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Abstract

Given the well-known tradeoffs between fairness, per-
formance, and efficiency, modern cluster schedulers of-
ten prefer instantaneous fairness as their primary objec-
tive to ensure performance isolation between users and
groups. However, instantaneous, short-term convergence
to fairness often does not result in noticeable long-term
benefits. Instead, we propose an altruistic, long-term ap-
proach, CARBYNE, where jobs yield fractions of their al-
located resources without impacting their own comple-
tion times. We show that leftover resources collected via
altruisms of many jobs can then be rescheduled to fur-
ther secondary goals such as application-level perfor-
mance and cluster efficiency without impacting perfor-
mance isolation. Deployments and large-scale simula-
tions show that CARBYNE closely approximates the state-
of-the-art solutions (e.g., DRF [27]) in terms of perfor-
mance isolation, while providing 1.26 x better efficiency
and 1.59x lower average job completion time.

1 Introduction

Resource scheduling remains a key building block of
modern data-intensive clusters. As data volumes increase
and the need for analysis through multiple lenses ex-
plode [1,2,12,23,34,41,43,45,55], diverse coexisting
jobs from many users and applications contend for the
same pool of resources in shared clusters.

Consequently, today’s cluster schedulers [9,17,33,51]
have to deal with multiple resources [14, 20, 27, 29,
38], consider jobs with complex directed acyclic graph
(DAG) structures [19,29,55], and allow job-specific con-
straints [15,28, 35, 54,56]. Schedulers must provide per-
formance isolation between different users and groups
through fair resource sharing [9, 16, 17, 27, 29, 36, 56],
while ensuring performance (low job completion times)
and efficiency (high cluster resource utilization).

However, simultaneously optimizing fairness, perfor-
mance, and efficiency is difficult. Figure 1 demonstrates
the tradeoff space by comparing three schedulers — domi-
nant resource fairness (DRF) [27] for multi-resource fair-
ness, shortest-job-first (SJF) [26] for minimizing the av-
erage job completion time (JCT), and Tetris [29] for in-
creasing resource utilization — implemented in Apache
YARN [51]: each scheduler outperforms its counterparts
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(a) Inter-job fairness (b) Job performance (c) Cluster efficiency

Figure 1: DRF [27], SJF [26], and Tetris [29] on a TPC-DS [7]
workload on a 100-machine cluster. All jobs arrived together.
Higher is better in (a),'while the opposite is true in (b) and (c).

only in a preferred metric and significantly underper-
forms in the secondary metrics. In practice, many pro-
duction schedulers [9, 10, 17,33,48,51,52] settle for per-
formance isolation as their primary objective and focus
on quick convergence to instantaneous fair allocations,
while considering performance and efficiency as best-
effort, secondary goals, often without an explicit focus
on them.

In this paper, we revisit the three-way tradeoff space: is
it possible to ensure performance isolation (i.e., fairness)
and still be competitive with the best approaches for the
secondary metrics (job completion time and cluster uti-
lization)? We highlight two key characteristics. First, dis-
tributed data-parallel jobs share an all-or-nothing char-
acteristic [14, 15,21, 56]: a parallel job cannot complete
until all its tasks have completed. Because of this, aggres-
sively using all of the fair share often does not translate
into noticeable benefits in terms of secondary metrics. In
fact, it can hurt the average JCT and cluster efficiency.
Second, users only observe the outcome of performance
isolation when their jobs complete, and they care less for
instantaneous fair-share guarantees.

Thus, we propose an altruistic, long-term approach
based on a simple insight: jobs yield fractions of their
currently allocated resources — referred to as leftover re-
sources — to be redistributed to further secondary ob-
jectives. As long as jobs can contribute resources and
still complete without taking additional time, the effects
of such redistribution remain transparent to users. (We

'In Figure la, we calculated the average of Jain’s fairness index [37] over
60-second intervals; error bars represent the minimum and the maximum values.
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Figure 2: Opportunities in altruistic scheduling for two DAGs contending on a single bottleneck resource. Job J; (orange/light/solid
line) has three stages and Job J> (blue/dark/dotted line) has one stage (a), where the number of tasks in each stage along with their
expected resource requirements and durations are shown as specified in the legend. Assuming each task can start and complete its
execution in the specified duration given its required resources, (b)—(c) depict the allocations of the bottleneck resource (vertical
axis) for different approaches: The average completion time for (b) traditional schedulers (i.e., single- or multi-resource fairness
across jobs and efficient packing within each job) is 2.05 time units; and (¢) CARBYNE with altruistic scheduling is 1.55 time units.

prove that an altruistic scheduler can guarantee this in

the offline setting).
Indeed, jobs have ample opportunities for altruisms in

production (§2). For example, 50% of the time, at least
20% of the allocated resources can be used as leftover
(i.e., yielded altruistically) at Microsoft’s production an-
alytics clusters. Given a fixed amount of resources, a
job may be altruistic whenever it cannot simultaneously
schedule all of its runnable tasks — i.e., when it can
choose which tasks to schedule at that instant and which
ones to schedule later. As clusters are shared between
more users and DAG complexity (e.g., the number of
barriers, total resource requirements, and critical path
length [39]) increases, the amount of leftover resources

increases too.
Leftover resources collected via altruisms of many

jobs introduce an additional degree of freedom in cluster
scheduling. We leverage this flexibility in CARBYNE that
decides how to determine and redistribute the leftover, so
as to improve one or both of performance and efficiency
metrics as the cluster operator sees fit, while providing
the same level of user-observable performance isolation
as the state-of-the-art (§3). Specifically, given a share of
the cluster resources (computed by a fair-sharing scheme
like DRF), CARBYNE’s intra-job scheduler computes task
schedules further into the future (since it knows the DAG
of the job upfront). This allows each job to compute, at
any given time, which runnable tasks to schedule and
how much of its fair share to contribute altruistically.
CARBYNE’s inter-job scheduler uses the resulting leftover
resources to: (a) preferentially schedule tasks from jobs
that are closest to completion; then (b) pack remaining
tasks to maximize efficiency. The order of (a) and (b) can
be reversed to prioritize efficiency over JCTs. Note that
our focus is not on improving the scheduling heuristics
for the individual metrics themselves, but rather on com-
bining them with altruism. To that end, our solution can

work with any of the scheduling heuristics designed for
fairness (say, capacity scheduler [5]), completion time,
and cluster efficiency (say, DAGPS [30,31]).

Prior work have also attempted to simultaneously
meet multiple objectives [18,21,26,29-31,38,47]. The
main difference is that given some resources (e.g., ac-
cording to some fair allocation) prior approaches (no-
tably [29-31]) adopt eager scheduling of tasks, whereas
CARBYNE schedules altruistically by delaying tasks in
time as much as possible to accommodate those that are
in greater need of running now. As our examples in Sec-
tion 2 and results in Section 5 show, such an altruism-
based approach offers better control over meeting global
objectives. In particular, compared to [29-31], CARBYNE
is better at meeting fairness guarantees, while offering
similar performance along other objectives.

We have implemented CARBYNE as a pluggable sched-
uler on Apache YARN [51] (§4). Any framework that
runs on YARN can take advantage of CARBYNE. We de-
ployed and evaluated CARBYNE on 100 bare-metal ma-
chines using TPC-DS [7], TPC-H [8], and BigBench [4]
queries and also by replaying production traces from Mi-
crosoft and Facebook in trace-driven simulations (§5).
In deployments, CARBYNE provides 1.26x better effi-
ciency and 1.59x lower average completion time than
DREF, while closely approximating it in fairness. In fact,
CARBYNE’s performance and efficiency characteristics
are close to that of SJF and Tetris, respectively. Only 4%
jobs suffer more than 0.8x slowdown (with the maxi-
mum slowdown being 0.62x) as CARBYNE temporally
reorganizes tasks to improve all three metrics. We ob-
served slightly higher benefits in simulations for com-
plex DAGs as well as for simple MapReduce jobs. Fur-
thermore, we found that CARBYNE performs well even in
the presence of misestimations of task demands (needed
for packing) and even when some jobs are not altruistic.



# Stages # Barriers | Input Work
Workload | 50th  95th | 50th  95th | 50th  95th
Microsoft 13 121 4 13 | 34% 85%
TPC-DS 8 23 1 4 | 11% 88%
TPC-H 8 12 2 4 | 46% 82%
BigBench 7 19 2 6 | 24% 70%

Table 1: Structural diversity in various workloads. Each group
of columns reads out percentile distributions.

2 Motivation

This section demonstrates benefits of altruistic schedul-
ing using an example (§2.1) and quantitatively analyzes
altruism opportunities (§2.2) in DAG workloads.

2.1 Illustration of Altruism

Modern schedulers focus on instantaneous (i.e., short-
term) optimizations and take greedy decisions. We hy-
pothesize that the focus on the short-term restricts their
flexibility in optimizing secondary objectives. Instead,
if we relax them via short-term altruisms and focus on
long-term optimizations, we can enable disproportion-
ately larger flexibility during scheduling, which, in turn,
can translate into significant improvements.

Consider Figure 2 that compares two schedules as-
suming both jobs arrive at the same time. Existing sched-
ulers (Figure 2b) perform independent scheduling both
across and within jobs, resulting in an average comple-
tion time of 2.05 time units (by allocating equal share of
resources to the jobs). This holds for any combination of
today’s schedulers — max-min [36] or dominant resource
fairness (DRF) [27] across different jobs and breadth-
first order [2, 55], critical path method (CPM) [39, 40],
or packing [29] within each job — because they are inde-
pendent by design to optimize for short-term objectives.

In contrast, CARBYNE takes a long-term approach (Fig-
ure 2c¢), where the intra-job scheduler of .J; altruistically
gives up some of its resources (since S2 in J; is a bar-
rier), which can better serve Jo. As long as tasks in stages
S0 and S1 finish by 2 time units, J;’s completion time
will not change. By ignoring short-term greed, J; can
improve Jo’s completion time, resulting in an average
completion time of 1.55 time units (1.3x better). 2

Note that this example considers only one resource,
only two jobs, and simplistic DAGs. As complexity in-
creases across all these dimensions, CARBYNE can be
even more effective (§5).

2.2 Opportunities in Analytics DAGs

In this section, we analyze the potential for altruism. We
analyzed query DAGs from a large Microsoft production

2For this example, packing across job boundaries results in an average JCT of
1.55 time units. However, as shown in Figure 1b, packing does not always lead
to the best average JCT, and it is not difficult to construct a similar example.

CP Length | # Disjoint Paths
Workload | 50th  95th | 50th 95th
Microsoft 7 17 6 34
TPC-DS 5 8 4 15
TPC-H 5 7 3 7
BigBench 5 8 2 10

Table 2: Diversity in length of the critical path (CP) and the
number of disjoint paths in DAGs across various workloads.

trace, TPC-DS [7], TPC-H [8], and BigBench [4] bench-
marks. We first quantify the amount of leftover resources
for altruism and then correlate it with relevant DAG prop-
erties. For a detailed analysis of all DAG properties in
production, we refer interested readers to [30,31].

How much resources can be considered as leftover
and used for altruistic scheduling? To answer this, we
computed the fraction of allocated compute, memory,
disk in/out, and network in/out bandwidths that could
have been reallocated without affecting any job’s com-
pletion time at Microsoft for each scheduling event
such as job and task arrivals and completions. We
found that across thousands of scheduling events, 50%
of the time, at least 20% of the allocated resources
- (35%, 43%, 24%, 21%, 28%, 24%) for the resources
listed above — could be used as leftover and rescheduled
via altruistic scheduling.

We next analyze the properties of the jobs that matter
the most for altruism: total stages, number of stages with
multiple parents (i.e., barriers), length of the DAG’s crit-
ical path, and the number of disjoint paths in the DAG.

Stage-Level Observations The number of stages in a
DAG provides an approximation of its complexity. In our
traces, a DAG has at least 7 stages at median and up to
23 at the 95th percentile (Table 1). These numbers are
significantly higher for production traces.

Recall that CARBYNE is altruistic without hampering
JCT. A key factor dictating this is the number of barriers,
i.e., stages whose children must wait until they finish.
Examples include aggregation and join stages, or even
final output stages. We observed the presence of multiple
barriers in most DAGs (Table 1); also quantified in [15].

Path-Level Observations Next, we considered the
length of the critical path of the DAG [39] as well as
the number of disjoint paths. We defined each sequence
of stages that can run in parallel with other sequences
of different stages as a disjoint path. Table 2 shows that
the median length of the critical path of DAGs is 5 in
these workloads, and many DAGs have multiple disjoint
paths, further enabling altruistic scheduling; [30,31] has
a detailed description and quantification of DAG critical
paths.



Correlating DAG properties and leftover resources
To understand which of these DAG properties have the
highest impact, we calculated correlations over time be-
tween the amount of leftover resources via CARBYNE and
variabilities in each of the aforementioned attributes. We
found that the number of barriers in a DAG has the high-
est positive correlation (0.75). The more barriers a DAG
contains, the more opportunities it has to contribute. For
example, in Figure 2c, the barrier S2 of DAG J; enabled
its altruism. The number of stages, critical path length,
and the number of disjoint paths also have high positive
correlations of 0.66, 0.71 and 0.57, respectively.

3 Altruistic Multi-Resource Scheduling

In this section, we present an online altruistic multi-
resource DAG scheduler. First, we define the problem
along with our assumptions (§3.1). Next, we discuss de-
sirable properties of an ideal DAG scheduler and asso-
ciated tradeoffs (§3.2). Based on our understanding, we
develop an offline altruistic scheduler in two steps (§3.3):
determining how much a job can contribute to leftover
and deciding how to distribute the leftover or yielded re-
sources to other jobs. Finally, we analyze why the offline
solution works well in the online scenario as well (§3.4).

3.1 Problem Statement

Given a collection of jobs — along with information about
individual tasks’ expected multi-resource requirements,
durations, and DAG dependencies — we must schedule
them such that each job receives a fair share of clus-
ter resources, jobs complete as fast as possible, and the
schedule is work-conserving. All information about indi-
vidual jobs are unknown prior to their arrival.

3.2 Complexity and Desirable Properties

Offline DAG scheduling is NP-complete [25] for all
the objectives® — fairness, performance, and efficiency —
even when the entire DAG and completion times of each
of its stages are known. In fact, polynomial-time opti-
mal DAG scheduling algorithms exist for only three sim-
ple cases [22,42], none of which are applicable to DAG
scheduling in multi-resource clusters.

Because achieving optimality in all of the aforemen-
tioned objectives is impossible due to their tradeoffs
[18,21,26,29,38,47], we want to build a scheduler that
improves performance and efficiency without sacrificing
performance isolation. In the online case, we expect an
ideal such scheduler to satisfy the following goals:

* Fast completion: Each DAG should complete as fast
as possible.

e Work conservation: Available resources should not
remain unused.

3Whether multi-resource fair DAG scheduling is NP-complete is unknown.
DREF [27] results were proven for jobs where all tasks have the same resource
requirements, which is not the case in multi-stage DAGs.

e Starvation freedom: No DAG should starve for arbi-
trarily long periods.*

3.3 Offline Altruistic Scheduling

Cluster schedulers typically operate in two levels: inter-
and intra-job; i.e., between jobs and between tasks of
each job. However, we want to consider three distinct
scheduling components — the two above, and leftover
scheduling. To this end, we first identify an intermedi-
ate degree of freedom in scheduling, and we discuss how
to leverage that.

3.3.1 Solution Approach

Consider the offline problem of scheduling |J| DAG
jobs (J = {Ji,Ja,...,Jy}) that arrived at time
0. We start by observing that given a fixed share
(A-;~C = (a},ai,... alﬁb) of |ﬁ| resources (ﬁ =
(RY,R?,..., R|§‘>) by an inter-job scheduler, a DAG
will take a minimum of amount of time (7} for job J)
to complete all its tasks, given their dependencies. How-
ever, as long as its allocation does not decrease — true in
the offline case — it can decide not fo be aggressive in
using resources and still complete by T},. Formally, we
prove the following:
Theorem 3.1 Altruism will not inflate any job’s comple-
tion time in the offline case — i.e., unless new jobs arrive
or existing jobs depart — for any inter-job scheduler.
The proof follows from the fact that none of the T} ’s
invariants — namely, resource requirements, DAG struc-
ture, and allocation of Jj, — change in the offline case.
We refer to resources that are not immediately re-
lLﬁl )), and
we consider contributing to Ly, to be an altruistic action.
For example, in Figure 2c, J; can potentially have 0.29
units of leftover resources at time 0. Assuming its fixed
resource share of 0.5 units, it would still be able to com-
plete in 2.1 time units by delaying one more task from
stage S1 to start at time 1. Note that .J; is instead run-
ning that task at time 0 to ensure work conservation.
Given that multiple jobs can contribute leftover re-
sources (§2.2), if we combine (L = >, L—;:) and redis-
tribute them across all running jobs, we can create new
opportunities for improving the secondary metrics. We
can now reformulate cluster scheduling as the following
three questions:

. —
quired as leftover resources (L = (l,l€7 lﬁ, .

1. how to perform inter-job scheduling to maximize the
amount of leftover resources?

2. how should an intra-job scheduler determine how
much a job should contribute to leftover? and

3. how to redistribute the leftover across jobs?

“We do not aim for stronger goals such as guaranteeing bounded starvation,
because providing guarantees require resource reservation along with admission
control. Even DRF does not provide any guarantees in the online case.



By addressing each one at each scheduling granularity
— inter-job, intra-job, and leftover — we design an altruis-
tic DAG scheduler (Pseudocode 1) that can compete with
the best and outperform the rest in all three metrics (§5).

CARBYNE invokes Pseudocode 1 on job arrival, job
completion, as well as task completion events. For each
event, it goes through three scheduling steps to deter-
mine the tasks that must be scheduled at that point in
time. While we use DRF [27], SRTF, and Tetris [29]
for concrete exposition, CARBYNE can also equivalently
use other schedulers such as DAGPS [30,31] (instead of
Tetris) for packing and capacity scheduler [5] (instead of
DREF) for fairness.

3.3.2 Increasing Leftover via Inter-Job Scheduling

Modern clusters are shared between many groups and
users [9, 10,16, 17,33,48,51,52]. Consequently, the pri-
mary goal in most production clusters is performance
isolation through slot-based [9, 10] or multi-resource
[16,27] fairness. We use a closed-form version of DRF
[46] for inter-job scheduling in CARBYNE. Interestingly,
because a single- or multi-resource fair scheduler en-
forces resource sharing between all running jobs, it elon-
gates individual job completion times the most (com-
pared to schedulers focused on other primary objectives).
Consequently, fair schedulers provide the most opportu-
nities for altruistic scheduling.

3.3.3 Determining Leftover for Individual Jobs

Given some resource share 1@, CARBYNE’S intra-job
scheduler aims to maximize the amount of leftover re-
sources from each job. We schedule only those tasks that
must start running for J, to complete within the next
T}, duration, and we altruistically donate the rest of the
resources for redistribution. Computing this is simple:
we simply perform a reverse/backward packing of tasks
from T} to current time, packing tasks in time as close to
T}, as possible, potentially leaving more resources avail-
able at earlier times (lines 17-21 in Pseudocode 1). For
example, in Figure 2, stage S2 of job J; can only start
after 2 time units. Hence, CARBYNE can postpone both
tasks from S0 and one task from S1 until at least the first
time unit, donating 0.29 units to leftover resources (0.08
for SO’s tasks and 0.21 for S1’s task). Similarly, job J
donates 0.21 units to leftover resources (its fair share of
0.5 less the resource used by one task in its SO of 0.29),
making it a sum of 0.5 leftover resource units.

Reverse packing uses the same principle as the intra-
coflow scheduler used in Varys [21], where most flows
in a coflow are slowed down so that all of them finish to-
gether with the longest running one. However, CARBYNE
considers multiple resource types as well as dependen-
cies, and unlike Varys, it does not hog CPU and memory.

A sophisticated packer (like DAGPS [30,31]) can bet-
ter increase leftover resources. As opposed to our re-

Pseudocode 1 Altruistic DAG Scheduling

1: proc(ﬂyre SCHEDULE(Jobs J, Resources ﬁ
2 {Ax}, L = INTERJOBSCHEDULER(J, R)
3 for all J,, € J do

— —
4: L += INTRAJOBSCHEDULER(Jg, Ag)
5
6
7

end for N
LEFTOVERSCHEDULER(J, L)
: end procedure

8: procedure INTERJOBSCHEDULER(Jobs J, Resources ﬁ)

: LpRrp = > LpRF tracks total unalloc. resources
10: Calculate Ay, using closed-form DRF [46] for all J,
11: for all J, € Jdo

—_— =
12: LDRF -= Ak
13: end for

—
14: return {Ak} and LDRF
15: end procedure

_)
16: procedure INTRAJOBSCHEDULER(Job Ji, Alloc. Ay)
17: Given Ay, calculate T}, using Tetris [29]
18: Reverse parent-child task dependencies in Jj
19: Calc. task start times Rev(t7,) in the reversed DAG
20: Actual(t]) = Rev(t;) + T}, — Dur(t],)
21: Ty = {t], : Actual(t]) == 0} > Tasks that mus start
22: Schedule t; Vt] € Ty
- — ; ;

23: Ly = A, — ZReq(t{c); ti € Tg

H
24: return L
25: end procedure

26: procedure LEFTOVERSCHEDULER(Jobs J, Leftover f)
27: J' =SORT-ASC (J) in the SRTF order

28: for all J;, € I do

29: Schedule runnable tasks to maximize f usage
30: end for

31: end procedure

verse packer that only considers the parents of currently
runnable tasks, it could consider the entire DAG and its
dependencies. It could also account for the nature of de-
pendencies between stages (e.g., many-to-one, all-to-all).
The more CARBYNE can postpone tasks into the future
without affecting a DAG’s completion time, the more
leftover resources it has for altruistic scheduling.

3.3.4 Redistribution via Leftover Scheduling

Given the pool of leftover resources f from all jobs (0.5
units in the running example), leftover scheduling has
two goals:

* Minimizing the average JCT by scheduling tasks
from jobs that are closest to completion us-
ing Shortest-Remaining-Time-First (SRTF’). This
schedules the task from stage SO of .Jy in the first
time step, leaving 0.21 units of total leftover.

SThis is the shortest amount of work first, as in Tetris [29].



* Maximizing efficiency by packing as many unsched-
uled tasks as possible — i.e., using Tetris [29]. This
results in one more task of stage S1 of J; to be sched-
uled, completing leftover redistribution.

3.3.5 Properties of the Offline Scheduler

The former action of the leftover scheduler enables fast
Jjob completions, while the latter improves work conser-
vation. At the same time, because the intra-job sched-
uler ensures that 7}, values are not inflated, the overall
scheduling solution maintains the fairness characteristics
of DRF and provides the same performance isolation and
starvation freedom. In summary, the offline CARBYNE
scheduler satisfies all the desirable properties.

3.4 From Offline to Online

In the online case, new jobs can arrive before T}, and de-
crease Ji’s resource share, breaking one of the invariants
of Theorem 3.1. For example, given [V jobs and one re-
source, J receives %-th of the resource; if M/ more jobs
arrive, its share will drop to ﬁ-th. If J;, was altruistic
earlier, as new jobs arrive, it cannot complete within the

previously calculated 7}, time units any more.
3.4.1 Analysis of Online Altruistic Scheduling

In practice, even in the online case, we observe marginal
impacts on only a handful of jobs (§5.2.3). This is be-
cause (i) production clusters run hundreds of jobs in par-
allel; and (ii) resource requirements of an individual task
is significantly smaller than the total capacity of a cluster.

Consider a single resource with total capacity R, and
assume that tasks across all jobs take the same amount
of time (¢) and resource (r < R). Given N jobs, job Jj
received Ay = %-th share of the single resource, and it
is expected to complete in 7}, time units while scheduling
at most % tasks per time unit.

Now consider M new jobs arrive when J, is T7,(<
Tk ) time units away from completion. Their arrival de-

) !’ 1
creases Ji,’s share to A = NI th, when J;, must be

able to schedule tasks at % rate to complete within 7}.
Assuming all resources being used by the running

jobs, the rate at which Jj, can schedule tasks is the rate at

which tasks finish, i.e., RL/T. Meaning, Jj, is expected to

take % time units to schedule all tasks.

The additional time to schedule the remaining tasks
will be negligible compared to remaining time 7}, as long
as tasks finish uniformly randomly over time® and

1 r
s —— "
Y NTMR

The above holds for most production clusters because
typically N > 1 and R > r.

®This holds true in large production clusters [54].

3.4.2 Bounding Altruism

As a failsafe to prevent jobs from being repetitively pun-
ished for altruism, CARBYNE provides a uniformly dis-
tributed probability P(Altruism). It dictates with what
probability a job will yield its resources during any
scheduling event. It is set to 1 by default —i.e., jobs yield
resources whenever possible — causing less than 4% of
the jobs to suffer at most 20% slowdown (§5.2.3). De-
creasing it results in even fewer jobs to suffer slowdown
at the expense of lower overall improvements (§5.4.3).
In an adversarial environment, one can avoid altruism al-
together by setting P(Altruism) = 0, which reduces
CARBYNE to DRFE.

3.5 Discussion

Modern clusters must consider constraints such as data
locality and address runtime issues such as stragglers and
task failures. CARBYNE is likely to have minimal impact
on these aspects.

Data Locality Because disk and memory locality sig-
nificantly constrain scheduling choices [14, 23, 28], al-
truistically giving up resources for a data-local task may
adversely affect it in the future. However, delay schedul-
ing [54] informs us that waiting even a small amount of
time can significantly increase data locality. An altruisti-
cally delayed data-local task is likely to find data locality
when it is eventually scheduled.

Straggler Mitigation Techniques such as speculative
execution are typically employed toward the end of a job
to mitigate outliers [13, 15, 23, 56]. CARBYNE is likely
to prioritize speculative tasks during leftover scheduling
because it selects jobs in the SRTF order.

Handling Task Failures Similar to existing solutions,
CARBYNE does not distinguish between new and restarted
tasks. However, in case of task failures, CARBYNE must
recalculate the completion estimation (7}) of the corre-
sponding job Jy.

4 Design Details

In this section, we describe how to enable altruism in
different cluster schedulers, explain how we have imple-
mented CARBYNE in YARN and Tez, and discuss how we
estimate task resource requirements.

4.1 Enabling Altruism in Clusters Schedulers

Enabling altruistic scheduling requires two key compo-
nents. First, a local altruistic resource management mod-
ule in each application must determine how much re-
sources it can yield. Second, the global cluster scheduler
must implement a leftover resource management module
to reallocate the yielded resources from all applications.
RPC mechanisms between the two schedulers may need
to be expanded to propagate the new information.
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Figure 3: Multi-resource scheduling in a data-parallel cluster.
CARBYNE-related changes are shown in orange.

In case of monolithic schedulers such as YARN, indi-
vidual job managers (e.g., Spark/Tez master) implement
the altruism module. The leftover management module
is implemented in the cluster-wide resource manager. For
two-level schedulers such as Mesos [33], Mesos master’s
global allocation module should manage the leftover re-
source management, while the altruistic module can be
implemented at the framework-level such as Spark or
MPI. Similar architectural principles apply for shared-
state schedulers (e.g., Omega [48]) too.

4.2 CARBYNE System

In the following, we describe how we have implemented
the two modules to provide altruism. Figure 3 depicts the
core pieces of typical parallel cluster schedulers today as
well as the core new functionality we add to integrate
CARBYNE, marked in orange. We modified and added
1400 lines of code to implement CARBYNE on YARN.

Primer on Data-Parallel Cluster Scheduling Typi-
cally, today’s data-parallel cluster schedulers divide the
scheduling procedure into three parts.

A node manager (NM) runs on every machine in the
cluster, and it is responsible for running tasks and report-
ing available resources.

For each job, a job manager or Application Master
(AM) runs on some machine in the cluster and holds job
context information regarding various types of tasks to
be executed (pending/in-progress/completed), their de-
pendencies (e.g., DAG) and resource requirements (e.g.,
memory, CPU).

"Please refer to [48] on why YARN is a monolithic, not two-level, scheduler.

A cluster-wide resource manager (RM) receives Ask
requests from various AMs for their pending tasks to
be scheduled and information about the available re-
sources on different machines from NMs through heart-
beats. Based on this information and fairness considera-
tions, it assigns tasks to machines. Typically, an Ask con-
tains information such as preferences for data locality,
the amount of resources required and priorities at which
tasks should be executed. Priority is an useful mechanism
to enable AMs to encode their preferences to execute one
task over the other (e.g., due to ordering in the DAG or
failures).

CARBYNE Implementation We have built CARBYNE as
an extension to the YARN [51] and Tez [2] frameworks.
To implement Pseudocode 1, we made the following
modifications:

1. RPC Mechanism We enhanced the RPC protocol
between YARN RM and Tez AM to propagate the to-
tal resource allocation of a job as computed at RM, ac-
cording to the fairness policy enforced in the cluster
and the current runnable jobs. Also, we extended the
Ask data structure to support Asks of different types
(AskspgppayLT for tasks that it must run in order to not
be slow down due to altruism and Asks o[ TRUISTIC for
tasks that it may run if the job scheduler tries to use all
the allocated resources) as well as other relevant infor-
mation (e.g., task’s demand estimates across multiple di-
mensions, task’s priority, remaining work etc.).

2. Tez Job Manager Given the most recent resource
allocation for a job received from the RM, CARBYNE-
enabled Tez AM altruistically schedules the remain-
ing DAG (i.e., unscheduled tasks and their dependen-
cies). It implements, the IntraJobScheduler proce-
dure from Pseudocode 1 to encode resource requests
(AskspprauLT) for tasks that should be scheduled via
altruism. To do that, CARBYNE does reverse packing us-
ing [29] to identify the minimum set of tasks that should
run as of now while respecting their dependencies, in or-
der to not slow down the expected job completion time.
In addition, it computes Asks o[ TRUISTIC vsing the de-
fault intra-job scheduler in Tez that decides on a breadth-
first ordering for scheduling tasks. The optional set of
tasks are the ones that can be scheduled according to a
greedy scheduler and provides to the RM additional in-
formation in order to reallocate leftover resources. While
we use [29] to do reverse packing and breadth-first or-
dering to compute Asks A| TRUISTIC> a0y other intra-
job scheduling technique (e.g., DAGPS [30,31], Critical
Path Method) can be used as well. AM also includes pri-
orities with each task that serve as “hints” to the RM as
discussed below.

3. YARN’s Resource Manager The scheduling pro-
cess in YARN RM is triggered whenever an NM reports



available resources. We updated YARN RM’s match-
ing logic to project tasks’ resource requests onto avail-
able capacity. First, among the runnable jobs, it com-
putes periodically their DRF allocation and propagates
the corresponding resource allocation on the next heart-
beat response to every AM. (InterJobScheduler pro-
cedure from Pseudocode 1). Second, it schedules tasks
requests from jobs Askspppayr T Using similar heuris-
tics as in Tetris [29] to do packing and reduce job com-
pletion time. In addition, we encode the priorities of the
tasks into these heuristics in a way similar to DAGPS
[30, 31] to account for tasks dependencies in the same
DAG’s job as instructed by the Tez Job Manager. Pack-
ing resource requests from AskspprayLT according to
the job AM-hinted task priorities enables the RM sched-
uler to enforce the altruistic schedule computed by each
job AM while improving the cluster utilization. If no
more AskspERAULT can be satisfied, the RM scheduler
satisfies ASks A| TRUISTIC resource requests from jobs
sorted ascending based on the amount of remaining work
(emulating SRTF), until no more requests can be satisfied
during this scheduling cycle (LeftOverScheduler pro-
cedure from Pseudocode 1). This approach prefers effi-
ciency as a secondary objective over JCTs; however, their
order can be reversed. For example, the RM scheduler
can pack resource requests from Asks A1 TRUISTIC and
satisfies AskspEpAULT based on the amount of remain-
ing work.

4.3 Demand Estimation

CARBYNE relies on estimates of tasks’ resource demands
—across CPU, memory, disk, and the network — and their
durations to make scheduling decisions. Since modern
datacenters have zero or small over-subscription factors
[3,49], CARBYNE considers only access link bandwidths
between a machine and its ToR switch.®

To estimate tasks’ demands and durations, CARBYNE
leverages well-established techniques such as using his-
tory of prior runs for recurring jobs [11,24,29] and as-
suming tasks from the same stage to have similar re-
source requirements [14,27,44]. We note that requiring
manual annotation is also possible, and there are some
promising efforts to infer task requirements from pro-
gram analysis [32]; CARBYNE currently does not use such
techniques. While CARBYNE performs the best with accu-
rate estimations, we have found that using the aforemen-
tioned techniques work well in practice (§5.4.2).

5 Evaluation

‘We evaluated CARBYNE on a 100-machine cluster [6] us-
ing publicly available benchmarks — TPC-DS, TPC-H,
and BigBench — as well as Hive traces collected from
large production clusters at Microsoft and Facebook.

8For oversubscribed networks with well-defined bottlenecks (e.g., host-toToR
links), one may consider bandwidth demands on the oversubscribed links instead.

To understand performance at a larger scale, we used a
trace-driven simulator to replay task logs from the same
traces. Our key findings are:

* CARBYNE can closely approximate DRF, Tetris, and
SJF in terms of fairness, efficiency, and performance,
respectively, in both offline and online scenarios
(85.2). Moreover, it provides 1.26 x better efficiency
and 1.59x lower average completion time than DRF.

* CARBYNE provides similar benefits in large-scale
simulations, even for simple MapReduce jobs (§5.3).

* Sensitivity analysis show that CARBYNE performs
even better with resource contention, and it is robust
to misestimations in resource requirements and when
jobs are not always altruistic (§5.4).

In the following, unless otherwise explicitly men-
tioned, we refer to CARBYNE as our implementation atop
YARN and TEZ as described in Section 4 using Tetris as
an intra-job scheduler (other than Section 5.5) and DRF
for fairness.

5.1 Experimental Setup

Workloads Our workloads consist of mix of jobs from
public benchmarks — TPC-DS [7], TPC-H [8], Big-
Bench [4], and from Microsoft and Facebook produc-
tion traces collected from clusters with thousands of ma-
chines. Our experimental methodology is adapted from
and similar to prior work [30,31]. In each experiment
run, the jobs are randomly chosen from one of the cor-
responding benchmark and follows a Poisson arrival dis-
tribution with average inter-arrival time of 20 seconds.
Each job lasts from few minutes to tens of minutes, and
we generate corresponding input sizes from GBs to hun-
dreds of GBs. Unless otherwise noted, each experiment
has 250 jobs. Microsoft workload has 30000 job DAGs
with millions of tasks (§2.2). Facebook workload has
7000 jobs and 650,000 tasks spanning six hours, and
jobs use the actual arrival times from the trace. Each ex-
periment is run three times, and we present the median.

Cluster Our experiments use 100 bare-metal servers.
Each machine has 20 cores, 128 GB of memory, 128 GB
SSD, a 10 Gbps NIC and runs CentOS 7. Meaning, the
cluster can run up to 2000 tasks in parallel. The network
has a congestion-free core.

Simulator To run CARBYNE at a larger scale and to
gain more insights into CARBYNE’s performance, we
built a simulator that replays job traces. The simulator
mimics various aspects of the logs, handling jobs with
different arrival times and dependencies as well as mul-
tiple fairness and scheduling schemes.

Compared Scheduler Baselines We compare CAR-
BYNE primarily against the following approaches:
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Figure 4: [Cluster] CARBYNE’s performance against the best schemes in fairness (DRF), improvement in average JCT (SJF), and
achieving cluster efficiency (Tetris) in the offline case as shown in Figure 1. CARBYNE approaches the best in each category and
outperforms the rest. Higher is better in (a), while the opposite is true in (b) and (c).

1. DRF: YARN’s implementation of the DRF algorithm
[27] for inter-job scheduling along with the default
intra-job scheduler in Tez that decides on a breadth-
first ordering for scheduling tasks;

2. Tetris: Uses breadth-first-ordering for intra-job
scheduling and Tetris [29] (with its fairness knob,
f — 0) for inter-job scheduling;

3. SJF: A shortest-job-first scheduler that uses Critical
Path Method (CPM) to determine job duration and
schedules job in the shortest-first order. We use SJF
primarily as an upper-bound of CARBYNE’s improve-
ment in average job completion time.

Metrics Our primary metric to quantify performance
is the improvement in the average JCT, computed as:

Duration of an Approach

Factor of Improvement = -
Duration of CARBYNE

Factor of improvement greater than 1 means CARBYNE is
performing better, and vice versa.

Additionally, we use makespan, i.e., when all jobs in a
workload completed, to measure efficiency.

Finally, to quantify fairness, we compute Jain’s fair-
ness index [37] on 60 seconds time window intervals,
and we plot the average, minimum, and maximum val-
ues across all intervals until the workload completes.

5.2 CarByYNE in Testbed Experiments

In this section, we compare CARBYNE to the state-of-the-
art solutions across multiple benchmarks and metrics,
evaluate its impact on workloads as a whole and on in-
dividual jobs, dissect the sources of improvements, and
show that CARBYNE has small amortized overheads.

5.2.1 Performance vs. Efficiency vs. Fairness

The Offline Case Figure 4 depicts fairness, the aver-
age JCT, and cluster efficiency in our cluster experiments
on the TPC-DS workload in the offline case.

We observe that DRF is the most fair approach, with a
fairness index of 0.86 on average. However, CARBYNE is

only 0.05 units away. In comparison, Tetris is off by 0.12
units and SJF by 0.22. CARBYNE can be unfair on small
time intervals due to leftover reallocation, during which
jobs can get more or less than their fair share. However,
on longer time intervals (60 seconds in our experiments),
it is closest to DRF because of its long-term approach
toward fairness.

The average JCT is improved the most by SJF, and
CARBYNE provides only 1.06x worse average JCT. In
comparison, Tetris and DRF are off by 1.46x and 1.59 %
on average, respectively. Although CARBYNE performs
SRTF during leftover reallocation, it is slightly worse
than SJF because it attempts not to delay any job beyond
its fair-share-calculated completion time.

Finally, Tetris provides the highest cluster efficiency
(lowest makespan) by efficiently packing tasks across
jobs, and CARBYNE is the closest scheme, which is only
1.03x worse than Tetris. Although CARBYNE is also
packing tasks, it favors tasks from altruistic jobs instead
of treating all runnable tasks equally. In comparison,
DRF and SJF are off by 1.26 x and 1.43 %, respectively.

The Online Case Next, we focus on the case when
jobs arrive over time (Section 5.1 has details on arrival
process). Figure 5 shows that even in the online case,
CARBYNE can closely match DRF (0.06 units worse),
SJF (1.2x worse), and Tetris (1.07x worse) in fairness,
performance, and efficiency, respectively — although the
margins are slightly larger than that in the offline case.

Next, we investigate the root causes behind CARBYNE
performing worse in the online case and whether they
match our hypotheses in Section 3.4.

5.2.2 JCT Improvements Across Entire Workloads

While CARBYNE performs well for different metrics, the
most important metric from a user’s perspective is the
average JCT. To better understand CARBYNE’s impact on
JCT, we compare it against popular alternatives: DRF
and Tetris (§5.1). Note that we do not include SJF from
hereon because it performs the worst both in terms of ef-
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Figure 5: [Cluster] CARBYNE’s performance against the best schemes in achieving fairness (DRF), improvement in average JCT
(SJF), and cluster efficiency (Tetris) in the online case. CARBYNE approaches the best in each category and outperforms the rest.

. 1 25th percentile | 50th percentile

§ 0.8 Workload | DRF  Tetris | DRF  Tetris

T 0.6 —DRF TPC-DS 1.15 1.12 | 1.36 1.32

£ o4 — Tetris TPC-H 11 114 | 133 129

§ 0.2 Carbyne BigBench | 1.13 1.10 | 1.41 1.35

0 75th percentile | 95th percentile

0 200 400 600 800 1000 1200 Workload | DRF  Tetris | DRF  Tetris

Job Completion Time (Seconds) TPC-DS 1.55 1.47 1.88 1.75

. . . ) . TPC-H 1.62 1.44 | 1.96 1.71
Figure 6: [Cluster] CDF of job completion times using differ- BigBench 157 152 | 185 182

ent approaches on TPC-DS workload.

Table 3: [Cluster] Factors of improvement across various

. . . . kloads w.r.t. DRF and Tetris.
ficiency and fairness, while only marginally outperform- workloads wit and fetns

ing CARBYNE in performance. 1

Figure 6 shows the distributions of job completion
times of the compared approaches for the TPC-DS work-
load. Only two highest percentiles are worse off by at
most 1.1x than Tetris using CARBYNE (not visible in Fig-
ure 6). Table 3 shows the corresponding improvement

factors for multiple workloads. 0.6 1 14 1.8 2.2
Factor of Improvement

—DRF

—Tetris

Fraction of Jobs

CARBYNE vs. DRF For TPC-DS, CARBYNE speeds up
jobs by 1.36x on average and 1.88x at the 95th per- Figure 7: [Cluster] CDF of factors of improvement of individ-
centile over DRF. Improvement factors are about the ual jobs using CARBYNE w.r.t. different approaches.

same for TPC-H and BigBench workloads. However,
corresponding 75th and 95th percentile improvements
were up to 1.62x and 1.96 x for TPC-H. These gains are
mostly due to the presence of a larger fraction of shorter
jobs in the TPC-H workload, which benefit more due to
CARBYNE’s leftover allocation procedure.

We observe that for more than 84% of the jobs, CAR-
BYNE performs significantly better than the alternatives.
Only 16% of the jobs slow down — by at most 0.62x —
using CARBYNE w.r.t. different approaches. No more than

. . 4% of the jobs slow down more than 0.8 x.
CARBYNE vs. Tetris CARBYNE’S improvements are

similar against Tetris. Tetris ignores jobs dependencies
and strives to pack, looking only at the current set of
runnable tasks. In contrast, CARBYNE packs critical tasks
during the leftover allocation.

Dissecting a Job’s Execution To better understand
how CARBYNE works in practice, we snapshot the exe-
cution of the same job from one of our TPC-DS cluster
runs, with and without CARBYNE. Figure 8 presents the
number of running tasks during the job execution when

5.2.3 Sources of Improvements running CARBYNE and DRF. In both cases, the jobs were

We have shown that workloads experience aggregate im- scheduled almost at the same time, approximately 300
provements using CARBYNE. A natural question is then to seconds after our experiment has started.

ask: where do these gains come from? To better answer The key takeaways are the following. First, in DRF,
that question, Figure 7 presents the factors of improve- the breadth-first intra-job scheduler is greedily schedul-

ments of individual jobs. ing tasks whenever it has containers allocated (either due
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Figure 8: [Cluster] Snapshot of the execution of a TPC-DS
query. The job switches from being altruistic in the earlier part
of execution to receiving altruisms in the latter part, leading to
faster completion. The gap between light and dark orange lines
represent the tasks received from leftover allocation.

to fairness or work conservation mechanisms). However,
being greedy does not necessarily help. Between times
570 and 940, its progress is slowed down mostly due to
high contention in the cluster. Second, CARBYNE’s direc-
tive of being altruistic helps in the long run. We observe
that even when resources are available for allocation (in-
terval between 300 and 550), its allocation is smoother
than DRF (dark orange line). Instead of up to 11 tasks
to be allocated, it decides to schedule up to 5 while giv-
ing up the remaining resources to the leftover. However,
note that it does receive back some of the leftover re-
sources (the gap between the light and dark orange lines
in Figure 8). Finally, as the job nears completion, CAR-
BYNE provides more leftover resources even when there
is high contention in the cluster. In the interval between
570 seconds to 850 seconds, it is receiving significantly
larger share than DRF by relying on other jobs’ altruisms
(i.e., the gap between the dark and light orange lines).

Which Jobs Slow Down? We observed that typically
jobs with more work (many tasks and large resource de-
mands per task) are more prone to losses, especially if
they contend with many small jobs. One such example is
a job that was slowed down by 0.64 x w.r.t DRF; it was
contending with more than 40 jobs during its lifetime, all
of them had less work to do, and hence, got favored by
our leftover resource allocation policy.

However, unlike SJF or SRTF, CARBYNE is not inher-
ently biased towards improving shorter jobs at the disad-
vantage of larger jobs. In fact, half of the jobs that slowed
down more than 0.8 % (i.e., 2% of all jobs) were small.

We also attempted to bin/categorize the jobs based on
characteristics such as the number of tasks, total amount
of work, and DAG depth; however, but we did not ob-
serve any correlations w.r.t changes in JCT. Instead, we
found that whether and how much a job may suffer is
a function of the entire cluster’s conditions during the
job’s runtime: available resources, rates of jobs arriv-
ing/finishing, their amount of remaining work, and the
level of altruism. For better understand their impacts, we

perform extensive simulations under multiple parameter
choices in Section 5.4.

5.2.4 Scheduling Overheads

Recall from Section 4.2 that CARBYNE expands the Tez
AM with an additional altruistic scheduling logic, which
is triggered whenever the job’s share allocation is chang-
ing. We find that CARBYNE-related changes inflate the
decision logic by no more than 10 milliseconds, with a
negligible increase in memory usage of the AM.

CARBYNE’s logic to match tasks to machines — RM’s
matching logic happens on every heartbeat from NM to
RM - is more complex than that in YARN. To quantify its
overhead we compute the average time to process heart-
beats from NM to RM for different number of pending
tasks. We find that for 10000 pending tasks, CARBYNE’S
additional overhead is 2 milliseconds compared to Tetris
(18 ms), and the overhead is up to 4 milliseconds for
50000 pending tasks. CARBYNE also extends the Ask re-
quests from AM for multiple resource requirements and
encapsulates Asks for the altruistic decisions it makes.
However, because Asks are cumulative, we found that
the additional overhead is negligible.

5.3 Performance in Trace-Driven Simulations

To better understand how CARBYNE performs under var-
ious parameter choices, we simulate altruistic schedul-
ing using TPC-DS, TPC-H, and BigBench benchmarks
as well as Microsoft and Facebook traces.

5.3.1 Benchmarks’ Performance in Simulations

To evaluate the fidelity of our simulator, first we replayed
the TPC-DS trace logs from cluster experiments in simu-
lation. Table 4 shows the factors of improvement in JCT
for TPC-DS workload in simulation that are consistent
with that from our cluster experiments (Table 3). Similar
results are obtained for the other workloads.

CARBYNE improves over the alternatives by up to
1.59x on average and 7.67 % at the 95th percentile. Note
that in simulation CARBYNE’s improvements are slightly
better than that in practice at higher percentiles. This is
mainly due to natural factors such as failures, stragglers,
and other delays that are not captured by our simulator.

5.3.2 Large-Scale Simulation on Production Trace

Table 4 also shows improvements for a 3000 (10000)-
machine Facebook (Microsoft) production trace. CAR-
BYNE outperforms others by up to 2.85x (8.88x) and
2.23x (7.86x) on average (95th percentile).

Note that the gains in production traces are signifi-
cantly larger than that for other benchmarks. The primary
reason is the increased opportunities for temporal rear-
rangements, both due to more jobs and more machines.
In the Facebook trace, all the jobs are MapReduce jobs,
and a significant fraction are Map-only jobs. Because



25th percentile | 50th percentile
Workload | DRF  Tetris | DRF  Tetris
TPC-DS 1.17 1.12 1.59 1.47
Facebook 1.24 1.24 2.75 2.85
Microsoft 1.16 1.12 2.23 1.74

75th percentile | 95th percentile
Workload | DRF  Tetris | DRF  Tetris
TPC-DS 2.73 2.23 7.67 6.17
Facebook 4.31 4.31 8.77 8.88
Microsoft 3.67 3.28 7.86 7.05

Table 4: [Simulation] Factors of improvement across various
workloads w.r.t. DRF and Tetris.
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Figure 9: [Simulation] CARBYNE improvements over the al-
ternatives for different cluster loads.

these jobs only have one or two stages, tasks are less con-
strained. On the other hand, jobs in Microsoft trace are
more complex DAGs with barriers which enables many
opportunities for altruism. Furthermore, many jobs are
large and have tens to thousands of tasks that can run in
parallel. Together, they open up many opportunities for
CARBYNE to use the leftover resources.

5.4 Sensitivity Analysis
5.4.1 Impact of Contention

In order to examine CARBYNE performance at different
levels of contention, we vary load by changing the num-
ber of servers while keeping the workload constant. For
example, half as many servers leads to twice as much
load on the cluster. Figure 9 shows our results. At 1x
cluster load, CARBYNE improves over alternatives by up
to 1.57x on average. However, as we increase resource
contention, CARBYNE'’s gains keep increasing. For exam-
ple, at 2x the load, its gains are between 1.76x and
1.91x on average. This is expected because the more the
contention, the better is CARBYNE in carefully rearrang-
ing tasks over time. The performance gap increases even
more at 4x load. However, at 6 X, CARBYNE’s improve-
ments are almost the same as that at 4 x load; this is be-
cause the cluster became saturated, without much room
for leftover allocations.

5.4.2 TImpact of Misestimations

CARBYNE assumes that we can accurately estimate tasks’
resource demands and durations. However, accurate es-

Factor of Improvement
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Figure 10: [Simulation] CARBYNE’s improvements in terms
of average JCT in the presence of misestimations in tasks’ re-
source demands for different intra-job schedulers.
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Figure 11: [Simulation] Benefits over the alternatives increase
as CARBYNE makes altruistic choices more often. By default,
CARBYNE uses 1; i.e., it is altruistic whenever possible.

timations can be challenging in practice, and misestima-
tions are inevitable. To understand the impact of mises-
timations on CARBYNE, we introduce X % errors in our
estimated demands and durations. Specifically, we select
X € [-50,50], and decrease/increase task resource de-
mands by taskpewReq = (1 4+ X/100) * task,
task durations are changed accordingly.

Figure 10 shows CARBYNE’s performance for vary-
ing degrees of estimation errors. It performs consistently
better and becomes comparable when we underestimate,
because underestimations encourage higher parallelism
(due to false sense of abundance), disregarding altruistic
scheduling. We also selectively introduced errors only to
some of the tasks (not shown) with similar results: CAR-
BYNE outperformed the rest despite misestimations.

origReq’

5.4.3 Impact of Altruism Levels

The core idea behind CARBYNE is that jobs should altru-
istically give up resources that do not improve their JCT.
In this experiment, we study how different levels of al-
truism (P(Altruism)) impact CARBYNE’s benefits.

We observe in Figure 11 that increasing levels of altru-
ism increases CARBYNE’s advantage over the alternatives
— CARBYNE outperforms them by up to 1.24 X when jobs
are altruistic half the time (P(Altruism) = 0.5) and up
to 1.56x at P(Altruism) = 1. Last but not the least, at
P(Altruism) = 0, CARBYNE is comparable to its alter-
natives; meaning, despite jobs being aggressive in their
scheduling, our mechanism is still robust.
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Figure 12: [Simulation] CDF of factors of improvement of in-
dividual jobs using CARBYNE + Tetris [29] and CARBYNE +
DAGPS [30,31] w.r.t. DRF. Benefits increase when CARBYNE
uses a better DAG scheduler.

5.5 Impact of a Better DAG Scheduler

We also performed simulations where CARBYNE uses
DAGPS [30, 31], a more sophisticated intra-job sched-
uler that considers the entire DAG and its dependencies
between stages, instead of Tetris. Figure 12 shows that
DAGPS can further increase CARBYNE’s performance.
We observe that for at least 50% of the jobs, CARBYNE
+ DAGPS performs better than CARBYNE + Tetris and
factors of improvement increase from 2.36x to 3.41x
for at least 25% of the jobs w.r.t. DRF. Similar observa-
tions hold when comparing with Tetris instead of DRF
as the baseline. The additional gains are mainly due to
DAGPS’s ability to extract more leftover resources with-
out affecting individual DAG completion times.

5.6 Comparison To Multi-Objective Schedulers

As mentioned in Section 1, prior solutions have also at-
tempted to simultaneously meet multiple objectives. For
example, Tetris [29] combines heuristics that improve
cluster efficiency with those that lower average job com-
pletion time, and provides a knob (f) to trade-off fairness
for performance. So far, we have shown CARBYNE’s ben-
efits against Tetris optimized for performance (f — 0).
Now we compare CARBYNE with Tetris offering strict
fairness (f — 1); we refer to this as Tetrisg, ;.. We found
CARBYNE to be more fair than TetrisFair, with the aver-
age Jain’s fairness index of 0.89 instead of 0.84. This is
due to CARBYNE’s ability to adhere strictly to fair alloca-
tions than Tetrisg,;,’s fairness knob. CARBYNE also im-
proves the average job completion time by up to 1.22x
and 2.9x at the 95th percentile. Although CARBYNE’s
altruistic behavior to delay tasks in time play a signifi-
cant role in getting these benefits, Tetrisg,;,’s strategy to
adopt strict fairness also limits the number of running
jobs considered for efficient scheduling, which further
hurts job completion times. Finally, these gains have di-
rect implications on cluster efficiency, where CARBYNE
outperforms Tetrisg,;. by 1.06x.

6 Related Work

Inter- and Intra-Job Schedulers Traditional cluster
resource managers, e.g., Mesos [33] and YARN [51],
employ inter-job schedulers [15, 21, 26, 27, 29, 35, 56]
to optimize different objectives. For example, DRF [27]
for fairness, shortest-job-first (SJF) [26] for minimiz-
ing the average JCT, and Tetris [29] for improving effi-
ciency/utilization. More importantly, all of them focus on
quick convergence to their preferred metric. Given some
share of the resources, intra-job/task schedulers within
each job optimize their own completion times. Examples
include schedulers that process stages in a breadth-first
order [2,55], ones that follow the critical path [39, 40],
and packers [29]. Again, all these schedulers are greedy

in that they use up all resources allocated to them.
CARBYNE differs from all of them in at least two ways.

First, CARBYNE takes an altruistic approach to maximize
resources that can be redistributed. Second, by better re-
distributing the leftover resources, CARBYNE can simul-
taneously improve multiple objectives.

Altruistic Schedulers Delay scheduling for data local-
ity [54] and coflow scheduling for network scheduling
[20,21] come the closest to CARBYNE in the high-level
principle of altruism. The former waits to get better data
locality, while the latter slows individual network flows
down so that they all finish together. CARBYNE takes the
next step by applying altruistic scheduling in the context
of multi-resource scheduling. We leverage altruism to si-
multaneously improve multiple contrasting objectives.

Leftover Redistribution Hierarchical schedulers in
both networking [50] and cluster computing [16] face
the same problem as CARBYNE in terms of how to redis-
tribute leftover resources. However, in those cases, en-
tities do not voluntarily yield resources; they only yield
resources after saturating their needs. Furthermore, they
redistribute by fairly dividing resources among siblings
in the hierarchy, whereas CARBYNE takes advantage of
leftover resources to improve the average JCT and re-
source utilization without violating fairness.

DAG and Workflow Schedulers When the entire
DAG with the completion times of all stages are known,
the Critical Path Method (CPM) [39, 40] is one of the
best known algorithms to minimize end-to-end comple-
tion times. However, it can be applied only as an intra-
job scheduler. Many dynamic heuristics exist for online
intra-DAG scheduling with varying results [53]. How-
ever, for multiple DAGS, i.e., for inter-DAG schedul-
ing, existing solutions rely on either fair or shortest-first
scheduling disciplines. In contrast, CARBYNE combines
packing, ordering, and fair allocation.

7 Conclusion

Given the tradeoffs between fairness, performance, and
efficiency, modern cluster schedulers [9, 10, 17, 33, 48,



51,52] focus on performance isolation through instanta-
neous fairness and relegate performance and efficiency
as best-effort, secondary goals. However, users perceive
isolation only after jobs complete. As long as job com-
pletion times do not change, we can take a long-term,
altruistic view instead of an instantaneous one. Using
CARBYNE, jobs yield fractions of their resources with-
out inflating their completion times. By combining and
rescheduling these leftover resources from collective al-
truisms, CARBYNE significantly improves application-
level performance and cluster utilization while provid-
ing the same level of performance isolation as mod-
ern schedulers. Deployments and large-scale simulations
on benchmarks and production traces show that CAR-
BYNE closely approximates DRF in terms of performance
isolation, while providing 1.26x better efficiency and
1.59x lower average completion time.
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