip. In other
words, the performance of a dissemination algorithm is
the average number of matches that the algorithm delivers
to each moving object.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
at

ch
es

 p
er

 o
bj

ec
t

query fraction

broadcast period = 100 seconds, relative popularity = 1

Figure 1. Tuning-up query fraction for PF_Rank (query fraction

0 corresponds to PF_Random)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

tio
n

popularity rank

broadcast period = 100 seconds
 query fraction (PF_Rank) = 0.1, relative popularity = 1

distribution of received resources
distribution of queries

Figure 2. Distribution of received resources with PF_Rank

versus distribution of queries

Simulation Results. We first tuned up PF_Rank by
finding the query fraction q that generates the best
performance. From Figure 1 can be seen that PF_Rank
reaches the best performance when q=0.1, for the given
parameter configuration. Actually, we varied the
broadcast period, broadcast size, and skew, and in all
cases the optimal query fraction in the range [0.1, 0.9] is
still 0.1 .

We also traced the distribution of the resource-reports
that are received by the moving objects (see Figure 2).
That is, what is the fraction of the resources that fall into
the i-th interval (i.e. popularity i) out of all the resources
that are received by the moving objects in the whole
system throughout the simulation. The result shows that
the distribution of delivered resources is consistent with
the demand pattern (the distribution of queries), even with
a small value of query fraction (q=0.1). This verifies the
benefit of query dissemination and reports ranking.

 0

 2

 4

 6

 8

 10

 300 250 200 150 100 50

m
at

ch
es

 p
er

 o
bj

ec
t

broadcast period (second)

relative popularity = 1, query fraction (PF_Rank) = 0.1

PF_Rank
PF_Random

Figure 3. Performance versus broadcast period

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 4 3 2 1 0

m
at

ch
es

 p
er

 o
bj

ec
t

relative popularity

broadcast period = 100 seconds, query fraction (PF_Rank) =

PF_Ranked
PF_Random

Figure 4. Performance versus relative popularity

Figure 3 shows the performance of PF_Rank and

PF_Random as a function of the broadcast period. The
advantage of PF_Rank over PF_Random (i.e. the ratio
between the performance of PF_Rank and that of
PF_Random) decreases as the broadcast period decreases.
Intuitively, when the broadcast period is very small,
PF_Random manages to deliver a lot of matching reports
to moving objects by quick repeated transmissions; a
report that is not selected in the last broadcast may be
selected in one of the next few broadcasts which comes
soon. This suggests that PF_Rank is particularly useful
when the bandwidth/power allocation to local resource
discovery is low. In other words, PF_Rank makes more
bandwidth/power available to other network applications.

Figure 4 shows that the advantage of PF_Rank
increases as the demand skew increases. This is intuitive,
because random report dissemination is a good strategy if
the demand is uniformly distributed.

[1] Y. Huang, H. Garcia-Molina: Publish/Subscribe in a
Mobile Environment. Wireless Networks, 10(6): 643-652
(2004).

