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1. Introduction 
 
A mobile ad-hoc network (MANET) is a set of moving 

objects that communicate with each other via unregulated, 
short-range wireless technologies such as IEEE 802.11, 
Bluetooth, or Ultra Wide Band (UWB). No fixed 
infrastructure is assumed or relied upon. An important 
application domain of MANET’s is local resource 
discovery. In a local resource discovery application, a 
user finds local resources that satisfy specified criteria. 
For example, a driver finds an available parking slot in a 
region by receiving information generated by the parking 
meter, or gets the traffic conditions on a highway segment 
a mile ahead; a cab driver finds a near-by customer, or a 
participant at a convention finds another participant with 
a matching profile.  

The main problem in answering queries about 
resources in MANET’s is finding the resource 
information, since the issuer of a query usually does not 
know the network-id of the moving objects storing the 
resource information, or how to reach them. In this paper 
we propose an algorithm for mobile resource discovery in 
MANET’s in which the moving objects disseminate 
resource-information (namely reports) and queries. Each 
moving object can be a report producer, consumer (i.e. 
query issuer), or both. The MANET is self organizing in 
the sense that the reports flow towards the appropriate 
queries, even while the network topology changes.  

Resource-reports and queries correspond to resource 
descriptions and resource queries in the resource 
discovery literature, and events and subscriptions in the 
publish/subscribe literature. Existing literature on 
resource discovery in MANET’s addresses this problem 
using a pull approach. Specifically, a moving object 
floods a resource discovery query in the MANET, and 
when found the network constructs a routing structure 
from the query originator to the resource. The structure is 
built by augmenting traditional MANET routing 
protocols. Existing literature on publish/subscribe in 
MANET’s also has queries (called profiles) and resources 
(called events), and the objective is to route the events to 
the matching subscribers. Again, a routing structure is 
built and maintained, but the events are pushed along the 
structure to the appropriate profiles, as they are produced. 

In short, both push and pull approaches use routing 
structures, and consequently they can be inefficient, 
particularly in high mobility networks which are prone to 
frequent topology changes. In such an environment, either 
a lot of communication has to be expended to keep the 
routing structure up to date, or the routing structure 
rapidly becomes obsolete and misses many matches.   

In this paper we propose a hybrid approach between 
push and pull, in the sense that it disseminates both 
queries and resource reports. In this approach, a moving 
object O periodically selects the k most relevant reports 
and queries in its local database and broadcasts them to its 
neighbors (i.e. the objects that are within the transmission 
range of O). Upon receiving the broadcast from O, each 
neighboring object incorporates the received reports and 
queries into its own local database, and subsequently 
broadcasts the top k reports and queries. Thus reports and 
queries transitively spread across moving objects. The 
frequency of broadcasting and the size of each broadcast 
(i.e. k) depend on the bandwidth and power allocated by a 
moving object to local resource discovery. We call this 
algorithm Periodic Flooding with Reports Ranking 
(PF_Rank). 

A novel aspect of the PF_Rank algorithm is the 
strategy used by a moving object O to rank the reports 
based on their relevance. Intuitively, the relevance of a 
report depends on the queries in the local database (which 
represent the global demand in the network); the more 
queries it satisfies, the more relevant is the report. 

While disseminating queries enables moving objects to 
rank reports based on the global demand, it reduces the 
bandwidth and power available for dissemination of 
reports. Thus there is a tradeoff when dividing the space 
(k) of a broadcast between queries and reports. In this 
paper we experimentally determine the optimal fraction of 
queries in a broadcast message.  

In order to evaluate the proposed PF_Rank algorithm, 
we experimentally compare it with periodic flooding 
without ranking (referred to as PF_Random), in which no 
queries are disseminated and the k reports are randomly 
selected. We compare these two algorithms in terms of 
the average number of relevant reports that are delivered 
to a consumer. We compare the algorithms in low 
mobility (simulating a pedestrian application); and for 
802.11g. The experimental results show that PF_Rank 



 

performs better than PF_Random. The benefit of report-
ranking is greater when the bandwidth and power 
allocation to local resource discovery is small, and when 
the demand pattern is skewed, i.e., a few resources are 
very popular and many resources are unpopular.  

 
2. The Model and PF_Rank Algorithm 
 

Our system consists of a finite set of point (i.e. without 
an extent) moving objects. Their motion occurs in a finite 
geographic space. Occasionally, a moving object O 
obtains from an outside source information about a 
resource; the resource has some unique resource-id. For 
example, a pedestrian passing by an Automatic Teller 
Machine learns about the location and Bank of the 
machine from a Wi-Fi transmitter in the machine. The 
information about a learnt resource R is represented by a 
report, denoted a(R); O is called the producer of that 
report.  

Each moving object O also issues queries that express 
O’s interests in certain types of information. O is called 
the issuer of these queries. An example of a query is a 
request for the locations of ATM’s within 4 blocks of the 
Sears Tower in Chicago. The queries issued by a moving 
object O are native to O. For simplicity we assume that at 
any point in time a moving object has a single native 
query. A report a(R) either satisfies a query Q, or not. If it 
does then Q(a(R)) = true and match(a(R), Q) = 1. 
Otherwise Q(a(R)) = false and match(a(R), Q) = 0. 

Now, let us describe our PF_Rank algorithm. The 
objective of PF_Rank is to maximize the number of 
reports delivered to the “right” moving objects, i.e., to the 
issuers of queries satisfied by these reports. For this 
purpose, both queries and resources reports are 
disseminated. The purpose of disseminating the queries is 
to reflect the demand in the neighborhood and the 
network in general, such that the reports that are in 
demand are ranked higher. In other words, at any point in 
time a moving object’s database has reports, its native 
query, and queries issued by other moving objects. 

The PF_Rank algorithm works as follows. Every p 
seconds, a moving object O sorts reports in its database 
based on a ranking function, and selects the k(1-q) highest 
ranked reports and k⋅q queries to broadcast. The k⋅q 
queries include the native query of O and the rest are 
randomly selected. k, p, q are the broadcast size, 
broadcast period, and query fraction respectively. The 
values of k and p are determined by the cost a moving 
object is willing to pay in terms of bandwidth and power 
for local resource discovery applications. The appropriate 
value of q is determined experimentally in this paper.  

The rank of a report is defined to be the sum of all its 
relevance values. Let the foreign queries in moving object 
O’s queries relation be queries that are received from 
other objects, i.e. non-native queries. 

Definition 1: Let Q1, Q2, …, Qn  be the foreign queries 
in moving object O’s queries relation. The rank of a 
report a(R) at O at time t is: 
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Notice that the native queries do not participate in 
computation of report rank, since such a query should not 
increase the probability of a report being propagated. 
Furthermore, for simplicity of presentation we assume 
that the size of a query is equal to the size of a report 
(although our results easily extend to the different-size 
case) and that an infinite number of queries and reports fit 
in the memory of a moving object (to avoid dealing with  
memory allocation issues). 

 
3. Experimental Analysis 

 
Simulation Method. All algorithms are implemented in 
SWANS, a Scalable Wireless Ad-hoc Network Simulator 
built by Cornell University. In the simulations, we use 
802.11g with the data transmission speed of 54M bits per 
seconds. 100 objects move within a 0.5mile×0.5mile 
square area according to the following random way-point 
mobility model. A moving object is introduced at a 
random point in the area, and it moves at constant speed 
in a straight line to another random point.  There it 
pauses, then moves at constant speed in a straight line to 
another random point; and so on. The pause time at each 
waypoint is a random variable uniformly distributed 
between 120 and 240 seconds. The motion speed is 
randomly picked up from the interval [0.5, 1.5] 
miles/hour. This mobility model simulates, for example, 
the motion of a shopper at a mall. The whole simulation 
runs for 18000 seconds. Each object has a life span which 
is set to be a random period between 600 seconds and 
1200 seconds. When the life span of an object expires, it 
is removed from the system and a new object is created. 
Thus the number of live moving objects is fixed. 

For representing resources and queries, we adopted the 
Number Intervals (NI) subscription model introduced in 
[1]. Particularly, a resource is represented by a point 
within the real interval [0, 1]. A query is represented by a 
range within [0, 1], e.g., [0.2, 0.7]. A report a(R) matches 
a query Q if R’s number falls into Q’s range. 

One resource is generated every second. The number 
that represents the resource, called R, is randomly chosen 
from the [0, 1] interval. An arbitrary live moving object 
becomes the producer of the report a(R). 

Each moving object has a native query which is 
generated when the object is introduced to the system, 
and is fixed for the life span of the object. The range of 
the query is generated by choosing a center and a length. 
The length of the range is selected randomly according to 
a normal distribution with mean 0.05 and variance 0.002. 



 

The query-center falls into the [0, 1] interval following a 
Zipf distribution. In particular, the [0, 1] interval is 
divided into 10 disjoint sections ([0, 0.1), [0.1, 0.2), …). 
The probability that a query-center falls into the i-th 
(1≤i≤10) section is ∑ =

10
1 )/1(/)/1( j

ss ji , where s is called the 

relative popularity and i is called the popularity rank. s 
ranges from 0 to 4. The greater the value of s, the more 
skewed is the distribution of queries. In other words, the 
resources are uniformly distributed, and the queries are 
distributed according to Zipf’s law.  

The query fraction q ranges from 0 to 0.9 with an 
increment of 0.1. The case in which the query fraction is 
0 is the PF_Random algorithm. The broadcast period p 
ranges from 50 to 300 seconds; the broadcast size k is 
fixed to 10 reports. By varying the value of the broadcast 
period parameter, we model different amounts of 
bandwidth/power allocation to local resource discovery. 

Performance Measure. As the performance measure 
we use the average number of matching resource reports 
received by a moving object during its trip. In other 
words, the performance of a dissemination algorithm is 
the average number of matches that the algorithm delivers 
to each moving object.  
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Figure 1. Tuning-up query fraction for PF_Rank (query fraction 

0 corresponds to PF_Random) 
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Figure 2. Distribution of received resources with PF_Rank 

versus distribution of queries 
 

Simulation Results. We first tuned up PF_Rank by 
finding the query fraction q that generates the best 
performance. From Figure 1 can be seen that PF_Rank 
reaches the best performance when q=0.1, for the given 
parameter configuration. Actually, we varied the 
broadcast period, broadcast size, and skew, and in all 
cases the optimal query fraction in the range [0.1, 0.9] is 
still 0.1 . 

We also traced the distribution of the resource-reports 
that are received by the moving objects (see Figure 2). 
That is, what is the fraction of the resources that fall into 
the i-th interval (i.e. popularity i) out of all the resources 
that are received by the moving objects in the whole 
system throughout the simulation. The result shows that 
the distribution of delivered resources is consistent with 
the demand pattern (the distribution of queries), even with 
a small value of query fraction (q=0.1). This verifies the 
benefit of query dissemination and reports ranking. 
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Figure 3. Performance versus broadcast period 
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Figure 4. Performance versus relative popularity 

 
Figure 3 shows the performance of PF_Rank and 

PF_Random as a function of the broadcast period. The 
advantage of PF_Rank over PF_Random (i.e. the ratio 
between the performance of PF_Rank and that of 
PF_Random) decreases as the broadcast period decreases. 
Intuitively, when the broadcast period is very small, 
PF_Random manages to deliver a lot of matching reports 
to moving objects by quick repeated transmissions; a 
report that is not selected in the last broadcast may be 
selected in one of the next few broadcasts which comes 
soon. This suggests that PF_Rank is particularly useful 
when the bandwidth/power allocation to local resource 
discovery is low. In other words, PF_Rank makes more 
bandwidth/power available to other network applications. 

Figure 4 shows that the advantage of PF_Rank 
increases as the demand skew increases. This is intuitive, 
because random report dissemination is a good strategy if 
the demand is uniformly distributed. 
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