
 1

Twitter Heron: Stream Processing at Scale

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,

Sailesh Mittal, Jignesh M. Patel*,1, Karthik Ramasamy, Siddarth Taneja

@sanjeevrk, @challenger_nik, @Louis_Fumaosong, @vikkyrk, @cckellogg,
@saileshmittal, @pateljm, @karthikz, @staneja

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
Storm has long served as the main platform for real-time analytics
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the
diversity and the number of use cases, many limitations of Storm
have become apparent. We need a system that scales better, has
better debug-ability, has better performance, and is easier to
manage – all while working in a shared cluster infrastructure. We
considered various alternatives to meet these needs, and in the end
concluded that we needed to build a new real-time stream data
processing system. This paper presents the design and
implementation of this new system, called Heron. Heron is now
the de facto stream data processing engine inside Twitter, and in
this paper we also share our experiences from running Heron in
production. In this paper, we also provide empirical evidence
demonstrating the efficiency and scalability of Heron.

ACM Classification

H.2.4 [Information Systems]: Database Management—systems

Keywords

Stream data processing systems; real-time data processing.

1. INTRODUCTION
Twitter, like many other organizations, relies heavily on real-time
streaming. For example, real-time streaming is used to compute
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many
years, Storm [16, 20] was used as the real-time streaming engine
inside Twitter. But, using Storm at our current scale was
becoming increasingly challenging due to issues related to
scalability, debug-ability, manageability, and efficient sharing of
cluster resources with other data services.

A big challenge when working with Storm in production is the issue
of debug-ability. When a topology misbehaves – which could be for
a variety of reasons including load changes, misbehaving user code,
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from
multiple components of a topology is bundled into one operating

system process, which makes debugging very challenging. Thus, we
needed a cleaner mapping from the logical units of computation to
each physical process. The importance of such clean mapping for
debug-ability is really crucial when responding to pager alerts for a
failing topology, especially if it is a topology that is critical to the
underlying business model.

In addition, Storm needs dedicated cluster resources, which requires
special hardware allocation to run Storm topologies. This approach
leads to inefficiencies in using precious cluster resources, and also
limits the ability to scale on demand. We needed the ability to work
in a more flexible way with popular cluster scheduling software that
allows sharing the cluster resources across different types of data
processing systems (and not just a stream processing system).
Internally at Twitter, this meant working with Aurora [1], as that is
the dominant cluster management system in use.

With Storm, provisioning a new production topology requires
manual isolation of machines, and conversely, when a topology is
no longer needed, the machines allocated to serve that topology
now have to be decommissioned. Managing machine provisioning
in this way is cumbersome. Furthermore, we also wanted to be far
more efficient than the Storm system in production, simply
because at Twitter’s scale, any improvement in performance
translates into significant reduction in infrastructure costs and also
significant improvements in the productivity of our end users.

We wanted to meet all the goals outlined above without forcing a
rewrite of the large number of applications that have already been
written for Storm; i.e. compatibility with the Storm and
Summingbird APIs was essential. (Summingbird [8], which
provides a Scala-idiomatic way for programmers to express their
computation and constraints, generates many of the Storm
topologies that are run in production.)1

After examining various options, we concluded that we needed to
design a new stream processing system to meet the design goals
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to
migrate to Heron. All production topologies inside Twitter now
run on Heron. Besides providing us significant performance
improvements and lower resource consumption over Storm,
Heron also has big advantages in terms of debug-ability,
scalability, and manageability.

In this paper, we present the design of Heron, and also present
results from an empirical evaluation of Heron. We begin by
briefly describing related work in the next section. Then, in
Section 3, we describe Storm and motivate the need for Heron.

1 Work done while consulting for Twitter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2723374

239

 2

Section 4 describes alternatives that we considered to address the
problems described above, and Section 5 presents the design of
Heron. Section 6 describes the tools around Heron that we use in
production, and describes the current status of Heron inside
Twitter. Results from an empirical evaluation comparing Storm
and Heron are presented in Section 7. Finally, Section 8 contains
our concluding remarks and points to some directions for future
work.

2. Related Work
The interest in stream data processing systems includes a flurry of
initial work about a decade ago (e.g. [6, 7, 10]). The need for
highly-scalable stream processing systems has lead to the creation
of a number of recent systems, including [2, 3, 5, 9, 15, 17, 18].
Stream processing has also been integrated with traditional
database products (e.g. [4, 12, 19]), highlighting the need for
stream processing in the broader enterprise ecosystem.

For our needs at Twitter, we needed a stream processing platform
that was open-source, high-performance, scalable, and was
compatible with the current Storm API. We also needed the
platform to work on a shared infrastructure. These requirements
limited the options discussed above. We did consider alternatives
that came close to fitting our needs (see Section 4), but in the end
concluded that we needed to build Heron.

3. Motivation for Heron
Storm has served the real-time analytics needs at Twitter for the
past several years. Based on our operational experience at the
current Twitter-scale, we identified several limitations with Storm
that are highlighted in the following sections. These limitations
motivated us to develop Heron.

3.1 Storm Background
As described in [20], a Storm topology is directed graph of spouts
and bolts. Spouts are sources of input data (e.g. a stream of
Tweets), and bolts are an abstraction to represent computation on
the stream. Spouts often pull data from queues, such as Kafka [14]
and Kestrel [13], and generate a stream of tuples, which is then
fed into a network of bolts that carry out the required
computation. For example, a topology that counts the number of
active users in real-time (RTAC) is shown in Figure 1.

Spouts and bolts are run as tasks, and multiple such tasks are
grouped into an executor. In turn, multiple executors are grouped
into a worker, and each worker runs as a JVM process (as shown
in Figure 2). A single host may run multiple worker processes, but
each of them could belong to different topologies.

3.2 Storm Worker Architecture: Limitations
As described in [20] and briefly described above, a Storm worker
has a fairly complex design. Several instances of worker processes
are scheduled by the operating system in a host. Inside the JVM
process, each executor is mapped to two threads. In turn, these

threads are scheduled using a preemptive and priority-based
scheduling algorithm by the JVM. Since each thread has to run
several tasks, the executor implements another scheduling
algorithm to invoke the appropriate task, based on the incoming
data. Such multiple levels of scheduling and their complex
interaction often leads to uncertainty about when the tasks are
being scheduled.

Furthermore, each worker can run disparate tasks. For example, a
Kafka spout, a bolt that joins the incoming tuples with a Twitter
internal service, and another bolt writing output to a key-value
store might be running in the same JVM. In such scenarios, it is
difficult to reason about the behavior and the performance of a
particular task, since it is not possible to isolate its resource usage.
As a result, the favored troubleshooting mechanism is to restart
the topology. After restart, it is perfectly possible that the
misbehaving task could be scheduled with some other task(s),
thereby making it hard to track down the root cause of the original
problem.

Since logs from multiple tasks are written into a single file, it is
hard to identify any errors or exceptions that are associated with a
particular task. The situation gets worse quickly if some tasks log
a larger amount of information compared to other tasks.
Furthermore, an unhandled exception in a single task takes down
the entire worker process, thereby killing other (perfectly fine)
running tasks. Thus, errors in one part of the topology can
indirectly impact the performance of other parts of the topology,
leading to high variance in the overall performance. In addition,
disparate tasks make garbage collection related-issues extremely
hard to track down in practice.

For resource allocation purposes, Storm assumes that every
worker is homogenous. This architectural assumption results in
inefficient utilization of allocated resources, and often results in
over-provisioning. For example, consider scheduling 3 spouts and
1 bolt on 2 workers. Assuming that the bolt and the spout tasks
each need 10GB and 5GB of memory respectively, this topology
needs to reserve a total of 15GB memory per worker since one of
the worker has to run a bolt and a spout task. This allocation
policy leads to a total of 30GB of memory for the topology, while
only 25GB of memory is actually required; thus, wasting 5GB of
memory resource. This problem gets worse with increasing
number of diverse components being packed into a worker, and
this situation happens frequently when generating (complex)
topologies using higher-level abstractions like Summingbird [8].

Figure 1: The RTAC Topology

Figure 2: Storm Worker

240

 3

As a consequence of allocating large memory to the workers, the
use of common profiling tools, such as jstack or heap dump,
becomes very cumbersome. When a worker is executing a heap
dump, it misses sending heartbeats signals (which are needed to
keep the worker alive), leading the Storm supervisor to kill it,
thereby preventing the heap dump. Debugging problems becomes
quite challenging as a result of this behavior.

A natural question is whether we could have re-architected Storm
to allow it to run one task per worker. We considered this option,
but discovered that approach could lead to big inefficiency in
resource usage, and also limit the degree of parallelism that we
could achieve. Such a deployment would result in a large number
of workers per topology. Due to the homogeneity assumption
across workers, there could be significant overprovisioning of
resources. Under this model, we would have to reserve the
following amount of memory for each worker:

௉௔௥௔௟௟௘௟௜௦௠ሻݐ݊݁݊݋݌݉݋ܥሺܯܷܵ ൈ ܺܣܯ ቀݐ݊݁݊݋݌݉݋ܥோ௘௦௢௨௥௖௘ೆೞೌ೒೐
ቁ

This number may be far larger than the optimal/ideal utilization.
Referring to the aforementioned example with 3 spouts and 1 bolt,
each worker needs around 10GB of memory, requiring a total of
40GB of memory, compared to the optimal memory size of 25GB.
Finally, as the degree of parallelism for each component
(bolts/tasks) increases, every worker tends to be connected to
every other worker, which can run into problems with not having
enough number of ports in each worker for communication, and
thereby reduces the scalability options.

Storm workers use several threads and queues to move data
between tasks and workers (see [20] for more details). A global
receive thread in each worker process is responsible for getting
data from workers “upstream”, and a global send thread is in
charge of transmitting data to the workers “downstream”. In
addition to these global threads, each executor consists of a user
logic thread that runs the topology code, and a local send thread
that communicates the output data from the user logic thread to
the global sender thread. Hence in Storm, each tuple has to pass
through four threads from the point of entry to the point of exit
inside the worker process2. This design leads to significant
overhead and queue contention issues.

3.3 Issues with the Storm Nimbus
The Storm Nimbus [20] performs several functions including
scheduling, monitoring, and distributing JARs. It also serves the
metrics-reporting component for the system, and manages
counters for several topologies. Thus, the Nimbus component is
functionally overloaded, and often becomes an operational
bottleneck for a variety of reasons, as outlined below.

First, the Nimbus scheduler does not support resource reservation
and isolation at a granular level for Storm workers. Consequently,
Storm workers that belong to different topologies running on the
same machine could interfere with each other. This situation can
in turn lead to untraceable performance issues. To mitigate this
problem, we ran production Storm topologies in isolation; i.e.
entire machines are dedicated to a topology. But, this approach
leads to wastage of resources, as it is hard for a topology to fully
use all the hardware resources that are allocated to it (and all the
time). Attempts to address this issue by running Storm on YARN
[22] don’t fully solve the problem.

Second, as mentioned in [20], Storm uses Zookeeper extensively
to manage heartbeats from the workers and the supervisors. This

2 This feature is implemented using fast disruptor queues and 0mq [23].

use of Zookeeper limits the number of workers per topology, and
the total number of topologies in a cluster, as at very large
numbers, Zookeeper becomes the bottleneck. To address this
issue, we had developed an interim design to route the keep-alive
heartbeat traffic to special “heartbeat” daemons that ran in a
separate set of machines. However, this interim design increased
the operational burden, requiring separate monitoring of those
hosts and the heartbeat daemons.

Finally, the Nimbus component is a single point of failure. When
the Nimbus fails, the users are neither able to submit any new
topologies nor kill existing ones. Furthermore, when Nimbus fails,
any existing topology that undergoes failures cannot be
automatically detected and recovered.

3.4 Lack of Backpressure
Storm has no backpressure mechanism. If the receiver component
is unable to handle incoming data/tuples, then the sender simply
drops tuples. This is a fail-fast mechanism, and a simple strategy,
but it has the following disadvantages:

 If acknowledgements are disabled, this mechanism will result
in unbounded tuple drops, making it hard to get visibility
about these drops.

 Work done by upstream components is lost.
 System behavior becomes less predictable.

In extreme scenarios, this design causes the topology to not make
any progress while consuming all its resources.

3.5 Efficiency
In production, there were several instances of unpredictable
performance during topology execution, which then lead to tuple
failures, tuple replays, and execution lag (rate of data arrival
exceeds rate of processing by the topology). The most common
causes for these reduced performance scenarios were:

 Suboptimal replays – A tuple failure anywhere in the tuple
tree leads to failure of the entire tuple tree. This effect is more
pronounced with high fan-out topologies where the topology
is not doing any useful work, but is simply replaying the
tuples.

 Long Garbage Collection cycles – Topologies consuming
large amount of RAM for a worker encounter garbage
collection (GC) cycles greater than a minute, resulting in high
latencies and high tuple failure rates.

 Queue contention – In some cases, there is a lot of contention
at the transfer queues, especially when a worker runs several
executors.

To mitigate the risks associated with these issues, we often had to
overprovision the allocated resources. Such overprovisioning has
obvious negative implications on the infrastructure costs.

For example, a sample three-stage Storm topology (constructed
primarily for this evaluation) requires approximately 600 cores
with an average CPU utilization of 20-30%. To better understand
where the time might be spent in such a topology, a simple Java
program was written to absorb all such tuples and de-serializing
them using Thrift. This step of processing input data consumed
only 25 cores at 90% utilization. This resource consumption is
equivalent to 75 cores at 30% CPU utilization, which is 8X lower
than the 600 cores.

Even in the worst case, assuming that the counting and data
movement overhead is as great as deserialization and reading
from the source, one would expect the topology to use 150 cores.
However, this topology runs on 600 cores, which indicates that

241

 4

with a better architecture/system we have the potential to achieve
significant savings in resources that are consumed when running
Storm topologies.

4. Design Alternatives
Considering the aforementioned issues, we weighed the options of
whether to extend Storm, or to use another existing system, or to
write a new system.

Since the issues discussed in Section 3 are fundamental to Storm,
fixing them in Storm would have required extensive rewrite of the
core components. At a high level, Storm organizes topologies as a
bunch of queues that move data around, and changing this basic
architectural block is hard. Modifying this existing system in such
a fundamental way would have been inflexible, and potentially
required much longer development cycles.

The next option was to consider using another existing open-
source solution, such as Apache Samza [2] or Spark Streaming
[18]. However, there are a number of issues with respect to
making these systems work in its current form at our scale. In
addition, these systems are not compatible with Storm’s API.
Rewriting the existing topologies with a different API would have
been time consuming resulting in a very long migration process.
Also note that there are different libraries that have been
developed on top of the Storm API, such as Summingbird [8], and
if we changed the underlying API of the streaming platform, we
would have to change other components in our stack.

Thus, we concluded that our best option was to rewrite the system
from ground-up, reusing and building on some of the existing
components within Twitter.

5. Heron
In this section, we briefly describe the Heron data model, API,
and the various Heron components.

5.1 Data Model and API
A key design goal for Heron is to maintain compatibility with the
Storm API. Thus, the data model and API for Heron are identical
to that of Storm [20]. Like Storm, Heron runs topologies. A
topology is a directed acyclic graph of spouts and bolts. Like
Storm, spouts generate the input tuples that are fed into the
topology, and bolts do the actual computation.

A Heron topology is equivalent to a logical query plan in a
database system. Such a logical plan is translated into a physical
plan before actual execution. As a part of the topology, a
programmer specifies the number of tasks for each spout and each

bolt (i.e. the degree of parallelism), and how the data is partitioned
as it moves across the spout and the bolt tasks (grouping). The
actual topology, parallelism specification for each component, and
the grouping specification, constitute the physical execution plan
that is executed on the machines.

Finally, Heron’s tuple processing semantics are similar to that of
Storm, and include the following:

 At most once – No tuple is processed more than once,
although some tuples may be dropped, and thus may miss
being analyzed by the topology.

 At least once – Each tuple is guaranteed to be processed at
least once, although some tuples may be processed more than
once, and may contribute to the result of the topology
multiple times.

5.2 Architecture overview
Since the key factors driving the need for Heron are to ease the
task of manageability, improve developer productivity, and
improve the predictability of performance, we had to make careful
decisions about how to architect the different components of the
system considering clean abstractions for various interconnected
modules, and ensuring an architecture that can operate at Twitter’s
scale.

The overall architecture for Heron is shown in Figure 3. Users
employ the Heron (spouts/bolts programming) API to create and
deploy topologies to the Aurora scheduler, using a Heron
command line tool. Aurora [1] is a generic service scheduler that
runs as a framework on top of Mesos [11]. However, our
architecture implements a scheduler abstraction that facilitates
running Heron on other schedulers such as YARN, Mesos, and
ECS (Amazon EC2 Docker Container Service). This design is a
departure from Storm, where Nimbus (which is an integral
component of Storm) was used for scheduling. Since Twitter’s
homegrown Aurora scheduler and other open-source schedulers
(e.g. YARN) have become sophisticated, we made the conscious
choice of working with these schedulers rather than implementing
another one.

Each topology is run as an Aurora job consisting of several
containers, as shown in Figure 4. The first container runs a
process called the Topology Master. The remaining containers
each run a Stream Manager, a Metrics Manager, and a number of
processes called Heron Instances (which are spouts/bolts that run
user logic code). Multiple containers can be launched on a single

Figure 3: Heron Architecture Figure 4: Heron Topology Architecture

242

 5

physical node. These containers are allocated and scheduled by
Aurora based on the resource availability across the nodes in the
cluster. (At Twitter, Aurora maps these containers to Linux
cgroups.) A standby Topology Master can be run for availability.
The metadata for the topology (which includes information about
the user who launched the job, the time of launch, and the
execution details) are kept in Zookeeper.

The Heron Instances are written in Java, as they need to run user
logic code (which is written in Java). There is one JVM per Heron
Instance.

All Heron processes communicate with each other using protocol
buffers (protobufs).

5.3 Topology Master
The Topology Master (TM) is responsible for managing the
topology throughout its existence. It provides a single point of
contact for discovering the status of the topology (and thus is
similar to the Application Master in YARN). Upon startup, the
TM makes itself discoverable by creating an ephemeral node at a
well-known location in Zookeeper. The ephemeral node serves
the following two purposes:

 It prevents multiple TMs from becoming the master for the
same topology, thereby providing different processes of the
topology a consistent view of the entire topology.

 It allows any other process that belongs to the topology to
discover the TM.

The TM also serves as a gateway for the topology metrics through
an endpoint. Note that since the TM is not involved in the data
processing path, it is not a bottleneck.

5.4 Stream Manager
The key function of the Stream Manager (SM) is to manage the
routing of tuples efficiently. Each Heron Instance (HI) connects
to its local SM to send and receive tuples. All the SMs in a
topology connect between themselves to form a O(k2) connection
network, where k is the number of containers/SMs in the physical
plan of the topology. Note that since the number of HIs, n is
generally much larger than k, this design permits a way to scale
the communication overlay network by multiplexing O(n2)
logical channels over O(k2) physical connections. Furthermore,
any tuples routed from one HI to another HI in the same container
is routed using a local short-circuiting mechanism.

5.4.1 Topology Backpressure
Unlike Storm, Heron employs a backpressure mechanism to
dynamically adjust the rate at which data flows through the
topology. This mechanism is important in topologies where
different components can execute at different speeds (and the
speed of processing in each component can change over time).
For example, consider a pipeline of work in which the
later/downstream stages are running slow, or have slowed down
due to data or execution skew. In this case, if the earlier/upstream
stages do not slow down, it will lead to buffers building up long
queues, or result in the system dropping tuples. If tuples are
dropped mid-stream, then there is a potential loss in efficiency as
the computation already incurred for those tuples is wasted. A
backpressure mechanism is needed to slow down the earlier
stages. We considered a few implementation strategies, which we
describe next.

TCP Backpressure: In this strategy, we use the TCP windowing
mechanism to propagate backpressure from the HIs to the other
upstream components. Since the HIs and the SM (in each

container) communicate using TCP sockets, the rate of draining
from the send/receive buffers is equal to the rate of
production/consumption by the local HI. If an HI is executing
slowly, then its receive buffer will start filling up. The SM that is
pushing data to this HI will recognize this situation, as its send
buffer will also fill up. This backpressure mechanism then
propagates to the other SMs and HIs upstream. Note that this
backpressure is only cleared when the original (slow) HI starts
catching up again.

This simple TCP-based backpressure mechanism is easy to
implement. However, this method did not work well in practice
because multiple logical channels (between HIs) are overlaid on
top of the physical connections between SMs. This multiplexing
inadvertently not only causes the upstream HIs to slow down, but
also often causes the downstream HIs (that are on the same
connection) to also slow down. Consequently, any congestion
clears very slowly, causing the entire topology to experience
significant and unduly long-lasting performance degradation.

Spout Backpressure: In this approach, the SMs clamp down their
local spouts to reduce the new data that is injected into the
topology. This approach is used in conjunction with TCP
backpressure between the SMs and the HIs. When an SM realizes
that one or more of its HIs are slowing down, it identifies its local
spouts and stops reading data from them. This mechanism has the
effect of slowing down the spout as the spout’s send buffer that is
used to send tuples to the SM will get filled up, and will
eventually block. The affected SM sends a special start
backpressure message to other SMs requesting them to clamp
down their local spouts. When the other SMs receive this special
message, they oblige by not reading tuples from their local spouts.
Once the slow HI catches up, the local SM sends stop
backpressure messages to other SMs. When the other SMs
receive this special message, they restart consuming data from
their local spouts again.

This approach directly clamps down the most upstream
component (spouts). This method may be less than optimal
because we may unnecessarily clamp down a spout, when simply
slowing down an immediate upstream producer is all that was
actually necessary. The other potential disadvantage of this
approach is the additional message passing overhead. However,
the advantage of this approach is that the reaction time to flow
rate changes is small, irrespective of the depth of the topology.

Stage-by-Stage Backpressure: A topology can be viewed as
consisting of multiple stages. In this approach, we gradually
propagate the backpressure stage-by-stage until it reaches the
spouts (which represent the 1st stage in any topology). As in the
spout backpressure method, this strategy is used in conjunction
with the TCP backpressure mechanism between the SMs and the
HIs, and differs in the backpressure control messages that are
exchanged between the SMs.

5.4.2 Implementation
In Heron we have implemented the spout backpressure approach,
as it is simpler to implement. This mechanism works well in
practice, and also aids debug-ability as one can see when skew-
related events happen, and which component was the root cause
of the backpressure trigger.

Every socket channel is associated with an application-level
buffer that is bounded in size by both a high water mark and a low
water mark. Backpressure is triggered when the buffer size
reaches the high water mark, and remains in effect until the buffer

243

 6

size goes below the low water mark. The rationale for this design
is to prevent a topology from rapidly oscillating between going
into and coming out of the backpressure mitigation mode.

A consequence of this design is that once a tuple is emitted from
the spout, Heron does not drop it, except during process or
machine failure scenarios. This behavior makes tuple failures
more deterministic.

When a topology is in backpressure mode, it goes as fast as the
slowest component. If this situation continues to persist for a
while, it could lead to data building up in the “source” queues
from which the spout reads the data. Depending on the topology,
spouts can be configured to drop older data.

5.5 Heron Instance
The main work for a spout or a bolt is carried out in the Heron
instances (HIs). Unlike the Storm worker, each HI is a JVM
process, which runs only a single task of the spout or the bolt.
Such a design allows us to easily debug/profile either a spout or
bolt, since the developer can easily see the sequence of events and
logs that originate from a HI.

Note that since the complexity of data movement has been moved
to the SMs, it easy for us to consider writing native HIs in other
languages in the future.

To implement the HIs, we considered two designs: one using a
single thread and the other using two threads. Next, we describe
these two designs.

5.5.1 Single-threaded approach
In the single-threaded design, a main thread maintains a TCP
communication channel to the local SM and waits for tuples.
Once a tuple arrives, the user logic code is invoked in the same
thread. If the user logic code program generates an output tuple, it
is buffered. Once the buffer exceeds a certain threshold, it is
delivered to the local SM.

While this approach has the advantage of simplicity, it has several
disadvantages, as the user code can potentially block due to a
variety of reasons, including:

 Invoking the sleep system call for a finite duration of time
 Using read/write system calls for file or socket I/O
 Calling thread synchronization primitives

We implemented this approach and realized that such blocking is
not desirable for the required periodic activities such as metrics
reporting. Since the duration of blocking could potentially vary, it
leads to unpredictable behavior. If the metrics are not collected
and sent timely, one cannot reliably troubleshoot whether an HI is
in a “bad” state.

5.5.2 Two-threaded approach
In this design, the HIs have two threads namely, a Gateway thread
and a Task Execution thread as shown in Figure 5. The Gateway
thread is responsible for controlling all the communication and
data movement in and out from the HI. It maintains TCP
connections to the local SM and the metrics manager. It is also
responsible for receiving incoming tuples from the local SM.
These tuples are sent to the Task Execution thread for processing.

The Task Execution thread runs user code. When the task
execution thread is started, it executes the “open” or “prepare”
method depending upon whether the instance is executing a spout
or a bolt, respectively. In the case of a bolt, when tuples arrive, the
task execution thread invokes the “execute” method with the
incoming tuple for processing. In the case of a spout, it repeatedly
calls the “nextTuple” method to fetch data from the source, and
then injects this data as tuples into the topology. The emitted
tuples from either spout or bolt are sent to the Gateway thread,
which forwards the tuples to the local SM. In addition to
processing tuples, the Task Execution thread collects various
metrics such as the number of tuples executed, the number of
tuples emitted, the number of tuples acknowledged, and the
latency experienced during the processing of tuples.

The Gateway thread and the Task Execution thread communicate
between themselves using three unidirectional queues, as shown
in Figure 5. The Gateway thread uses the data-in queue to push
tuples to the Task Execution thread for processing. The Task
Execution thread uses the data-out queue to send tuples to the
Gateway thread (for sending to other parts of the topology). The
metrics-out queue is used by the Task Execution thread to pass the
collected metrics to the Gateway thread.

The data-in and the data-out queues are bounded in size. The
Gateway Execution thread stops reading from the local SM when
the data-in queue exceeds this bound. This action triggers the
backpressure mechanism at the local SM. Similarly, when items
in the data-out queue exceed the bound, the Gateway thread can

Figure 5: Heron Instance Figure 6: Heron Services for Production

244

 7

assume that the local SM can not receive more data, and that the
Task Execution thread should not emit or execute any more
tuples.

When we ran large topologies in production with bounded queue
sizes, we often experienced unexpected GC issues. Everything
worked fine until, say, a network outage happened and the
Gateway thread was unable to send tuples from the data-out
queue. Tuples would then start to back up in the data-out queue,
and because they are live objects, they could not be reclaimed.
This situation then caused the corresponding HI to reach its
memory limit. Once the network recovered, the Gateway thread
would start reading tuples from the local SM, as well as sending
out tuples from data-out queue. If the Gateway thread read tuples
from the SM before sending out tuples, any new object
construction could trigger the GC, since nearly all of the available
memory was already used up, quickly resulting in further
performance degradation.

To avoid such GC issues, we periodically check the capacity of
the data-out and data-in queues and increase/decrease these queue
sizes accordingly. If the capacity of the queue grows over a
configurable limit, then it is reduced (currently to half of the last
capacity). This mechanism is invoked periodically until the
capacity of the queue returns to a stable constant value, or the
capacity reaches zero. When the capacity of the queue becomes
zero, neither new tuples can be injected, nor, in many cases, can
new tuples be produced. As a consequence, it is easier to recover
from GC issues. Similarly, when the outstanding number of tuples
in the queue is smaller than the configured limit, the capacity is
gradually increased until the queue length either reaches the
configured limit or hits the maximum capacity value.

5.6 Metrics Manager
The Metrics Manager (MM) collects and exports metrics from all
the components in the system. These metrics include system
metrics and user metrics for the topologies. There is one metrics
manager for each container, to which the Stream Manager and
Heron Instances report their metrics.

Metrics are sent from each container to an in-house monitoring
system. The MMs also pass the metrics to the Topology Master
for displaying in external UIs. The separation of metrics reporting
using local MM provides us the flexibility to support other
monitoring systems (such as Ganglia and Graphite) in the future.

5.7 Startup Sequence and Failure Scenarios
When a topology is submitted to Heron, a sequence of steps are
triggered. Upon submission, the scheduler (in our case it is
generally Aurora [1]) allocates the necessary resources and
schedules the topology containers in several machines in the
cluster. The Topology Master (TM) comes up on the first
container, and makes itself discoverable using the Zookeeper
ephemeral node. Meanwhile, the Stream Manager (SM) on each
container consults Zookeeper to discover the TM. The SM then
connects to the TM and periodically sends heartbeats.

When all the SMs are connected, the TM runs an assignment
algorithm to assign different components of the topology (spouts
and bolts) to different containers. This is called the physical plan
in our terminology. Once the assignment is complete, the SMs get
the entire physical plan from the TM, which helps the SMs to
discover each other. Now the SMs connect to each other to form a
fully-connected network. Meanwhile, the Heron instances (HI)
come up, discover their local SM, download their portion of the
physical plan, and start executing. After these steps are completed,

data/tuples starts flowing through the topology. For safekeeping,
the TM writes the physical plan to Zookeeper to rediscover the
state in case of its failure.

When a topology is executing, there are several failure scenarios
that could affect some portion of the topology, and sometimes
even the entire topology itself. These scenarios consist of the
death of processes, failure of containers, and failures of machines.

When the TM process dies, the container restarts the failed
process, and the TM recovers its state from Zookeeper. When a
topology is started with a standby TM, the standby TM becomes
the master, and the restarted TM becomes the standby.
Meanwhile, the SMs that have open channels to the TM
rediscover the new TM, and connect to it.

Similarly when an SM dies, it gets restarted in the same container,
it rediscovers the TM, and it initiates a connection to fetch the
physical plan to check if there are any changes in its state. Other
SMs, who have lost the connection to the failed SM, also get a
copy of the same physical plan indicating the location of the new
SM, and create a connection to the new SM. When an instance
(HI) dies within a container, it is restarted, and it contacts its local
SM. The HI then gets a copy of the physical plan, identifies
whether it is a spout or bolt, and starts executing the
corresponding user logic code.

When any container is rescheduled or relocated to a new machine,
the newly minted SM discovers the TM, and follows the same
sequence of steps of an SM failure and an HI failure.

5.8 Architecture Features: Summary
We note several salient aspects of our design. First, the
provisioning of resources (e.g. for containers and even the
Topology Master) is cleanly abstracted from the duties of the
cluster manager, thereby allowing Heron to “play nice” with the
rest of the (shared) infrastructure.

Second, since each Heron Instance is executing only a single task
(e.g. running a spout or bolt), it is easy to debug that instance by
simply using tools like jstack and heap dump with that process.

Third, the design makes it transparent as to which component of
the topology is failing or slowing down, as the metrics collection
is granular, and lets us easily map an issue unambiguously to a
specific process in the system.

Fourth, by allowing component-level resource allocation, Heron
allows a topology writer to specify exactly the resources for each
component, thereby avoiding unnecessary over-provisioning.

Fifth, having a Topology Master per topology allows each
topology to be managed independently of each other (and other
systems in the underlying cluster). In additional, failure of one
topology (which can happen as user-defined code often gets run in
the bolts) does not impact the other topologies.

Sixth, the backpressure mechanism allows us to achieve a
consistent rate of delivering results, and a precise way to reason
about the system. It is also a key mechanism that allows migrating
topologies from one set of containers to another (e.g. to an
upgraded set of machines).

Finally, we now do not have any single point of failure.

6. Heron in Production
To get Heron working in production, we needed several additional
functionalities, which include: a) the ability for users to interact
with their topologies, b) the ability for users to view metrics and

245

 8

trends for their topologies, c) the ability for users to view
exceptions that occurs in the Heron Instances, and d) the ability
for users to view their topology logs. To accommodate all this
functionality, we implemented additional components: Heron
Tracker, Heron UI and Heron Viz as shown in Figure 6. These
components are described in more details below.

6.1 Heron Tracker
The Heron Tracker acts as a gateway to access several
information about topologies. It interfaces with the same
Zookeeper instance that the topologies use to save their metadata,
and collects additional information about the topologies. The
tracker uses Zookeeper watches to keep track of new topologies
that are being launched, existing topologies that are being killed,
and any change in the physical plan of the topology (such as a
container being moved from one host to another). In addition to
this information, the tracker also uses the metadata information in
Zookeeper to discover where the Topology Master of a topology
is running to obtain metrics and any other relevant data.

The tracker provides a clean abstraction by exposing a well-
defined REST API that makes it easy to create any additional
tools. The API provides information about the topologies such as
the logical and the physical plan, various metrics including user-
defined and system metrics, links to log files for all the instances,
and links to the Aurora job pages for the executing containers.
The tracker runs as an Aurora service, and typically is run in
several instances for fault tolerance. The API requests are load
balanced across these instances.

6.2 Heron UI
Heron users can interact with their topologies using a rich visual
UI. This UI uses the Heron Tracker API and displays a visual
representation of the topologies, including its logical and physical

plan. Logical plan displays the directed acyclic graph with each
node uniquely color-coded. The physical plan is displayed as a set
of concentric circles, with the inner circle representing the hosts,
the middle circle depicting the containers, and the outer circle
representing the instances of components. A user can drill down
either on a component or on an instance of the component to
display metrics such as emit counts, complete/execute latencies,
acknowledged counts, and fail counts for the time intervals of last
10 minutes, 1 hour, 3 hours, and since the start of the topology. In
addition to these features, the UI also offers easy access links to
view the logs and exceptions that are associated with an instance –
an important feature for debugging. Figure 7 shows a part of the
visualization for a 5-stage topology.

6.3 Heron Viz
Heron Viz is a service that creates the dashboard used to view the
metrics collected by the Metrics Manager for a topology. This
service periodically contacts the Heron Tracker for any new
topology. When there is a new topology, it uses the HTTP API of
graphing system, called Viz, to create a dashboard of graphs. In
order to create the dashboard, Heron Viz retrieves the logical plan
of the topology to determine the components, i.e. the bolts and the
spouts, and the number of instances of each component. For each
component in the topology, a section is created based on the type
of the component (spout or bolt), and queries are generated based
on the number of instances.

Broadly, the Heron Viz dashboard for a topology is categorized
into health metrics, resource metrics, component metrics and
stream manager (SM) metrics.

Health metrics include the overall lag the topology is
experiencing, aggregate tuple fail count in the spouts, and number
of SM deaths.

Figure 7: Topology Visualization. The figure on the left shows the logical plan for the topology, and the figure on the right shows the
current location of components of the physical plan for the topology. Clicking on a logical plan component (e.g. the red bolt in the figure
on the left) highlights the location of the containers on the map on the right. The table below the two figures shows key metrics.

246

 9

Resource metrics consist of the CPU resources allocated, CPU
resources that are actually used, the amount of memory that is
being used, the amount of memory that has been reserved, and the
amount of time spent in GC.

Component metrics include, for each spout, the number of tuples
that have been emitted, failed, and acknowledged. They also
include the average end-to-end latency for processing a tuple.
Additional component metrics include, for each bolt, the number
of tuples executed, acknowledged and emitted, and the average
latency for processing each tuple.

Finally, the SM metrics tracks for each SM, the number of tuples
that have arrived from instances, the number of tuples delivered to
the instances, the number of tuples dropped when receiving and
sending to instances and other SMs, and the total aggregate time
spent in backpressure mode.

A sample and partial view of the dashboard is shown in Figure 8.

6.4 Heron@Twitter
At Twitter, Storm has been decommissioned and Heron is now the
de-facto streaming system. It has been in production for several
months and runs hundreds of development and production
topologies in multiple data centers. These topologies process
several tens of terabytes of data, generating billions of output
tuples.

Topologies vary in their complexity and a large number of
topologies have three or fewer stages. There are several topologies
that extend to more than three stages, and the longest ones go as
deep as eight stages.

The use cases for these topologies are varied and include data
transformation, filtering, joining, and aggregating content across
various streams in Twitter (e.g. computing counts). The use cases
also include running complex machine learning algorithms (e.g.
regression, association and clustering) over streaming data.
Various groups inside Twitter use Heron. These groups include
user services, revenue, growth, search, and content discovery.

After migrating all the topologies to Heron (from Storm), there
was an overall 3X reduction in hardware – a significant
improvement in the infrastructure efficiency at Twitter’s scale.

7. Empirical Evaluation
In this section, we present results comparing Heron and Storm.

7.1 Workload
We chose to evaluate Heron in the context of two topologies – a
Word Count topology, and a RTAC topology (cf. Figure 1). For
each topology, we considered two variants, one with
acknowledgements enabled (i.e. at least once semantics), and the
other with no acknowledgements (i.e. at most once semantics).

Note that both topologies were constructed primarily for this
empirical evaluation, and should not be construed as being the
representative topology for Heron/Storm workloads at Twitter.

7.2 Setup
All experiments were run on machines with dual Intel Xeon
E5645@2.4GHZ CPUs, each consisting of 12 physical cores with
hyper-threading enabled, 72GB of main memory, and 500GB of
disk space. We tuned both Storm and Heron to perform in ways
that we expect in production settings. In other words, there are no
out-of-memory (OOM) crashes (or any other failure due to
resource starvation during scheduling), or long repetitive GC
cycles. The Storm topologies were run in isolation, which means
that no process besides the kernel, Mesos slaves, and metric
exporter daemons, is running in the system. Heron was running in
a shared cluster, with Linux “cgroups” isolation.

The experiments were allowed to run for several hours to attain
steady state before measurements were taken. For Storm, this
means very small number of drops in the 0mq layer, and that the
size of various queues are not growing, and remain small. For
Heron, this means no backpressure, and that its transfer queues
also maintain a stable size while remaining small.

Note that for topologies with acknowledgements, tuple failures
may occur due to 0mq drops in Storm, or due to timeout. While

Figure 8: Topology Metrics Reporting

247

 10

for Heron, tuple failures can happen only due to timeouts. We
used 30 seconds as the timeout interval in both cases.

7.3 Word Count Topology
In these set of experiments, we used a simple word count
topology. In this topology, the spout tasks generate a set of
random words (~175k words) during the initial “open” call, and
during every “nextTuple” call. In each call, each spout simply
picks a word at random and emits it. Hence spouts are extremely
fast, if left unrestricted. Spouts use a fields grouping for their
output, and each spout could send tuples to every other bolt in the
topology.

Bolts maintain an in-memory map, which is keyed by the word
emitted by the spout and updates the count when it receives a
tuple.

This topology is a good measure of the overhead introduced by
either Storm or Heron since it does not do significant work in its
spouts and bolts.

For each set of experiments, we varied the number of Storm
spout/bolt tasks, Heron spout/bolt instances, Storm workers, and
Heron containers as shown below in Table 1.

Table 1: Experimental setup for the Word Count topology

Components Expt. #1 Expt. #2 Expt. #3 Expt. #4

Spout 25 100 200 500

Bolt 25 100 200 500

Heron containers 25 100 200 500

Storm workers 25 100 200 500

7.3.1 Acknowledgements Enabled
In these experiments, the word count topology is enabled to
receive acknowledgements. We measured the topology
throughput, end-to-end latency, and CPU usage, and plot these
results in Figure 9, Figure 10, and Figure 11 respectively. Each of
these figures has four points on each line, corresponding to the
four experimental setup configurations that are shown in Table 1.

As shown in Figure 9, the topology throughput increases linearly
for both Storm and Heron. However, for Heron, the throughput is
10-14X higher than that for Storm in all these experiments.

The end-to-end latency graph, plotted in Figure 10, shows that the
latency increases far more gradually for Heron than it does for
Storm. Heron latency is 5-15X lower than that of the Storm. There
are many bottlenecks in Storm, as the tuples have to travel
through multiple threads inside the worker and pass through
multiple queues. (See Section 3.)

In Heron, there are several buffers that a tuple has to pass through
as they are transported from one Heron Instance to another (via
the SMs). Each buffer adds some latency since tuples are
transported in batches. In normal cases, this latency is
approximately 20ms, and one would expect the latency to be of
the same value since the tuples in this topology have the same
number of hops. However, in this topology, the latency increases
as the number of containers increase. This increase is a result of
the SMs becoming a bottleneck, as they need to maintain buffers
for each connection to the other SMs, and it takes more time to
consume data from more buffers. The tuples also live in these
buffers for longer time given a constant input rate (only one spout
instance per container).

Figure 11 shows the aggregate CPU resources that are utilized
across the entire cluster that is used for this topology, as reported

Figure 9: Throughput with acknowledgements Figure 10: End-to-end latency with acknowledgements

Figure 11: CPU usage with acknowledgements

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

m
il

li
on

 tu
pl

es
/m

in

Spout Parallelism

Storm Heron

0

500

1000

1500

2000

2500

0 100 200 300 400 500

la
te

nc
y

(m
s)

Spout Parallelism

Storm Heron

0

500

1000

1500

2000

2500

0 100 200 300 400 500

co

re
s

Spout Parallelism

Storm Heron

248

 11

by Aurora. The metric in this figure is number of cores, and the
aggregate CPU resources that is consumed is computed by taking
the CPU utilization of each core that is used, and dividing it by
100.

As shown in Figure 11, the CPU usage also increases linearly as
more data is pushed through the topology for both Storm and
Heron. This behavior is expected as increasing the number of
processes and the number of containers results in requiring more
CPU resources. However, the CPU usage of Heron is 2-3X lower
than that of the Storm, and the increase in CPU utilization is
nearly linear as the number of containers increase.

7.3.2 Acknowledgements Disabled
In these experiments, we disable the acknowledgments, which
means that some tuples might be lost mid-flight. We measured the
throughput and the CPU usage, and show these results in Figure
12 and Figure 13, respectively.

As can be seen in Figure 12, the throughput increases linearly for
both Storm and Heron as we input more data into the topology.
However, across all the experiments, the throughput of Heron is
6-8X higher than that of Storm.

When comparing CPU usage (Figure 13), we observe that the
CPU resources used by Heron is consistently 3-4X lower than that
for Storm, while achieving a far higher throughput.

7.4 RTAC Topology
For this evaluation, we chose the example RTAC topology shown
in Figure 1. We set up this topology so that the expected output
rate for this topology, when it can keep up with the input data rate,
is ~6M tuples/minute. Using iterative experiments, we identified
the configuration parameters for Storm and Heron that provided
the best performance. These configurations are listed in Table 2.

7.4.1 Acknowledgements Enabled
In the first experiment, we enable end-to-end acknowledgements
in the topology. We measured the actual CPU usage and the end-
to-end latency for the topology when running both in Storm and in
Heron. Recall that Storm topologies run in isolation (cf. Section
3.3). The results plotting the total CPU resources utilized (in terms
of 100% utilized core counts), and the end-to-end latencies are
shown in Figure 14 and Figure 15, respectively.

As shown in these two figures, Storm needed 360 cores to keep up
with the required throughput of 6M tuples/min, with an end-to-
end tuple latency of 70ms. On the other hand, Heron can sustain
the required throughput with just 36 cores, while delivering an
end-to-end tuple latency of only 24ms. When we relaxed the
latency requirements for Storm, we were able to sustain the
required throughput with 240 cores with an increased end-to-end
latency of 500ms. In this experiment, Heron shows 65-95%
improvement in the latency over Storm, while requiring only 20-
22% of the CPU resources that Storm requires.

7.4.2 Acknowledgements Disabled
In the second experiment, we disabled acknowledgements, which
means that failed tuples are dropped without any replaying. In this
case, we measured the CPU usage. The results for this experiment
are shown in Figure 16.

With this simpler topology, Storm needed 240 cores, creating an
output throughput rate of 6M/min. On the other hand, Heron can
keep up with this topology using just 20 cores, a 10X reduction in
CPU resources that are required.

8. Conclusions and Future work
The need for real-time stream analytics at Twitter continues to
grow, and in production has pushed the boundaries of what
existing streaming systems can deliver in terms of manageability
and performance. To meet these needs, and to also provide
backward compatibility with our existing streaming API, we have
designed and implemented a new stream data processing system
called Heron, which we have presented in this paper. We have
also presented results from an empirical evaluation of Heron that
demonstrates large reductions in CPU resources when using
Heron, while delivering 6-14X improvements in throughput, and
5-10X reductions in tuple latencies.

Figure 12: Throughput with acknowledgements disabled Figure 13: CPU usage with acknowledgements disabled

Table 2: Parameter settings for the RTAC topology

Component # Storm tasks # Heron tasks

Spout 200 60

DistributorBolt 200 15

UserCountBolt 300 3

AggregatorBolt 20 2

Workers/Containers 50 50

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500

m
il

li
on

 tu
pl

es
/m

in

Spout Parallelism

Storm Heron

0

500

1000

1500

2000

2500

0 100 200 300 400 500

co

re
s

Spout Parallelism

Storm Heron

249

 12

The design of Heron allows supporting exactly once semantics,
but the first version of Heron does not have this implementation.
One reason for tolerating the lack of exactly once semantics is that
Summingbird [8] simultaneously generates both a Heron query
and an equivalent Hadoop job, and in our infrastructure the
answers from both these parts are eventually merged.

However, there is a real need for fast responses from the
streaming system (even if the answer is not fully accurate) as this
real-time analytics is crucial to how Twitter works. Exactly once
semantics requires some form of check pointing (e.g. see [21]),
which is known to reduce the performance, and our design allows
for adding such semantics. We are considering designing and
implementing mechanisms for exactly once semantics in Heron.

Acknowledgements
Replacing something as key as the streaming platform across the
entire company would not have been possible without the help
and active participation from many teams inside Twitter.
Specifically we thank the Aurora team for their quick turnaround
to our requests. The System Monitoring team deserves big kudos
for making changes to handle the big set of metrics data that every
Heron topology generates. We also thank the Summingbird team
for working closely with us to make sure that Summingbird
worked well with Heron. A special thanks to the Mesos team for
working with us to design the scheduler abstraction. Finally,
Heron would not have gotten into production without the Systems
and Reliability Engineering team guiding us through every failure
scenario to make our system more robust in production.

REFERENCES
[1] Apache Aurora. http://aurora.incubator.apache.org
[2] Apache Samza. http://samza.incubator.apache.org
[3] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh

Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul
Nordstrom, Sam Whittle: MillWheel: Fault-Tolerant Stream
Processing at Internet Scale. PVLDB 6(11): 1033-1044 (2013)

[4] Mohamed H. Ali, Badrish Chandramouli, Jonathan Goldstein,
Roman Schindlauer: The Extensibility Framework in Microsoft
StreamInsight. ICDE 2011: 1242-1253

[5] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish
Gupta, Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid
Ryabkov, Manpreet Singh, Shivakumar Venkataraman: Photon:
Fault-tolerant and Scalable Joining of Continuous Data Streams.
SIGMOD 2013: 577-588

[6] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith
Ito, Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys

Thomas, Rohit Varma, Jennifer Widom: STREAM: The Stanford
Stream Data Manager. IEEE Data Eng. Bull. 26(1): 19-26 (2003)

[7] Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Çetintemel, Mitch Cherniack, Christian Convey, Eduardo F. Galvez,
Jon Salz, Michael Stonebraker, Nesime Tatbul, Richard Tibbetts,
Stanley B. Zdonik: Retrospective on Aurora. VLDB J. 13(4): 370-
383 (2004)

[8] P. Oscar Boykin, Sam Ritchie, Ian O'Connell, Jimmy Lin:
Summingbird: A Framework for Integrating Batch and Online
MapReduce Computations. PVLDB 7(13): 1441-1451 (2014)

[9] DataTorrent. https://www.datatorrent.com
[10] Minos N. Garofalakis, Johannes Gehrke: Querying and Mining Data

Streams: You Only Get One Look. VLDB 2002
[11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,

Anthony D. Joseph, Randy H. Katz, Scott Shenker, Ion Stoica:
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. NSDI 2011

[12] IBM Infosphere Streams. http://www-
03.ibm.com/software/products/en/infosphere-streams/

[13] Kestrel: A Simple, Sistributed Message Queue System.
http://robey.github.com/kestrel

[14] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A Distributed
Messaging System for Log Processing. SIGMOD Workshop on
Networking Meets Databases, 2011.

[15] Simon Loesing, Martin Hentschel, Tim Kraska, Donald Kossmann:
Stormy: An Elastic and Highly Available Streaming Service in the
Cloud. EDBT/ICDT Workshops 2012: 55-60

[16] Nathan Marz: (Storm) Tutorial.
https://github.com/nathanmarz/storm/wiki/Tutorial

[17] S4 Distributed Stream Computing Platform.
http://incubator.apache.org/s4/

[18] Spark Streaming. https://spark.apache.org/streaming/
[19] Sankar Subramanian, Srikanth Bellamkonda, Hua-Gang Li, Vince

Liang, Lei Sheng, Wayne Smith, James Terry, Tsae-Feng Yu,
Andrew Witkowski: Continuous Queries in Oracle. VLDB 2007:
1173-1184

[20] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan
Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson,
Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh
Mittal, Dmitriy V. Ryaboy: Storm@Twitter. SIGMOD 2014: 147-
156

[21] Trident: https://github.com/nathanmarz/storm/wiki
[22] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O'Malley, Sanjay Radia, Benjamin Reed, Eric Baldeschwieler:
Apache Hadoop YARN: Yet Another Resource Negotiator. SoCC
2013: 5

[23] ZeroMQ: http://zeromq.org. Retrieved December 1, 2014.

Figure 14: CPU usage with
acknowledgements enabled

Figure 15: End-to-end latency with
acknowledgements

Figure 16: CPU usage with
acknowledgements disabled

0

50

100

150

200

250

300

350

400

Storm Heron

co

re
s

0

10

20

30

40

50

60

70

80

Storm Heron

L
at

en
cy

 (
m

s)

0

50

100

150

200

250

300

350

400

Storm Heron

co

re
s

250

