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ABSTRACT 
Storm has long served as the main platform for real-time analytics 
at Twitter. However, as the scale of data being processed in real-
time at Twitter has increased, along with an increase in the 
diversity and the number of use cases, many limitations of Storm 
have become apparent. We need a system that scales better, has 
better debug-ability, has better performance, and is easier to 
manage – all while working in a shared cluster infrastructure. We 
considered various alternatives to meet these needs, and in the end 
concluded that we needed to build a new real-time stream data 
processing system. This paper presents the design and 
implementation of this new system, called Heron. Heron is now 
the de facto stream data processing engine inside Twitter, and in 
this paper we also share our experiences from running Heron in 
production. In this paper, we also provide empirical evidence 
demonstrating the efficiency and scalability of Heron. 
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1. INTRODUCTION 
Twitter, like many other organizations, relies heavily on real-time 
streaming. For example, real-time streaming is used to compute 
the real-time active user counts (RTAC), and to measure the real-
time engagement of users to tweets and advertisements. For many 
years, Storm [16, 20] was used as the real-time streaming engine 
inside Twitter. But, using Storm at our current scale was 
becoming increasingly challenging due to issues related to 
scalability, debug-ability, manageability, and efficient sharing of 
cluster resources with other data services.  

A big challenge when working with Storm in production is the issue 
of debug-ability. When a topology misbehaves – which could be for 
a variety of reasons including load changes, misbehaving user code, 
or failing hardware – it is important to quickly determine the root-
causes for the performance degradation. In Storm, work from 
multiple components of a topology is bundled into one operating 

system process, which makes debugging very challenging. Thus, we 
needed a cleaner mapping from the logical units of computation to 
each physical process. The importance of such clean mapping for 
debug-ability is really crucial when responding to pager alerts for a 
failing topology, especially if it is a topology that is critical to the 
underlying business model.  

In addition, Storm needs dedicated cluster resources, which requires 
special hardware allocation to run Storm topologies. This approach 
leads to inefficiencies in using precious cluster resources, and also 
limits the ability to scale on demand. We needed the ability to work 
in a more flexible way with popular cluster scheduling software that 
allows sharing the cluster resources across different types of data 
processing systems (and not just a stream processing system). 
Internally at Twitter, this meant working with Aurora [1], as that is 
the dominant cluster management system in use.  

With Storm, provisioning a new production topology requires 
manual isolation of machines, and conversely, when a topology is 
no longer needed, the machines allocated to serve that topology 
now have to be decommissioned. Managing machine provisioning 
in this way is cumbersome. Furthermore, we also wanted to be far 
more efficient than the Storm system in production, simply 
because at Twitter’s scale, any improvement in performance 
translates into significant reduction in infrastructure costs and also 
significant improvements in the productivity of our end users.  

We wanted to meet all the goals outlined above without forcing a 
rewrite of the large number of applications that have already been 
written for Storm; i.e. compatibility with the Storm and 
Summingbird APIs was essential. (Summingbird [8], which 
provides a Scala-idiomatic way for programmers to express their 
computation and constraints, generates many of the Storm 
topologies that are run in production.)1 

After examining various options, we concluded that we needed to 
design a new stream processing system to meet the design goals 
outlined above. This new system is called Heron. Heron is API-
compatible with Storm, which makes it easy for Storm users to 
migrate to Heron. All production topologies inside Twitter now 
run on Heron. Besides providing us significant performance 
improvements and lower resource consumption over Storm, 
Heron also has big advantages in terms of debug-ability, 
scalability, and manageability. 

In this paper, we present the design of Heron, and also present 
results from an empirical evaluation of Heron. We begin by 
briefly describing related work in the next section. Then, in 
Section 3, we describe Storm and motivate the need for Heron. 

                                                                 
1 Work done while consulting for Twitter. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, or republish, to 
post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia. 
ACM 978-1-4503-2758-9/15/05. 
http://dx.doi.org/10.1145/2723372.2723374 

239



 2

Section 4 describes alternatives that we considered to address the 
problems described above, and Section 5 presents the design of 
Heron. Section 6 describes the tools around Heron that we use in 
production, and describes the current status of Heron inside 
Twitter. Results from an empirical evaluation comparing Storm 
and Heron are presented in Section 7. Finally, Section 8 contains 
our concluding remarks and points to some directions for future 
work. 

2. Related Work 
The interest in stream data processing systems includes a flurry of 
initial work about a decade ago (e.g. [6, 7, 10]). The need for 
highly-scalable stream processing systems has lead to the creation 
of a number of recent systems, including [2, 3, 5, 9, 15, 17, 18]. 
Stream processing has also been integrated with traditional 
database products (e.g. [4, 12, 19]), highlighting the need for 
stream processing in the broader enterprise ecosystem.  

For our needs at Twitter, we needed a stream processing platform 
that was open-source, high-performance, scalable, and was 
compatible with the current Storm API. We also needed the 
platform to work on a shared infrastructure. These requirements 
limited the options discussed above. We did consider alternatives 
that came close to fitting our needs (see Section 4), but in the end 
concluded that we needed to build Heron. 

3. Motivation for Heron 
Storm has served the real-time analytics needs at Twitter for the 
past several years. Based on our operational experience at the 
current Twitter-scale, we identified several limitations with Storm 
that are highlighted in the following sections. These limitations 
motivated us to develop Heron. 

3.1 Storm Background 
As described in [20], a Storm topology is directed graph of spouts 
and bolts. Spouts are sources of input data (e.g. a stream of 
Tweets), and bolts are an abstraction to represent computation on 
the stream. Spouts often pull data from queues, such as Kafka [14] 
and Kestrel [13], and generate a stream of tuples, which is then 
fed into a network of bolts that carry out the required 
computation.  For example, a topology that counts the number of 
active users in real-time (RTAC) is shown in Figure 1. 

Spouts and bolts are run as tasks, and multiple such tasks are 
grouped into an executor. In turn, multiple executors are grouped 
into a worker, and each worker runs as a JVM process (as shown 
in Figure 2). A single host may run multiple worker processes, but 
each of them could belong to different topologies. 

3.2 Storm Worker Architecture: Limitations 
As described in [20] and briefly described above, a Storm worker 
has a fairly complex design. Several instances of worker processes 
are scheduled by the operating system in a host. Inside the JVM 
process, each executor is mapped to two threads. In turn, these 

threads are scheduled using a preemptive and priority-based 
scheduling algorithm by the JVM. Since each thread has to run 
several tasks, the executor implements another scheduling 
algorithm to invoke the appropriate task, based on the incoming 
data. Such multiple levels of scheduling and their complex 
interaction often leads to uncertainty about when the tasks are 
being scheduled. 

Furthermore, each worker can run disparate tasks. For example, a 
Kafka spout, a bolt that joins the incoming tuples with a Twitter 
internal service, and another bolt writing output to a key-value 
store might be running in the same JVM. In such scenarios, it is 
difficult to reason about the behavior and the performance of a 
particular task, since it is not possible to isolate its resource usage. 
As a result, the favored troubleshooting mechanism is to restart 
the topology. After restart, it is perfectly possible that the 
misbehaving task could be scheduled with some other task(s), 
thereby making it hard to track down the root cause of the original 
problem.  

Since logs from multiple tasks are written into a single file, it is 
hard to identify any errors or exceptions that are associated with a 
particular task. The situation gets worse quickly if some tasks log 
a larger amount of information compared to other tasks. 
Furthermore, an unhandled exception in a single task takes down 
the entire worker process, thereby killing other (perfectly fine) 
running tasks. Thus, errors in one part of the topology can 
indirectly impact the performance of other parts of the topology, 
leading to high variance in the overall performance. In addition, 
disparate tasks make garbage collection related-issues extremely 
hard to track down in practice. 

For resource allocation purposes, Storm assumes that every 
worker is homogenous. This architectural assumption results in 
inefficient utilization of allocated resources, and often results in 
over-provisioning. For example, consider scheduling 3 spouts and 
1 bolt on 2 workers. Assuming that the bolt and the spout tasks 
each need 10GB and 5GB of memory respectively, this topology 
needs to reserve a total of 15GB memory per worker since one of 
the worker has to run a bolt and a spout task. This allocation 
policy leads to a total of 30GB of memory for the topology, while 
only 25GB of memory is actually required; thus, wasting 5GB of 
memory resource. This problem gets worse with increasing 
number of diverse components being packed into a worker, and 
this situation happens frequently when generating (complex) 
topologies using higher-level abstractions like Summingbird [8]. 

 
Figure 1: The RTAC Topology 

 

Figure 2: Storm Worker 
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As a consequence of allocating large memory to the workers, the 
use of common profiling tools, such as jstack or heap dump, 
becomes very cumbersome. When a worker is executing a heap 
dump, it misses sending heartbeats signals (which are needed to 
keep the worker alive), leading the Storm supervisor to kill it, 
thereby preventing the heap dump. Debugging problems becomes 
quite challenging as a result of this behavior.  

A natural question is whether we could have re-architected Storm 
to allow it to run one task per worker. We considered this option, 
but discovered that approach could lead to big inefficiency in 
resource usage, and also limit the degree of parallelism that we 
could achieve. Such a deployment would result in a large number 
of workers per topology. Due to the homogeneity assumption 
across workers, there could be significant overprovisioning of 
resources. Under this model, we would have to reserve the 
following amount of memory for each worker: 

௉௔௥௔௟௟௘௟௜௦௠ሻݐ݊݁݊݋݌݉݋ܥሺܯܷܵ  ൈ ܺܣܯ  ቀݐ݊݁݊݋݌݉݋ܥோ௘௦௢௨௥௖௘ೆೞೌ೒೐
ቁ  

This number may be far larger than the optimal/ideal utilization. 
Referring to the aforementioned example with 3 spouts and 1 bolt, 
each worker needs around 10GB of memory, requiring a total of 
40GB of memory, compared to the optimal memory size of 25GB. 
Finally, as the degree of parallelism for each component 
(bolts/tasks) increases, every worker tends to be connected to 
every other worker, which can run into problems with not having 
enough number of ports in each worker for communication, and 
thereby reduces the scalability options. 

Storm workers use several threads and queues to move data 
between tasks and workers (see [20] for more details). A global 
receive thread in each worker process is responsible for getting 
data from workers “upstream”, and a global send thread is in 
charge of transmitting data to the workers “downstream”. In 
addition to these global threads, each executor consists of a user 
logic thread that runs the topology code, and a local send thread 
that communicates the output data from the user logic thread to 
the global sender thread. Hence in Storm, each tuple has to pass 
through four threads from the point of entry to the point of exit 
inside the worker process2. This design leads to significant 
overhead and queue contention issues.  

3.3 Issues with the Storm Nimbus 
The Storm Nimbus [20] performs several functions including 
scheduling, monitoring, and distributing JARs. It also serves the 
metrics-reporting component for the system, and manages 
counters for several topologies. Thus, the Nimbus component is 
functionally overloaded, and often becomes an operational 
bottleneck for a variety of reasons, as outlined below. 

First, the Nimbus scheduler does not support resource reservation 
and isolation at a granular level for Storm workers. Consequently, 
Storm workers that belong to different topologies running on the 
same machine could interfere with each other. This situation can 
in turn lead to untraceable performance issues. To mitigate this 
problem, we ran production Storm topologies in isolation; i.e. 
entire machines are dedicated to a topology. But, this approach 
leads to wastage of resources, as it is hard for a topology to fully 
use all the hardware resources that are allocated to it (and all the 
time). Attempts to address this issue by running Storm on YARN 
[22] don’t fully solve the problem.  

Second, as mentioned in [20], Storm uses Zookeeper extensively 
to manage heartbeats from the workers and the supervisors. This 
                                                                 
2 This feature is implemented using fast disruptor queues and 0mq [23]. 

use of Zookeeper limits the number of workers per topology, and 
the total number of topologies in a cluster, as at very large 
numbers, Zookeeper becomes the bottleneck. To address this 
issue, we had developed an interim design to route the keep-alive 
heartbeat traffic to special “heartbeat” daemons that ran in a 
separate set of machines. However, this interim design increased 
the operational burden, requiring separate monitoring of those 
hosts and the heartbeat daemons. 

Finally, the Nimbus component is a single point of failure. When 
the Nimbus fails, the users are neither able to submit any new 
topologies nor kill existing ones. Furthermore, when Nimbus fails, 
any existing topology that undergoes failures cannot be 
automatically detected and recovered.  

3.4 Lack of Backpressure 
Storm has no backpressure mechanism. If the receiver component 
is unable to handle incoming data/tuples, then the sender simply 
drops tuples. This is a fail-fast mechanism, and a simple strategy, 
but it has the following disadvantages:  

 If acknowledgements are disabled, this mechanism will result 
in unbounded tuple drops, making it hard to get visibility 
about these drops. 

 Work done by upstream components is lost. 
 System behavior becomes less predictable. 

In extreme scenarios, this design causes the topology to not make 
any progress while consuming all its resources. 

3.5 Efficiency 
In production, there were several instances of unpredictable 
performance during topology execution, which then lead to tuple 
failures, tuple replays, and execution lag (rate of data arrival 
exceeds rate of processing by the topology). The most common 
causes for these reduced performance scenarios were:  

 Suboptimal replays – A tuple failure anywhere in the tuple 
tree leads to failure of the entire tuple tree. This effect is more 
pronounced with high fan-out topologies where the topology 
is not doing any useful work, but is simply replaying the 
tuples. 

 Long Garbage Collection cycles – Topologies consuming 
large amount of RAM for a worker encounter garbage 
collection (GC) cycles greater than a minute, resulting in high 
latencies and high tuple failure rates. 

 Queue contention – In some cases, there is a lot of contention 
at the transfer queues, especially when a worker runs several 
executors. 

To mitigate the risks associated with these issues, we often had to 
overprovision the allocated resources. Such overprovisioning has 
obvious negative implications on the infrastructure costs.  

For example, a sample three-stage Storm topology (constructed 
primarily for this evaluation) requires approximately 600 cores 
with an average CPU utilization of 20-30%. To better understand 
where the time might be spent in such a topology, a simple Java 
program was written to absorb all such tuples and de-serializing 
them using Thrift. This step of processing input data consumed 
only 25 cores at 90% utilization. This resource consumption is 
equivalent to 75 cores at 30% CPU utilization, which is 8X lower 
than the 600 cores. 

Even in the worst case, assuming that the counting and data 
movement overhead is as great as deserialization and reading 
from the source, one would expect the topology to use 150 cores. 
However, this topology runs on 600 cores, which indicates that 
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with a better architecture/system we have the potential to achieve 
significant savings in resources that are consumed when running 
Storm topologies. 

4. Design Alternatives 
Considering the aforementioned issues, we weighed the options of 
whether to extend Storm, or to use another existing system, or to 
write a new system. 

Since the issues discussed in Section 3 are fundamental to Storm, 
fixing them in Storm would have required extensive rewrite of the 
core components. At a high level, Storm organizes topologies as a 
bunch of queues that move data around, and changing this basic 
architectural block is hard. Modifying this existing system in such 
a fundamental way would have been inflexible, and potentially 
required much longer development cycles. 

The next option was to consider using another existing open-
source solution, such as Apache Samza [2] or Spark Streaming 
[18]. However, there are a number of issues with respect to 
making these systems work in its current form at our scale. In 
addition, these systems are not compatible with Storm’s API. 
Rewriting the existing topologies with a different API would have 
been time consuming resulting in a very long migration process. 
Also note that there are different libraries that have been 
developed on top of the Storm API, such as Summingbird [8], and 
if we changed the underlying API of the streaming platform, we 
would have to change other components in our stack.  

Thus, we concluded that our best option was to rewrite the system 
from ground-up, reusing and building on some of the existing 
components within Twitter. 

5. Heron  
In this section, we briefly describe the Heron data model, API, 
and the various Heron components.  

5.1 Data Model and API 
A key design goal for Heron is to maintain compatibility with the 
Storm API. Thus, the data model and API for Heron are identical 
to that of Storm [20]. Like Storm, Heron runs topologies. A 
topology is a directed acyclic graph of spouts and bolts. Like 
Storm, spouts generate the input tuples that are fed into the 
topology, and bolts do the actual computation.  

A Heron topology is equivalent to a logical query plan in a 
database system. Such a logical plan is translated into a physical 
plan before actual execution. As a part of the topology, a 
programmer specifies the number of tasks for each spout and each 

bolt (i.e. the degree of parallelism), and how the data is partitioned 
as it moves across the spout and the bolt tasks (grouping). The 
actual topology, parallelism specification for each component, and 
the grouping specification, constitute the physical execution plan 
that is executed on the machines. 

Finally, Heron’s tuple processing semantics are similar to that of 
Storm, and include the following: 

 At most once – No tuple is processed more than once, 
although some tuples may be dropped, and thus may miss 
being analyzed by the topology. 

 At least once – Each tuple is guaranteed to be processed at 
least once, although some tuples may be processed more than 
once, and may contribute to the result of the topology 
multiple times. 

5.2 Architecture overview 
Since the key factors driving the need for Heron are to ease the 
task of manageability, improve developer productivity, and 
improve the predictability of performance, we had to make careful 
decisions about how to architect the different components of the 
system considering clean abstractions for various interconnected 
modules, and ensuring an architecture that can operate at Twitter’s 
scale. 

The overall architecture for Heron is shown in Figure 3. Users 
employ the Heron (spouts/bolts programming) API to create and 
deploy topologies to the Aurora scheduler, using a Heron 
command line tool. Aurora [1] is a generic service scheduler that 
runs as a framework on top of Mesos [11]. However, our 
architecture implements a scheduler abstraction that facilitates 
running Heron on other schedulers such as YARN, Mesos, and 
ECS (Amazon EC2 Docker Container Service). This design is a 
departure from Storm, where Nimbus (which is an integral 
component of Storm) was used for scheduling. Since Twitter’s 
homegrown Aurora scheduler and other open-source schedulers 
(e.g. YARN) have become sophisticated, we made the conscious 
choice of working with these schedulers rather than implementing 
another one. 

Each topology is run as an Aurora job consisting of several 
containers, as shown in Figure 4. The first container runs a 
process called the Topology Master. The remaining containers 
each run a Stream Manager, a Metrics Manager, and a number of 
processes called Heron Instances (which are spouts/bolts that run 
user logic code). Multiple containers can be launched on a single 

 
Figure 3: Heron Architecture Figure 4: Heron Topology Architecture 
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physical node. These containers are allocated and scheduled by 
Aurora based on the resource availability across the nodes in the 
cluster. (At Twitter, Aurora maps these containers to Linux 
cgroups.) A standby Topology Master can be run for availability. 
The metadata for the topology (which includes information about 
the user who launched the job, the time of launch, and the 
execution details) are kept in Zookeeper.  

The Heron Instances are written in Java, as they need to run user 
logic code (which is written in Java). There is one JVM per Heron 
Instance.  

All Heron processes communicate with each other using protocol 
buffers (protobufs). 

5.3 Topology Master 
The Topology Master (TM) is responsible for managing the 
topology throughout its existence. It provides a single point of 
contact for discovering the status of the topology (and thus is 
similar to the Application Master in YARN). Upon startup, the 
TM makes itself discoverable by creating an ephemeral node at a 
well-known location in Zookeeper. The ephemeral node serves 
the following two purposes:  

 It prevents multiple TMs from becoming the master for the 
same topology, thereby providing different processes of the 
topology a consistent view of the entire topology. 

 It allows any other process that belongs to the topology to 
discover the TM. 

The TM also serves as a gateway for the topology metrics through 
an endpoint. Note that since the TM is not involved in the data 
processing path, it is not a bottleneck.  

5.4 Stream Manager 
The key function of the Stream Manager (SM) is to manage the 
routing of tuples efficiently. Each Heron Instance (HI) connects 
to its local SM to send and receive tuples. All the SMs in a 
topology connect between themselves to form a O(k2) connection 
network, where k is the number of containers/SMs in the physical 
plan of the topology. Note that since the number of HIs, n is 
generally much larger than k, this design permits a way to scale 
the communication overlay network by multiplexing O(n2)  
logical channels over O(k2)  physical connections. Furthermore, 
any tuples routed from one HI to another HI in the same container 
is routed using a local short-circuiting mechanism.  

5.4.1 Topology Backpressure 
Unlike Storm, Heron employs a backpressure mechanism to 
dynamically adjust the rate at which data flows through the 
topology. This mechanism is important in topologies where 
different components can execute at different speeds (and the 
speed of processing in each component can change over time). 
For example, consider a pipeline of work in which the 
later/downstream stages are running slow, or have slowed down 
due to data or execution skew. In this case, if the earlier/upstream 
stages do not slow down, it will lead to buffers building up long 
queues, or result in the system dropping tuples. If tuples are 
dropped mid-stream, then there is a potential loss in efficiency as 
the computation already incurred for those tuples is wasted. A 
backpressure mechanism is needed to slow down the earlier 
stages. We considered a few implementation strategies, which we 
describe next.  

TCP Backpressure: In this strategy, we use the TCP windowing 
mechanism to propagate backpressure from the HIs to the other 
upstream components. Since the HIs and the SM (in each 

container) communicate using TCP sockets, the rate of draining 
from the send/receive buffers is equal to the rate of 
production/consumption by the local HI. If an HI is executing 
slowly, then its receive buffer will start filling up. The SM that is 
pushing data to this HI will recognize this situation, as its send 
buffer will also fill up. This backpressure mechanism then 
propagates to the other SMs and HIs upstream. Note that this 
backpressure is only cleared when the original (slow) HI starts 
catching up again.  

This simple TCP-based backpressure mechanism is easy to 
implement. However, this method did not work well in practice 
because multiple logical channels (between HIs) are overlaid on 
top of the physical connections between SMs. This multiplexing 
inadvertently not only causes the upstream HIs to slow down, but 
also often causes the downstream HIs (that are on the same 
connection) to also slow down. Consequently, any congestion 
clears very slowly, causing the entire topology to experience 
significant and unduly long-lasting performance degradation.  

Spout Backpressure: In this approach, the SMs clamp down their 
local spouts to reduce the new data that is injected into the 
topology. This approach is used in conjunction with TCP 
backpressure between the SMs and the HIs. When an SM realizes 
that one or more of its HIs are slowing down, it identifies its local 
spouts and stops reading data from them. This mechanism has the 
effect of slowing down the spout as the spout’s send buffer that is 
used to send tuples to the SM will get filled up, and will 
eventually block. The affected SM sends a special start 
backpressure message to other SMs requesting them to clamp 
down their local spouts. When the other SMs receive this special 
message, they oblige by not reading tuples from their local spouts. 
Once the slow HI catches up, the local SM sends stop 
backpressure messages to other SMs. When the other SMs 
receive this special message, they restart consuming data from 
their local spouts again.  

This approach directly clamps down the most upstream 
component (spouts). This method may be less than optimal 
because we may unnecessarily clamp down a spout, when simply 
slowing down an immediate upstream producer is all that was 
actually necessary. The other potential disadvantage of this 
approach is the additional message passing overhead. However, 
the advantage of this approach is that the reaction time to flow 
rate changes is small, irrespective of the depth of the topology. 

Stage-by-Stage Backpressure: A topology can be viewed as 
consisting of multiple stages. In this approach, we gradually 
propagate the backpressure stage-by-stage until it reaches the 
spouts (which represent the 1st stage in any topology). As in the 
spout backpressure method, this strategy is used in conjunction 
with the TCP backpressure mechanism between the SMs and the 
HIs, and differs in the backpressure control messages that are 
exchanged between the SMs. 

5.4.2 Implementation 
In Heron we have implemented the spout backpressure approach, 
as it is simpler to implement. This mechanism works well in 
practice, and also aids debug-ability as one can see when skew-
related events happen, and which component was the root cause 
of the backpressure trigger.  

Every socket channel is associated with an application-level 
buffer that is bounded in size by both a high water mark and a low 
water mark. Backpressure is triggered when the buffer size 
reaches the high water mark, and remains in effect until the buffer 
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size goes below the low water mark. The rationale for this design 
is to prevent a topology from rapidly oscillating between going 
into and coming out of the backpressure mitigation mode. 

A consequence of this design is that once a tuple is emitted from 
the spout, Heron does not drop it, except during process or 
machine failure scenarios. This behavior makes tuple failures 
more deterministic. 

When a topology is in backpressure mode, it goes as fast as the 
slowest component. If this situation continues to persist for a 
while, it could lead to data building up in the “source” queues 
from which the spout reads the data. Depending on the topology, 
spouts can be configured to drop older data. 

5.5 Heron Instance 
The main work for a spout or a bolt is carried out in the Heron 
instances (HIs). Unlike the Storm worker, each HI is a JVM 
process, which runs only a single task of the spout or the bolt. 
Such a design allows us to easily debug/profile either a spout or 
bolt, since the developer can easily see the sequence of events and 
logs that originate from a HI.  

Note that since the complexity of data movement has been moved 
to the SMs, it easy for us to consider writing native HIs in other 
languages in the future.  

To implement the HIs, we considered two designs: one using a 
single thread and the other using two threads. Next, we describe 
these two designs. 

5.5.1 Single-threaded approach 
In the single-threaded design, a main thread maintains a TCP 
communication channel to the local SM and waits for tuples. 
Once a tuple arrives, the user logic code is invoked in the same 
thread. If the user logic code program generates an output tuple, it 
is buffered. Once the buffer exceeds a certain threshold, it is 
delivered to the local SM. 

While this approach has the advantage of simplicity, it has several 
disadvantages, as the user code can potentially block due to a 
variety of reasons, including:  

 Invoking the sleep system call for a finite duration of time 
 Using read/write system calls for file or socket I/O 
 Calling thread synchronization primitives 

We implemented this approach and realized that such blocking is 
not desirable for the required periodic activities such as metrics 
reporting. Since the duration of blocking could potentially vary, it 
leads to unpredictable behavior. If the metrics are not collected 
and sent timely, one cannot reliably troubleshoot whether an HI is 
in a “bad” state. 

5.5.2 Two-threaded approach 
In this design, the HIs have two threads namely, a Gateway thread 
and a Task Execution thread as shown in Figure 5. The Gateway 
thread is responsible for controlling all the communication and 
data movement in and out from the HI. It maintains TCP 
connections to the local SM and the metrics manager. It is also 
responsible for receiving incoming tuples from the local SM. 
These tuples are sent to the Task Execution thread for processing. 

The Task Execution thread runs user code. When the task 
execution thread is started, it executes the “open” or “prepare” 
method depending upon whether the instance is executing a spout 
or a bolt, respectively. In the case of a bolt, when tuples arrive, the 
task execution thread invokes the “execute” method with the 
incoming tuple for processing. In the case of a spout, it repeatedly 
calls the “nextTuple” method to fetch data from the source, and 
then injects this data as tuples into the topology. The emitted 
tuples from either spout or bolt are sent to the Gateway thread, 
which forwards the tuples to the local SM. In addition to 
processing tuples, the Task Execution thread collects various 
metrics such as the number of tuples executed, the number of 
tuples emitted, the number of tuples acknowledged, and the 
latency experienced during the processing of tuples. 

The Gateway thread and the Task Execution thread communicate 
between themselves using three unidirectional queues, as shown 
in Figure 5. The Gateway thread uses the data-in queue to push 
tuples to the Task Execution thread for processing. The Task 
Execution thread uses the data-out queue to send tuples to the 
Gateway thread (for sending to other parts of the topology). The 
metrics-out queue is used by the Task Execution thread to pass the 
collected metrics to the Gateway thread. 

The data-in and the data-out queues are bounded in size. The 
Gateway Execution thread stops reading from the local SM when 
the data-in queue exceeds this bound. This action triggers the 
backpressure mechanism at the local SM. Similarly, when items 
in the data-out queue exceed the bound, the Gateway thread can 

 
 

 
 

Figure 5: Heron Instance Figure 6: Heron Services for Production 
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assume that the local SM can not receive more data, and that the 
Task Execution thread should not emit or execute any more 
tuples. 

When we ran large topologies in production with bounded queue 
sizes, we often experienced unexpected GC issues. Everything 
worked fine until, say, a network outage happened and the 
Gateway thread was unable to send tuples from the data-out 
queue. Tuples would then start to back up in the data-out queue, 
and because they are live objects, they could not be reclaimed. 
This situation then caused the corresponding HI to reach its 
memory limit. Once the network recovered, the Gateway thread 
would start reading tuples from the local SM, as well as sending 
out tuples from data-out queue. If the Gateway thread read tuples 
from the SM before sending out tuples, any new object 
construction could trigger the GC, since nearly all of the available 
memory was already used up, quickly resulting in further 
performance degradation. 

To avoid such GC issues, we periodically check the capacity of 
the data-out and data-in queues and increase/decrease these queue 
sizes accordingly. If the capacity of the queue grows over a 
configurable limit, then it is reduced (currently to half of the last 
capacity). This mechanism is invoked periodically until the 
capacity of the queue returns to a stable constant value, or the 
capacity reaches zero. When the capacity of the queue becomes 
zero, neither new tuples can be injected, nor, in many cases, can 
new tuples be produced. As a consequence, it is easier to recover 
from GC issues. Similarly, when the outstanding number of tuples 
in the queue is smaller than the configured limit, the capacity is 
gradually increased until the queue length either reaches the 
configured limit or hits the maximum capacity value. 

5.6 Metrics Manager 
The Metrics Manager (MM) collects and exports metrics from all 
the components in the system. These metrics include system 
metrics and user metrics for the topologies. There is one metrics 
manager for each container, to which the Stream Manager and 
Heron Instances report their metrics.  

Metrics are sent from each container to an in-house monitoring 
system. The MMs also pass the metrics to the Topology Master 
for displaying in external UIs. The separation of metrics reporting 
using local MM provides us the flexibility to support other 
monitoring systems (such as Ganglia and Graphite) in the future. 

5.7 Startup Sequence and Failure Scenarios 
When a topology is submitted to Heron, a sequence of steps are 
triggered. Upon submission, the scheduler (in our case it is 
generally Aurora [1]) allocates the necessary resources and 
schedules the topology containers in several machines in the 
cluster. The Topology Master (TM) comes up on the first 
container, and makes itself discoverable using the Zookeeper 
ephemeral node. Meanwhile, the Stream Manager (SM) on each 
container consults Zookeeper to discover the TM. The SM then 
connects to the TM and periodically sends heartbeats.  

When all the SMs are connected, the TM runs an assignment 
algorithm to assign different components of the topology (spouts 
and bolts) to different containers. This is called the physical plan 
in our terminology. Once the assignment is complete, the SMs get 
the entire physical plan from the TM, which helps the SMs to 
discover each other. Now the SMs connect to each other to form a 
fully-connected network. Meanwhile, the Heron instances (HI) 
come up, discover their local SM, download their portion of the 
physical plan, and start executing. After these steps are completed, 

data/tuples starts flowing through the topology. For safekeeping, 
the TM writes the physical plan to Zookeeper to rediscover the 
state in case of its failure.  

When a topology is executing, there are several failure scenarios 
that could affect some portion of the topology, and sometimes 
even the entire topology itself.  These scenarios consist of the 
death of processes, failure of containers, and failures of machines.  

When the TM process dies, the container restarts the failed 
process, and the TM recovers its state from Zookeeper. When a 
topology is started with a standby TM, the standby TM becomes 
the master, and the restarted TM becomes the standby. 
Meanwhile, the SMs that have open channels to the TM 
rediscover the new TM, and connect to it. 

Similarly when an SM dies, it gets restarted in the same container, 
it rediscovers the TM, and it initiates a connection to fetch the 
physical plan to check if there are any changes in its state. Other 
SMs, who have lost the connection to the failed SM, also get a 
copy of the same physical plan indicating the location of the new 
SM, and create a connection to the new SM. When an instance 
(HI) dies within a container, it is restarted, and it contacts its local 
SM. The HI then gets a copy of the physical plan, identifies 
whether it is a spout or bolt, and starts executing the 
corresponding user logic code. 

When any container is rescheduled or relocated to a new machine, 
the newly minted SM discovers the TM, and follows the same 
sequence of steps of an SM failure and an HI failure.  

5.8 Architecture Features: Summary 
We note several salient aspects of our design. First, the 
provisioning of resources (e.g. for containers and even the 
Topology Master) is cleanly abstracted from the duties of the 
cluster manager, thereby allowing Heron to “play nice” with the 
rest of the (shared) infrastructure.  

Second, since each Heron Instance is executing only a single task 
(e.g. running a spout or bolt), it is easy to debug that instance by 
simply using tools like jstack and heap dump with that process.  

Third, the design makes it transparent as to which component of 
the topology is failing or slowing down, as the metrics collection 
is granular, and lets us easily map an issue unambiguously to a 
specific process in the system.  

Fourth, by allowing component-level resource allocation, Heron 
allows a topology writer to specify exactly the resources for each 
component, thereby avoiding unnecessary over-provisioning.  

Fifth, having a Topology Master per topology allows each 
topology to be managed independently of each other (and other 
systems in the underlying cluster). In additional, failure of one 
topology (which can happen as user-defined code often gets run in 
the bolts) does not impact the other topologies.  

Sixth, the backpressure mechanism allows us to achieve a 
consistent rate of delivering results, and a precise way to reason 
about the system. It is also a key mechanism that allows migrating 
topologies from one set of containers to another (e.g. to an 
upgraded set of machines).  

Finally, we now do not have any single point of failure.  

6. Heron in Production 
To get Heron working in production, we needed several additional 
functionalities, which include: a) the ability for users to interact 
with their topologies, b) the ability for users to view metrics and 
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trends for their topologies, c) the ability for users to view 
exceptions that occurs in the Heron Instances, and d) the ability 
for users to view their topology logs. To accommodate all this 
functionality, we implemented additional components: Heron 
Tracker, Heron UI and Heron Viz as shown in Figure 6. These 
components are described in more details below. 

6.1 Heron Tracker 
The Heron Tracker acts as a gateway to access several 
information about topologies. It interfaces with the same 
Zookeeper instance that the topologies use to save their metadata, 
and collects additional information about the topologies. The 
tracker uses Zookeeper watches to keep track of new topologies 
that are being launched, existing topologies that are being killed, 
and any change in the physical plan of the topology (such as a 
container being moved from one host to another). In addition to 
this information, the tracker also uses the metadata information in 
Zookeeper to discover where the Topology Master of a topology 
is running to obtain metrics and any other relevant data. 

The tracker provides a clean abstraction by exposing a well-
defined REST API that makes it easy to create any additional 
tools. The API provides information about the topologies such as 
the logical and the physical plan, various metrics including user-
defined and system metrics, links to log files for all the instances, 
and links to the Aurora job pages for the executing containers. 
The tracker runs as an Aurora service, and typically is run in 
several instances for fault tolerance. The API requests are load 
balanced across these instances. 

6.2 Heron UI 
Heron users can interact with their topologies using a rich visual 
UI. This UI uses the Heron Tracker API and displays a visual 
representation of the topologies, including its logical and physical 

plan. Logical plan displays the directed acyclic graph with each 
node uniquely color-coded. The physical plan is displayed as a set 
of concentric circles, with the inner circle representing the hosts, 
the middle circle depicting the containers, and the outer circle 
representing the instances of components. A user can drill down 
either on a component or on an instance of the component to 
display metrics such as emit counts, complete/execute latencies, 
acknowledged counts, and fail counts for the time intervals of last 
10 minutes, 1 hour, 3 hours, and since the start of the topology. In 
addition to these features, the UI also offers easy access links to 
view the logs and exceptions that are associated with an instance – 
an important feature for debugging. Figure 7 shows a part of the 
visualization for a 5-stage topology.  

6.3 Heron Viz 
Heron Viz is a service that creates the dashboard used to view the 
metrics collected by the Metrics Manager for a topology. This 
service periodically contacts the Heron Tracker for any new 
topology. When there is a new topology, it uses the HTTP API of 
graphing system, called Viz, to create a dashboard of graphs. In 
order to create the dashboard, Heron Viz retrieves the logical plan 
of the topology to determine the components, i.e. the bolts and the 
spouts, and the number of instances of each component. For each 
component in the topology, a section is created based on the type 
of the component (spout or bolt), and queries are generated based 
on the number of instances.  

Broadly, the Heron Viz dashboard for a topology is categorized 
into health metrics, resource metrics, component metrics and 
stream manager (SM) metrics.  

Health metrics include the overall lag the topology is 
experiencing, aggregate tuple fail count in the spouts, and number 
of SM deaths.  

Figure 7: Topology Visualization. The figure on the left shows the logical plan for the topology, and the figure on the right shows the 
current location of components of the physical plan for the topology. Clicking on a logical plan component (e.g. the red bolt in the figure 
on the left) highlights the location of the containers on the map on the right. The table below the two figures shows key metrics. 
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Resource metrics consist of the CPU resources allocated, CPU 
resources that are actually used, the amount of memory that is 
being used, the amount of memory that has been reserved, and the 
amount of time spent in GC.  

Component metrics include, for each spout, the number of tuples 
that have been emitted, failed, and acknowledged. They also 
include the average end-to-end latency for processing a tuple. 
Additional component metrics include, for each bolt, the number 
of tuples executed, acknowledged and emitted, and the average 
latency for processing each tuple.  

Finally, the SM metrics tracks for each SM, the number of tuples 
that have arrived from instances, the number of tuples delivered to 
the instances, the number of tuples dropped when receiving and 
sending to instances and other SMs, and the total aggregate time 
spent in backpressure mode.  

A sample and partial view of the dashboard is shown in Figure 8. 

6.4 Heron@Twitter 
At Twitter, Storm has been decommissioned and Heron is now the 
de-facto streaming system. It has been in production for several 
months and runs hundreds of development and production 
topologies in multiple data centers. These topologies process 
several tens of terabytes of data, generating billions of output 
tuples.  

Topologies vary in their complexity and a large number of 
topologies have three or fewer stages. There are several topologies 
that extend to more than three stages, and the longest ones go as 
deep as eight stages.  

The use cases for these topologies are varied and include data 
transformation, filtering, joining, and aggregating content across 
various streams in Twitter (e.g. computing counts). The use cases 
also include running complex machine learning algorithms (e.g. 
regression, association and clustering) over streaming data. 
Various groups inside Twitter use Heron. These groups include 
user services, revenue, growth, search, and content discovery. 

After migrating all the topologies to Heron (from Storm), there 
was an overall 3X reduction in hardware – a significant 
improvement in the infrastructure efficiency at Twitter’s scale. 

7. Empirical Evaluation  
In this section, we present results comparing Heron and Storm.  

7.1 Workload 
We chose to evaluate Heron in the context of two topologies – a 
Word Count topology, and a RTAC topology (cf. Figure 1). For 
each topology, we considered two variants, one with 
acknowledgements enabled (i.e. at least once semantics), and the 
other with no acknowledgements (i.e. at most once semantics).  

Note that both topologies were constructed primarily for this 
empirical evaluation, and should not be construed as being the 
representative topology for Heron/Storm workloads at Twitter. 

7.2 Setup 
All experiments were run on machines with dual Intel Xeon 
E5645@2.4GHZ CPUs, each consisting of 12 physical cores with 
hyper-threading enabled, 72GB of main memory, and 500GB of 
disk space. We tuned both Storm and Heron to perform in ways 
that we expect in production settings. In other words, there are no 
out-of-memory (OOM) crashes (or any other failure due to 
resource starvation during scheduling), or long repetitive GC 
cycles. The Storm topologies were run in isolation, which means 
that no process besides the kernel, Mesos slaves, and metric 
exporter daemons, is running in the system. Heron was running in 
a shared cluster, with Linux “cgroups” isolation.  

The experiments were allowed to run for several hours to attain 
steady state before measurements were taken. For Storm, this 
means very small number of drops in the 0mq layer, and that the 
size of various queues are not growing, and remain small.  For 
Heron, this means no backpressure, and that its transfer queues 
also maintain a stable size while remaining small. 

Note that for topologies with acknowledgements, tuple failures 
may occur due to 0mq drops in Storm, or due to timeout. While 

Figure 8: Topology Metrics Reporting 
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for Heron, tuple failures can happen only due to timeouts. We 
used 30 seconds as the timeout interval in both cases.  

7.3 Word Count Topology 
In these set of experiments, we used a simple word count 
topology. In this topology, the spout tasks generate a set of 
random words (~175k words) during the initial “open” call, and 
during every “nextTuple” call. In each call, each spout simply 
picks a word at random and emits it. Hence spouts are extremely 
fast, if left unrestricted. Spouts use a fields grouping for their 
output, and each spout could send tuples to every other bolt in the 
topology. 

Bolts maintain an in-memory map, which is keyed by the word 
emitted by the spout and updates the count when it receives a 
tuple.  

This topology is a good measure of the overhead introduced by 
either Storm or Heron since it does not do significant work in its 
spouts and bolts.  

For each set of experiments, we varied the number of Storm 
spout/bolt tasks, Heron spout/bolt instances, Storm workers, and 
Heron containers as shown below in Table 1. 

Table 1: Experimental setup for the Word Count topology 

Components Expt. #1 Expt. #2 Expt. #3 Expt. #4

Spout 25 100 200 500 

Bolt 25 100 200 500 

# Heron containers 25 100 200 500 

# Storm workers 25 100 200 500 

 

7.3.1 Acknowledgements Enabled 
In these experiments, the word count topology is enabled to 
receive acknowledgements. We measured the topology 
throughput, end-to-end latency, and CPU usage, and plot these 
results in Figure 9, Figure 10, and Figure 11 respectively. Each of 
these figures has four points on each line, corresponding to the 
four experimental setup configurations that are shown in Table 1. 

As shown in Figure 9, the topology throughput increases linearly 
for both Storm and Heron. However, for Heron, the throughput is 
10-14X higher than that for Storm in all these experiments. 

The end-to-end latency graph, plotted in Figure 10, shows that the 
latency increases far more gradually for Heron than it does for 
Storm. Heron latency is 5-15X lower than that of the Storm. There 
are many bottlenecks in Storm, as the tuples have to travel 
through multiple threads inside the worker and pass through 
multiple queues. (See Section 3.) 

In Heron, there are several buffers that a tuple has to pass through 
as they are transported from one Heron Instance to another (via 
the SMs). Each buffer adds some latency since tuples are 
transported in batches. In normal cases, this latency is 
approximately 20ms, and one would expect the latency to be of 
the same value since the tuples in this topology have the same 
number of hops. However, in this topology, the latency increases 
as the number of containers increase. This increase is a result of 
the SMs becoming a bottleneck, as they need to maintain buffers 
for each connection to the other SMs, and it takes more time to 
consume data from more buffers. The tuples also live in these 
buffers for longer time given a constant input rate (only one spout 
instance per container). 

Figure 11 shows the aggregate CPU resources that are utilized 
across the entire cluster that is used for this topology, as reported 

  
Figure 9: Throughput with acknowledgements Figure 10: End-to-end latency with acknowledgements 

 
Figure 11: CPU usage with acknowledgements 
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by Aurora. The metric in this figure is number of cores, and the 
aggregate CPU resources that is consumed is computed by taking 
the CPU utilization of each core that is used, and dividing it by 
100.  

As shown in Figure 11, the CPU usage also increases linearly as 
more data is pushed through the topology for both Storm and 
Heron. This behavior is expected as increasing the number of 
processes and the number of containers results in requiring more 
CPU resources. However, the CPU usage of Heron is 2-3X lower 
than that of the Storm, and the increase in CPU utilization is 
nearly linear as the number of containers increase. 

7.3.2 Acknowledgements Disabled 
In these experiments, we disable the acknowledgments, which 
means that some tuples might be lost mid-flight. We measured the 
throughput and the CPU usage, and show these results in Figure 
12 and Figure 13, respectively. 

As can be seen in Figure 12, the throughput increases linearly for 
both Storm and Heron as we input more data into the topology. 
However, across all the experiments, the throughput of Heron is 
6-8X higher than that of Storm. 

When comparing CPU usage (Figure 13), we observe that the 
CPU resources used by Heron is consistently 3-4X lower than that 
for Storm, while achieving a far higher throughput. 
 

7.4 RTAC Topology 
For this evaluation, we chose the example RTAC topology shown 
in Figure 1. We set up this topology so that the expected output 
rate for this topology, when it can keep up with the input data rate, 
is ~6M tuples/minute. Using iterative experiments, we identified 
the configuration parameters for Storm and Heron that provided 
the best performance. These configurations are listed in Table 2.  

7.4.1 Acknowledgements Enabled 
In the first experiment, we enable end-to-end acknowledgements 
in the topology. We measured the actual CPU usage and the end-
to-end latency for the topology when running both in Storm and in 
Heron. Recall that Storm topologies run in isolation (cf. Section 
3.3). The results plotting the total CPU resources utilized (in terms 
of 100% utilized core counts), and the end-to-end latencies are 
shown in Figure 14 and Figure 15, respectively.  

As shown in these two figures, Storm needed 360 cores to keep up 
with the required throughput of 6M tuples/min, with an end-to-
end tuple latency of 70ms. On the other hand, Heron can sustain 
the required throughput with just 36 cores, while delivering an 
end-to-end tuple latency of only 24ms. When we relaxed the 
latency requirements for Storm, we were able to sustain the 
required throughput with 240 cores with an increased end-to-end 
latency of 500ms. In this experiment, Heron shows 65-95% 
improvement in the latency over Storm, while requiring only 20-
22% of the CPU resources that Storm requires.   

7.4.2 Acknowledgements Disabled 
In the second experiment, we disabled acknowledgements, which 
means that failed tuples are dropped without any replaying. In this 
case, we measured the CPU usage. The results for this experiment 
are shown in Figure 16. 

With this simpler topology, Storm needed 240 cores, creating an 
output throughput rate of 6M/min. On the other hand, Heron can 
keep up with this topology using just 20 cores, a 10X reduction in 
CPU resources that are required. 

8. Conclusions and Future work 
The need for real-time stream analytics at Twitter continues to 
grow, and in production has pushed the boundaries of what 
existing streaming systems can deliver in terms of manageability 
and performance. To meet these needs, and to also provide 
backward compatibility with our existing streaming API, we have 
designed and implemented a new stream data processing system 
called Heron, which we have presented in this paper. We have 
also presented results from an empirical evaluation of Heron that 
demonstrates large reductions in CPU resources when using 
Heron, while delivering 6-14X improvements in throughput, and 
5-10X reductions in tuple latencies.  

  
Figure 12: Throughput with acknowledgements disabled Figure 13: CPU usage with acknowledgements disabled 
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The design of Heron allows supporting exactly once semantics, 
but the first version of Heron does not have this implementation. 
One reason for tolerating the lack of exactly once semantics is that 
Summingbird [8] simultaneously generates both a Heron query 
and an equivalent Hadoop job, and in our infrastructure the 
answers from both these parts are eventually merged.  

However, there is a real need for fast responses from the 
streaming system (even if the answer is not fully accurate) as this 
real-time analytics is crucial to how Twitter works. Exactly once 
semantics requires some form of check pointing (e.g. see [21]), 
which is known to reduce the performance, and our design allows 
for adding such semantics. We are considering designing and 
implementing mechanisms for exactly once semantics in Heron. 
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Figure 14: CPU usage with 
acknowledgements enabled 

Figure 15: End-to-end latency with 
acknowledgements 

Figure 16: CPU usage with 
acknowledgements disabled 

0

50

100

150

200

250

300

350

400

Storm Heron

# 
co

re
s

0

10

20

30

40

50

60

70

80

Storm Heron

L
at

en
cy

 (
m

s)

0

50

100

150

200

250

300

350

400

Storm Heron

# 
co

re
s

250




